

An Evolutionary Computational Method for N-Connection Subgraph Discovery

Enhong Chen Xujia Chen
Department of CS

University of Science &
Technology of China, Hefei

Anhui, P.R.China
cheneh@ustc.edu.cn

xjchen@mail.ustc.edu.cn

Phillip C-Y Sheu
State Key Lab of Software

Engineering, China (Wuhan
University) and

Department of EECS
University of California

Irvine, CA 92697
psheu@uci.edu

Tieyun Qian
Department of Computer

Science, Huazhong University
of Science and Technology,
Wuhan, Hubei, P.R.China

qty@mail.hust.edu.cn

Abstract

The Problem of n-connection subgraph discovery (n-

CSDP for short) is to find a small sized subgraph that can
well capture the relationship among the n given nodes in
a large graph. However there have been very few
researches directly addressing the CSDP problem.
Furthermore the currently available methods, for
example, the electricity analogues based algorithm can
only be suitable for tackling the 2-Keynodes CSDP and
does not work anymore when n is greater than two. To
deal with this problem, we propose an effective approach
to discover the subgraph in two stages. In the first stage
we propose a neighbor-growth based method to extract a
relatively bigger candidate subgraph compared with that
of result subgraph. In the second stage an evolutionary
algorithm for optimizing the result subgraph is proposed.
For this purpose, UTM code, a transformed
representation of the adjacent matrix of graphs is
designed to encode the topology of subgraph as
individuals. Then corresponding evolutionary operators
able to be directly performed on UTM code are given.
Thus the efficiency of the algorithm is largely improved.
The experimental results obtained on two real large scale
graphs with different topology characteristics
demonstrate that our method solves n-connection
subgraph discovery problems effectively.

1. Introduction

More and more data sets represented as network
graphs with large size are available now. It is usually
necessary or important to find some special structures
from the networks. For example, from the social network
modeling the relationship among people, can we find the

solution to an interesting problem, what is the relationship
between Alan Turing and Sharon Stone? Alan Turing is a
departed famous scientist, and Sharon Stone is a famous
actress of the time. They live in different time and their
jobs are totally different. Is there any interesting
relationship between them?

A feasible way to solve the problem is to construct a
network on the basis of the relationship among people, in
which every person is denoted as a node, and any two
nodes are connected with an edge if the corresponding
two persons have a certain kind of relationship.
Furthermore, every edge is associated with a weight
representing the strength of their relationship. With such
network we can find the relationship between any two
persons by discovering a subgraph containing these two
nodes. Of course the subgraph should be of appropriate
size, and also the nodes in the subgraph should be
important enough. In such case we may say that the
subgraph can best capture the relationship between the
two persons.

One special case of the problem called 2-Keynodes
Connection Subgraph Discovery Problem (CSDP) is first
studied by C. Faliutsos et al. However as pointed out by
them [1], there have been very few researches directly
addressing the CSDP problem. C. Faliutsos proposed an
efficient algorithm to tackle the 2-Keynodes CSDP based
on the electricity analogues principal. They discovered an
interesting result shown in Fig.1, which shows that there

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

Figure 1 Relationship between Alan Turing and
Sharon Stone

are the three most important persons between Alan Turing
and Sharon Stone: Harry Potter who is a science fiction
character, Gillian Anderson, an actor in a movie about the
engