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Abstract 

 
The Problem of n-connection subgraph discovery (n-

CSDP for short) is to find a small sized subgraph that can 
well capture the relationship among the n given nodes in 
a large graph. However there have been very few 
researches directly addressing the CSDP problem. 
Furthermore the currently available methods, for 
example, the electricity analogues based algorithm can 
only be suitable for tackling the 2-Keynodes CSDP and 
does not work anymore when n is greater than two. To 
deal with this problem, we propose an effective approach 
to discover the subgraph in two stages. In the first stage 
we propose a neighbor-growth based method to extract a 
relatively bigger candidate subgraph compared with that 
of result subgraph. In the second stage an evolutionary 
algorithm for optimizing the result subgraph is proposed. 
For this purpose, UTM code, a transformed 
representation of the adjacent matrix of graphs is 
designed to encode the topology of subgraph as 
individuals. Then corresponding evolutionary operators 
able to be directly performed on UTM code are given. 
Thus the efficiency of the algorithm is largely improved.  
The experimental results obtained on two real large scale 
graphs with different topology characteristics 
demonstrate that our method solves n-connection 
subgraph discovery problems effectively. 

 
1. Introduction 
 

More and more data sets represented as network 
graphs with large size are available now. It is usually 
necessary or important to find some special structures 
from the networks. For example, from the social network 
modeling the relationship among people, can we find the 

solution to an interesting problem, what is the relationship 
between Alan Turing and Sharon Stone? Alan Turing is a 
departed famous scientist, and Sharon Stone is a famous 
actress of the time. They live in different time and their 
jobs are totally different. Is there any interesting 
relationship between them? 

A feasible way to solve the problem is to construct a 
network on the basis of the relationship among people, in 
which every person is denoted as a node, and any two 
nodes are connected with an edge if the corresponding 
two persons have a certain kind of relationship. 
Furthermore, every edge is associated with a weight 
representing the strength of their relationship. With such 
network we can find the relationship between any two 
persons by discovering a subgraph containing these two 
nodes. Of course the subgraph should be of appropriate 
size, and also the nodes in the subgraph should be 
important enough. In such case we may say that the 
subgraph can best capture the relationship between the 
two persons. 

One special case of the problem called 2-Keynodes 
Connection Subgraph Discovery Problem (CSDP) is first 
studied by C. Faliutsos et al. However as pointed out by 
them [1], there have been very few researches directly 
addressing the CSDP problem. C. Faliutsos proposed an 
efficient algorithm to tackle the 2-Keynodes CSDP based 
on the electricity analogues principal. They discovered an 
interesting result shown in Fig.1, which shows that there 
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Figure 1 Relationship between Alan Turing and 
Sharon Stone 

are the three most important persons between Alan Turing 
and Sharon Stone: Harry Potter who is a science fiction 
character, Gillian Anderson, an actor in a movie about the 
engima cipher machine, and Kate Winslet, an actor of a 
popular science fiction television show. 

However, if we would like to know the relationship 
among more people, for example, what is the relationship 
among Alan Turing, Sharon Stone and Mike Jordan, then 
how can we deal with the problem? In such case the 
proposed electricity analogues based approach does not 
work any more. We call this kind of more complicated 
problem an n-Connection Subgraph Discovery Problem, 
where n is greater than 2. The problem is formulated as 
follows: 

N-Connection Subgraph Discovery Problem (n-CSDP) 
Given: an edge-weighted undirected graph G, n 

interesting vertices v1, v2,…,vn from G, and an integer 
budget β. 

Find: a connection subgraph H containing v1, 
v2,…,vn and at most other β vertices that well captures 
the relationship among v1, v2,…,vn. 

To n-CSDP, the electricity analogues based method 
adopted in [1] does not work any more. The reason is that, 
electricity analogues based method is proposed on the 
basis of electrical currents in a network of resistors, thus 
lead their method only to be suitable for two nodes CSDP. 
So it is necessary for us to give a new approach to find 
the subgraph that captures well the relationships among n 
pre-specified nodes in a huge graph. 

N-connection subgraph discovery may have wide 
applications. It can be used to find the several websites 
that most likely to leak some information (for example 
documents, mp3 or movies) on the Internet. Similarly it 
can be used to help us to control the infections. In other 
domains like semantic search and information retrieval, 
and in other networks like protein networks, language 
networks, chemical reaction networks, n-Connection 
Subgraph can also be useful for finding some special 
information. Thus it is more and more important for us to 
find effective approaches to discover special sub-
structures from these networks.  

In this paper, we present a novel method to solve n-
CSDP. For this purpose, we first define our goodness 
function to measure how well a connection subgraph 
captures the relationship among the n pre-specified nodes. 
Meanwhile we will design a special UTM code to 
represent possible topology of a graph with fixed number 
of nodes. Based on the UTM code and our goodness 
function, we then design an evolutionary algorithm to 
evolve the topology of a graph by using specially 
designed genetic operators. Our experimental results 
show that the proposed algorithm can be used to discover 

the connection subgrapghs for different types of 
networks. 

The rest of this paper is organized as follows. Section 
2 gives a brief review of the related work. Section 3 
presents our proposed algorithm. Section 4 shows our 
experimental results and brief analysis. The paper is 
concluded in Section 5. 

 
2. Related Work 
 

The first work directly addressing the connection 
subgraph mining problem is done by C. Faliutsos [1]. 
Then followed by that of S. Vast et al’s [7]. The other 
indirect but related work includes community structures 
mining [3] and survivable networks [4], PageRank [5], 
RDF graph [12], graph clustering [10], graph partitioning 
[11], frequent subgraph mining [6] and other works on 
complex networks [9]. 

 
Figure 2: An example graph that C. Faliutsos’s 

algorithm cannot find the connection subgraph among 
nodes 1, 2 and 3 as needed. 

 
C. Faliutsos et al present an electricity analogues based 

method to find connection subgraph between two given 
nodes [1]. When the number of the given nodes is more 
than two, electricity analogues based method works any 
more. The reason is that electricity analogues based 
method is proposed on the basis of electrical currents in a 
network of resistors. Thus their proposed function of 
measuring the goodness of a connection subgraph is only 
suitable for a 2-Keynodes CSDP. To an n-CSDP where 
n>2, we may get some useless nodes, and meanwhile will 
miss some important nodes. For instance, suppose that 
node 1, 2 and 3 in Fig.2 are 3 Keynodes. If we still use 
their function designed for two Keynodes case, we may 
get a result subgraph excluding node 7. This is because 
that the degree of node 7 is 3 and the degree of any other 
node, i.e. node 4, 5, 6, is 2. So the weight of the edge 
connected to node 7 is small. But node 7 is an important 
node to describe the relationship among the three 
designated Keynodes and is actually the node that we 
hope to get. 

S. Vast et al [7] present a method to extract a set of the 
nodes that best capture the relevant nodes among the k 
given nodes of interest. They project the nodes of the 
network which is viewed as an undirected graph into a 
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Euclidean space. Fig. 3 presents the results of the 
experiments of this method on the two real networks that 
we use in our experiments. It shows that both result 
subgrapghs are disconnected. Another problem of using S. 
Vast et al’s algorithm to solve the n-CSDP is that the 
complexity of the algorithm is O(n|G|2). If the size of the 
given network is very large, the time cost of the algorithm 
is unacceptable. 

      
   
 

 
 

Figure 3: Results of S. Vast et al’s method on two 
real networks. The red nodes are the relevant nodes 

selected by the algorithm. 
 
In [12], W.H. Milnor et al studied the problem of 

discovering informative subgraph in RDF Graphs with 
the electricity analogues approach. So in essence, their 
method is also only used in two nodes conditions just like 
[1], and is not suitable for n-CSDP (n>2). The work on 
the survivable networks [4] studies the ability of 
connection when some nodes of the network are missing. 
This work can also not be directly used to solve n-CSDP. 
For example, node 1 and node 2 in Fig.4 have the same 
survivability. When deleting any of them, some paths will 
be cut off. However, node 1 and node 2 have different 
importance to our problem since the degrees of these two 
nodes are quite different 

 
Figure 4: An example graph 

 
3. Algorithms to find candidate subgraph and 
result subgraph 
 

In the following we will first give some definitions to 
be used in the rest of the paper, then formulate the 
constraints to be considered in measuring the goodness of 
the result subgrapgh. To get the needed subgraph we will 

first extract a relatively bigger candidate subgraph 
compared with that of result subgraph through our 
neighbor-growth algorithm. Then we give a UTM code 
having good property to encode the topology of subgraph. 
On the basis of the UTM coding of individuals 
representing the possible result subgraph, the 
corresponding evolutionary operators are designed.  

 
3.1. Preliminaries 
3.1.1. Definitions 

 
First, we give some definitions that we use in the rest 

of this paper. 
Definition 1: Keynodes. N pre-specified nodes v1, 

v2,…,vn are called Keynodes if we need to find a 
connection subgraph containing them. The connection 
subgraph discovery problem having n Keynodes is called 
n-CSDP. (b) Subgraph obtained 

from movie-actor 
network 

(a) Subgraph obtained 
from scientific 

collaboration network 
In social networks, as we have discussed in Section 2, 

famous persons are less important than those who are not 
famous. But how can we define whether a person is 
famous or not? In [1], the nodes that have small degrees 
are preferred. But actually whether a person is famous or 
not depends on whom he compare with. So we give a 
definition as follow: 

Definition 2: Starnodes.  The nodes having greater 
degrees than the greatest degree of all the Keynodes are 
called Starnodes. 

 
3.1.2. How to judge the goodness of a subgraph 

 
What we need to find is a connection subgraph that 

well captures the relationship among three given nodes. 
So an important problem is how to judge the goodness of 
a subgraph. Considering what we have discussed above, 
the result subgraph should satisfy the following 
constraints: 

1) The subgraph must be connected well: It is obvious 
that the result subgraph must be connected. But what does 
a subgraph is connected well mean? Here it means that 
the result subgraph is not only a connection subgraph, but 
also is still connected by removing all the Keynodes. 
Under such condition, the topology of the subgraph may 
capture as well as possible the relationship among n given 
Keynodes. For example, if our result is like the graph 
shown in Fig.2 but excluding node 7. Indeed it is a 
connection subgraph, but node 4 is only connected to 
node 1 and 2, and is not connected to node 3 without 
node 1 and 2. The situation is the same for node 5 and 
node 6. Here we suppose that every Keynode is not 
connected directly to any other Keynodes. 

2) The subgraph must have no more than a pre-
specified number β of nodes. This is obvious because 
the size of our result subgraph is measured by the number 
of nodes. 
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3) The total weight of all the edges of the subgraph 
should be as heavy as it can be.  How can a subgraph of a 
certain size capture the relationship among the Keynodes? 
The weight of an edge is heavier; the relationship 
between the corresponding two nodes is stronger. So the 
most natural way is to maximize the total weight of all the 
edges in the subgraph. 

4) The number of the Starnodes appearing in the result 
subgraph must be constrained. As we have discussed in 
section 2, the Starnodes sometimes may not be important 
to represent the relationship among the Keynodes. This 
does not mean that the Starnodes are not needed in the 
result. The Starnodes may also help to represent the 
relationship among Keynodes. But too many Starnodes 
may not be well suited to capture the relationship among 
the Keynodes. So we hope to reflect this consideration by 
constraining the number of the appearances of Starnodes 
with some conditions. 

The above four factors are the most important 
constraints that the result subgraph should satisfy. In our 
algorithm these factors will be considered in the 
judgement of the goodness of a subgraph. 

Our algorithm can be divided into two steps: the first 
step is to generate the candidate subgraph to reduce the 
size of the computing space; the second step is to get the 
final result from the candidate subgraph with an 
evolutionary computational method. 

 
3.2. Neighbor-growth based Algorithm to find 
candidate subgraph 

 
Our goal is to find connection subgraph in a large 

graph, for example, the social networks which are 
complex graphs of very large size. Apparently searching 
directly in such large graph is a work of low efficiency. 
We also know that the mean distance between every two 
nodes in the complex network is small. For instance, in 
the condense matter physicist collaboration network the 
mean distance is 6.4 [8]. So we need to cut the nodes that 
are far away from the Keynodes, and extract a candidate 
subgraph. 

Formally, this step takes vertexes v1, v2,…,vn from 
the original graph G, and produces a much smaller graph 
Gcand by growing the neighborhoods around v1, v2,…,vn. 
But the neighborhoods should be grown carefully because 
we do not want to miss important nodes. We grow the 
subgraph according to the several principals we give out 
in section 3.1.2. In this step, the constraints of the 
candidate subgraph are as follows: 

1) The candidate subgraph must be connected well. 
2) The candidate subgraph must have more thanβ 

nodes, but not too big. 
3) The total weight of the candidate subgraph’s edges 

should be as large as it can be. 

Here we can see that the second constraint is 
somewhat different from the constraint on the result 
subgraph. To make full use of the evolutionary 
computational algorithm in the second step, we consider 
it would be better that the size of the candidate subgraph 
is several times larger than the required size of result 
subgraph. We do not make any constraint on the number 
of the appearance of the Starnodes because the size of 
candidate subgraph is larger than that of the result 
subgraph and some Starnodes are useful. 

In the following we give a function g to evaluate the 
connectivity importance of a node u: 

∑
=

=
n

i i

i

vulength
vuweight

ug
1

2)),((
),(

)(  

where  is the length of the path with 
smallest number of the edges from node u to Keynode v

),( ivulength
i, 

and  is the sum of the weights of the 
edges on the path. To compute g(u) for each u in the 
graph we traverse the graph n times, each time traversing 
from a different Keynode. It is obvious that if u is far 
from Keynodes, function g(u) returns a low value. So if 
the function g(u) returns a high value, it means that the 
node u is either near to a Keynode or not far from every 
Keynode.  

),( ivuweight

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 1. Finding Candidate Subgraph containing 
most of the interesting connections among v1, v2,…,vn. 

Input: a weighted and undirected graph G, n 
keynodes v1, v2,…,vn  

Output:  G  which is much smaller than 
G but contains most of the interesting 
connections among  v

Gcond ⊂

1, v2,…,vn. 
Begin 

1)  For each u in G and ∉  {v1, v2,…,vn} in G do 
2)       Compute g(u); 
3)  maxu = the node u which has the biggest g(u); 
4)  H = {maxu,  v1, v2,…,vn }; 
5)  Gcond =H; 
6)  For each vi in H do 
7)       k = length(u, vi); 
8)       Tk= {maxu};  
9)       Tk-1 = { } 
10)     While (k>1) 
11)          For each node t in Tk  
12)    Tk-1 = Tk-1 ∪ pickthemax (t, vi, c); 
13)                 Gcond  = Gcond ∪ Tk-1; 
14)          k--; 

End 
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Figure 5: Algorithm of  finding candidate subgraph 
 
Our algorithm shown in Fig. 5 starts from the node 

maxu whose function value g(maxu) is the greatest to 
grow the neighbors around maxu, each growing operation 
grows c neighbors for each node in Tk. In Algorithm 1 
this growing operation is performed through the function 
pickthemax(t, vi, c) which returns c neighbors of node t. 
The weight of each neighbor of t is among the top c 
greatest ones and length(t, vi) = k-1, where t is a node of 
set Tk. So we can control the size of candidate subgraph. 
For each Keynode vi, growing operation can find the 
nodes that are on those paths from maxu to vi whose total 
weights are among the biggest ones. This algorithm can 
find the most important nodes and keep the candidate 
subgraph small and well connected. 

The computational complexity of finding maxu (step 1 
and 2) is O(nE) because each edge is needed to be 
traversed n times to compute the g(u), where n is the 
number of the Keynodes and E is the number of the edges 
of the given graph. The computational complexity of 
finding neighbors (from step 6 to 14) is O(n*2*E). 
Because each time of growing neighbors from maxu to vi 
each edge will be visited twice in the worst case. So the 
computational complexity of our algorithm is O(nE) + 
O(2nE) = O(nE). 

 
3.3. Evolutionary Algorithm to find the result 
subgraph 

 
In this step, the algorithm is given a candidate 

subgraph whose size is much smaller than the input graph 
and finds the final result subgraph which well captures 
the relationship among the given Keynodes. First every 
graph is uniquely coded, so that each different graph is 
differently coded. On the basis of this coding mode, an 
evolutionary computational method is presented to 
optimize the topology of the result subgraph.  
 
3.3.1. Individual Representation with UTM Code 

 
When using evolutionary computational method to get 

a good result subgraph we first need to give an individual 
coding method to represent an edge-unweighted 
undirected graph. The 0-1 adjacency matrix is usually 
used for its convenience. But it is obvious that if the size 
of a subgraph increases the scale of its adjacency matrix 
increases very fast. Given a graph that has n nodes, its 0-1 
adjacency matrix consists of n2 elements. For its 
symmetry only the upper triangular matrix is needed to be 
represented. So we give the UTM (Upper Triangular 
Matrix) code of a graph as follows: 

Definition 4: UTM code. Given an edge-weighted 
undirected graph, its adjacency matrix An×n, a 0-1 
sequence (ei) can be constructed based on the upper 
triangular part of the matrix, where i = 1, 2,…, l, and l is 
the length of the sequence (ei). In the sequence the k-th 
row is directly after (k-1)-th row, where k = 2, …, n. The 
m-th subsequence qm = (ej) consisting of s elements, 
where j = m,…,m+s-1, i.e., qm = em,…,em+s-1, and 

s
nnm

×
−

≤≤
2

1
2

, can be represented as a certain decimal 

number um (if the length of the sequence is smaller than s, 
then add enough zeros to its end), where s is the number 
of the elements in qm. The sequence consisting of ⎡ ⎤sl /  
decimal number ui is called a UTM code U, i.e.  

⎡ ⎤),...,,...,( /1 sluuuU i= , where ui is called the i-th 

part of U, s denotes the UTM code element length and l 
denotes the UTM code length. 

Given a graph and its adjacency matrix An×n, the kth 
part of the UTM code uk is defined as follows: 

∑
=

−−×=
s

ps

p
ijk au

1

12  

where aij is an element of  An×n, and 

sj
n
ksi

n
sk

≤<⎥⎥
⎤

⎢⎢
⎡≤<⎥⎥

⎤
⎢⎢
⎡ − 0,)1( ,  

 ⎥⎥
⎤

⎢⎢
⎡ −+−−

=
s

ijiink 2)1)(2( , 

sijiinp mod)2)1)(2(( −+−−≡ , 0≤ p<s. 

From the above we know that uk has the following 
property: 

  
⎪⎩

⎪
⎨
⎧

=≡

=≡
−

−

0     02mod

1      12mod

ij
ps

k

ij
ps

k

aifu

aifu

For example, Fig.6 shows a graph and its adjacency 
matrix. Suppose that UTM code element length s is set to 
be 8, and the sequence (ei) = (1010110001). Then the first 
eight zeros or ones can be represented by decimal number 
172. The rest of the sequence is (01) and six zeros are 
added to its end to get (01000000) which is represented 
by a decimal number 64. So the UTM code of the graph is 

(172, 64), and its code length l = 
2

555
2

2 −×
=

− nn  = 

10. 
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Figure 6: An example of the UTM code 

The topology of a graph and its corresponding UTM 
code has the following relation: 

 
Theorem 1: The mapping  is a 

bijection, where dom f = GSet, ran f =USet , GSet denotes 
the set of graphs each of which has n nodes, and USet 
denotes the set of UTM codes of graphs with n nodes. 

USetGSetf →:

Proof:  Let’s first prove that f is an injection.  
Suppose that U1 and U2 are two different 

randomly selected elements from USet, i.e., U1≠ U2, 
and their respectively corresponding UTM codes of 
length l are as follows: 

U1 = (c1, c2, …, cp) and U2 = (d1, d2, …, dp), 
where p= . ⎡ ⎤sl /

⇒  1≤i ≤p,  such that  c∃ i≠ di.  
Meanwhile we suppose that U1 and U2 are 
decoded into the binary sequences (e1k) and (e2k) 
respectively, where k = 1, 2, …, l. 

⇒   1≤j ≤l, such that e∃ 1j≠ e2j
We also know that from sequence (e1k) we can 
get its corresponding adjacency matrix denoted 
as An×n, so we have f(U1) = An×n. To sequence 
(e2k), we can also get its adjacency matrix BBn×n 
and have f(U2) =  Bn×nB

⇒  f(U1) =An×n≠BBn×n=f(U2) 

⇒  f(U1)≠f(U2) 
⇒  The mapping f is an injection. 
 

Then we prove that the mapping  f is a surjection. 
For U�USet, suppose that U = (c∀ 1,c2,…,cp). 
We can decode U and get its corresponding 
binary sequence (ei).  
From sequence (ei) we can get an adjacency 
matrix An×n which corresponds to a graph 
G�GSet. 

⇒  For ∀ U�USet we can find its preimage 
G�GSet  

⇒  The mapping f is a surjection. 
   Considering that we have proved that the mapping f is 
both an injection and a bijection, thus we can obtain the 
conclusion that Theorem 1 is true.                               ■ 

 
A certain topological graph has its corresponding 

adjacency matrix that is different to those of other 
topological graphs. So different graphs have different 

UTM codes. Theorem 1 can ensure that the using of 
operators to UTM codes will create new UTM codes 
which make sense. The UTM code can also be used to 
represent the directed graphs where elements 0, 1, 2 and 3 
will be used to construct the adjacency matrix. We can 
represent any part of the matrix by a quaternary number 
in a similar way to what we have done to the undirected 
graphs. 

The benefit of adopting our UTM code to encode the 
graph is that the space cost of representing a graph will 
largely be reduced, especially when the size of the graph 
is very large. For example, to represent a graph of 15000 
nodes, we have to use 225 million numbers in the 
adjacency matrix, but the UTM code (s is set to be 16) 
only need 0.7 million numbers, about 3% of that of the 
corresponding adjacency matrix need.  

Furthermore, we do not need to decode the UTM code 
when performing crossover and mutation operators. We 
can use these operators without knowing the topology of 
a graph. The reason for this will be explained later. 

 
3.3.2. Topology Evolution 

 
The n-CSDP can be viewed as a topology optimization 

problem. The final result is the best topology that can 
satisfy the constraints mentioned in Section 3.1.2. So we 
evolve the UTM code of the candidate subgraph, judge its 
goodness by the topology of the subgraph H’ and finally 
get the result subgraph.  

a) Fitness Function 
The goodness of the topology of the given subgraph 

H’ is judged with a fitness function by considering the 
four constraints mentioned in Section 3.1.2. Here we 
divide them into the following two categories: 

 Constraints on the edge and node:  
1. The total weight of the subgraph’s edges 

should be as big as it can be. 
2. The appearance of Starnodes must be 

constrained. 
 Constraints on the whole subgraph: 

1. The subgraph must have no more than the 
pre-specified number of nodes. 

2. The subgraph must be connected well. 
To each individual, we first calculate its total weight 

according to the constraints on the edge and node. Then 
those individuals that violate the constraints on the whole 
graph will be punished and finally we can get the fitness 
value for each individual. 

Before calculating the total weights of all edges, the 
weight of each edge e is normalized as follows: 
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m a x

( )'( ) w ew e
w α

=
×

 

where   is the given weight of edge e,   is 
the max of all the weights of edges of candidate subgraph 
H’, and 

( )w e maxw

α   is a punishment factor. To any edge e, α   is a 
constant bigger than 1 when one node of e is a Starnode, 
and α   is 1 otherwise. In this way we can constrain the 
appearance of Starnodes. 

Then the total weights of all the edges in the candidate 
subgraph H’ is calculated as follows: 

∑
∈

=
'

)(')'(
He

ewHE  

)'(HE  is the fitness value of a subgraph H’ which 
satisfies the constraints on the whole graph. 

There are three cases that the subgraph H’ violates the 
constraints on the whole subgraph: 

(1) At least one of the Keynodes is not connected. 
(2) H’ is not connected well. (Mentioned in 3.1.2) 
(3) There are more thanβ nodes in H’. 
Here the violation of the constraint that the subgraph 

H’ must be connected well  is divided into the two cases: 
1) at least one of the Keynodes is not connected; 2) H’ is 
not connected well. The reason for our division is that the 
individual belongs to case 1 is useless for evolution. For 
any subgraph H’, the function P(H’) for punishing its 
violation of the constraints is as follows:  

P(H’)=1 
if at least one of the Keynodes is not connected 

P(H’)=0.00001;  //case 1: severely punished 
else if H’ is not connected well                  

   ; //case 2 5.0)()'( ×= HPHP
else if there are more than β nodes in H’  

  ))'((
)'()'(

βε −×
=

Hsizeof
HPHP  ; //case 3 

         // ε is a constant greater than 1. 
The final fitness function for subgraph H’ is defined as 

follows: 
)'()'()'( HPHEHfitness ×=  

With this function each individual violating the 
constraints on the whole subgraph will be punished by 
reducing its fitness value. Fig.7 gives a graph H with 3 
Keynodes shown as darkened nodes, the weights for each 
edge, and its three subgraphs. Suppose thatβ=5, l =2, 
α =1.5, we can get the fitness value of H1, H2 and H3 
according to the fitness functionas follows: 

fitness(H1)  = E(H1)P(H1)=(1+2/α+1/α+1/α) ×0.5=1.83 
fitness(H2)  = E(H2)P(H2)=(1+2/α+2/α+1/α+2/α+1/α) 

×
)56(2

1
−×

=1.83 

fitness(H3)  = E(H3)P(H3)=(1+2/α+1/α+1/α) ×1=3.67 
From the above we can see that subgraph H3 has the 

greatest fitness value and obviously H3 is the subgraph 
that best captures the relationship among the 3 Keynodes 
according to our constraints. 

 

 
(a) H    (b) H1            (c) H2                (d) H3

(a) is original graph H ;    (b), (c) and (d) are different 
topological subgraphs of H 

Figure 7: An example of a graph and its different 
subgraphs 

 
b) UTM Mutation Operator 
Given a UTM code , 

, the mutation operator is as follow: 

),...,,...,,( 21 nx uuuuU =

)20( 1+<≤ s
iu

⎪⎩

⎪
⎨
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<+
=

+−+−+−

+−+−+−
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121
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22mod2
'

ksks
x
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x
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x
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x

x
uu

uu
u

 if  

 if  
 

This mutation operator only changes the connection 
condition of one certain edge e represented by the kth part 
of the subsequence corresponding to ux in U and get new 
ux’, where k =1, 2, …s. If edge e is not connected in the 
topology of this individual, edge e is added in the 
topology; otherwise edge e is removed from the topology. 

 

 
(a) The graph H (41, 22)              (b) The graph H’ 

(41, 6) 
      before mutation                            before mutation 

Figure 8: An example of mutation operation 
 
For instance, the UTM code of graph H shown in Fig. 

8(a) is (41, 22). The mutation operation on the individual 
will remove one edge. Suppose that the edge to be 
removed is red edge of graph H. Then after mutation the 
second part of its UTM code will change from 22 to (22 - 
24) = 6. So the UTM code of graph H’ in Fig. 8(b) is (41, 
6). 

To avoid that the mutation operator to add an edge 
which does not exist in the original graph to produce the 
nonsense subgraph, we should restrict this operator only 
to perform mutation on the edges really existing in the 
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candidate subgraph. So the algorithm can constringe 
much faster than without this restriction. 

Even if we do not know the topology of a graph, we 
can also perform this mutation operator to the graph. We 
need not decode the UTM code to the corresponding 
adjacency matrix. Thus it saves a lot of time spent on the 
mutation operation for every generation. 

c) UTM Crossover operator 
The UTM crossover operator in our algorithm is 

similar to normal one-point crossover operator. Its 
operation is: select a crossover point in UTM code 
randomly, exchange the parts before the point of two 
individuals to get two new individuals. 

 
A     B       A’             B’ 

(a) two individuals A and B      (b) two new individuals 
before crossover                     A’ and B’ after 
crossover 

Figure 9: An example of crossover operation 
 
For instance, as shown in Fig.9, given two individuals 

A and B, s = 8, the crossover operation will be performed 
directly on the UTM code of A and B. 

For the special property of UTM code, the crossover 
operator can exchange the topological subparts around 
one node of two individuals and produce two new 
individuals. Similar to the mutation operation, we also 
need not know the topologies of the two individuals. This 
will also be helpful to save a lot of time spent on the 
crossover operation in every generation. If needed, multi-
point crossover operator or other type crossover operators 
can also be easily designed. 

 
4. Experiment and Analysis 

 
Two practical graphs are used in our experiments. 

They are two social networks, a kind of complex 
networks, i.e., scientific collaboration network and 
movie-actor network. Each node in the social networks 
represents a person and each edge between any two nodes 
represents the corresponding two persons exist a kind of 
relationship.  

The scientific collaboration network and movie-actor 
network are small-world networks. The structures of the 
two networks are different [13]. The scientific 
collaboration network is a scale-free network that is 
characterized by a vertex connectivity distribution that 
decays as a power law. The movie-actor network is a 
broad-scale network which is characterized by a 
connectivity distribution that has a power law regime 
followed by a sharp cutoff. The experiments performed 

on these two different kinds of networks show that our 
algorithm has the ability to solve n-CSP on the networks 
with different topological characteristics. 

All experiments were performed on a PC with Pentium 
IV 2.0GHz CPU and 512M main memory running 
Microsoft Windows 2000 Professional Edition. Our 
algorithms are implemented with Microsoft Visual C++ 
6.0. 

 
4.1. Scientific Collaboration Network 

 
The Scientific Collaboration Network provided by M. 

Newman [8] has 16726 nodes and 95188 edges. It is a 
social network that represents the coauthor relationships 
among physicists. Each node in this network corresponds 
to a physicist. Each edge between two physicists has a 
weight, and the bigger the weight is, the stronger the 
coauthor relationship between them is. The weight wij of 
an edge between two physicists i and j is defined as: 

1

k k
i j

ij
k k

w
n
δ δ

=
−∑  

If physicist i is one of the coauthors of the paper k then 
k
iδ  = 1 else 

k
iδ  = 0. The number of coauthors of paper k 

is denoted as nk. 

( ) ( ) 1

k k
i j k

ij i
j i k j i kk

w
n
δ δ

δ
≠ ≠

= =
−∑ ∑∑ ∑  

The total weight of all edges for every physicist is 
equal to the sum of his coauthor papers. So the weight wij 
can represent the strength of the coauthor relationship 
between physicists i and j.  

 

     
(a) Candidate subgraph                     (b) Result subgraph 

Figure 10: The candidate subgraph and the result 
subgraph. The result subgraph shows the relationship 

among the three nodes (black square). 
 
In our evolutionary algorithm, the size of population is 

set to be 30, UTM code length d is 8, and the termination 
generation is 15000. We choose three nodes representing 
three physicists Casati. G, Stern. A and Kim. D, in the 
network as the Keynodes. 

Fig.10 (a) is the candidate subgraph that we get from 
the scientist collaboration network. It consists of 19 nodes 
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and 35 edges. Fig.10 (b) is the result subgraph. The 
square shape nodes are the Keynodes and the diamond 
shape nodes are the Starnodes. There are two Starnodes in 
the candidate subgraph. But we can see that the Starnodes 
are not included in the result subgraph. The result 
subgraph consists of 8 nodes and 9 edges, and it satisfies 
the constraints given before. This result subgraph can 
capture the relationship among the three Keynodes very 
well. 

 
(a) Average Fitness Value 

 
(b) Average Running Time  

Figure 11: Performance on the scientist collaboration 
networks 

 
In Fig.11 (a), β is set to be 15. The x-axis corresponds 

to the running generations of our evolutionary algorithm, 
and the y-axis corresponds to the average fitness value of 
all the individuals of a generation. The evolutionary 
algorithm converges in no more than 100 generations 
when solving 5-CSDP and converges after 5000 
generations when solving 3-CSDP. This is because to a 
given graph when β is fixed, the bigger n is, the smaller 
the searching space is.  

Fig.11 (b) shows the time spent when the running 
generation of our evolutionary algorithm is set to be 
15000 for 3-CSDP, 4-CSDP and 5-CSDP respectively. 
The x-axis corresponds to the number of nodes that the 
candidate subgraph has, and the y-axis corresponds to the 
ten times’ average running time of the algorithm. We can 
find that the n-CSDP that has bigger n cost a little less 
time than the smaller ones. 

 
4.2. Movie-Actor Network 
 

The movie-actor network constructed on basis of the 
IMDB by R. Albert and A. Barabasi has 392304 nodes 
and 15012983 edges [2]. Each node of the movie-actor 
network represents an actor, every edge means that the 
corresponding two actors have acted in one movie and the 
weight of the edge denotes the number of the movies that 
the two actors have acted together. 

We performed the experiments on movie-actor 
network just like what we have done on the scientist 
collaboration network. The size of population is set to be 
30, UTM code element length s is 8, and the termination 
generation is 15000.  

Fig. 12 (a) shows the candidate subgraph, and Fig. 12 
(b) shows the result subgraph. The candidate subgraph 
has 21 nodes and 53 edges. The movie-actor network has 
more connection and its structure is more complex than 
that of the scientist collaboration network. We choose 
three nodes that are less famous actors than those of many 
other nodes in the network. We find in the candidate 
subgraph that only 4 nodes are not Starnodes and in the 
result subgraph only one node is not Starnode. But the 
degrees of the Starnodes (Diamond shape node) in result 
subgraph are close to those of the Keynodes (Sqaure 
shape node). This means that the Starnodes correspond to 
the actors not very famous. So it shows that the obtained 
result subgraph can capture well the relationship among 
the three Keynodes. 

   
(a) Candidate subgraph                 (b) Result subgraph 

Figure 12: The candidate subgraph and the result 
subgraph. The result subgraph shows the relationship 

among the three black nodes. 
 

In Fig.13 (a), β is also set to be 15, the x-axis 
corresponds to the running generations of our 
evolutionary algorithm, and the y-axis corresponds to the 
average fitness value of all the individuals of a generation. 
The evolutionary algorithm converges in no more than 
100 generations when solving both 5-CSDP and 4-CSDP, 
and it usually converges after 5000 generations when 
solving 3-CSDP. This shows again that to a given graph 
when β is fixed, the bigger n is, the smaller the searching 
space is. Fig.13 (b) shows the ten times’ average running 
time spent when the running generation of our 
evolutionary algorithm is set to be 15000 for 3-CSDP, 4-
CSDP and 5-CSDP respectively. It also shows again that 
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the n-CSDP that has bigger n cost a little less time than 
the smaller ones. 

 
(a) Average Fitness Value 

 
(b) Average Running Time 

Figure 13: Performance on the movie-actor networks 
 

The experiments on the two different social networks 
show that our proposed approach solves n-CSDP 
efficiently and has good scalability. To a given graph 
when β is fixed, the bigger the n is, the smaller the 
searching space is. Thus the algorithm converges faster 
when n is set to be larger.  
 
5. Conclusion 
 

This paper proposes a method of solving the n-
connection subgraph discovery problem. With our 
algorithm we can get a small subgraph that captures well 
the information about the relationships among more than 
2 pre-specified nodes. The main contributions of the 
paper are as follows: First we propose a candidate 
subgraph generation algorithm which can get the most 
useful parts from the originally given huge graph. Then 
we define the goodness function to measure how well a 
subgraph can capture the relationship among the 
designated nodes. Third a UTM code to represent every 
topology of a certain size graph is designed. Our UTM 
code can guarantee that for each different the graph 
topology has its unique code representation. Last we 
provide an evolution algorithm to evolve the graph 
topology based on the UTM code and the special 
operators we designed.  

The experiments on the real dataset demonstrate that 
our algorithm performs well on the complex networks 

having different topology characteristics, and also has 
good scalability. Furthermore the experimental results 
show that as the number of pre-specified number of 
Keynodes, i.e. n increases, the algorithm converges faster. 
In the future we will extend our work by considering the 
case that graphs may contain more than one type of 
entities, e.g. people, company, products. 
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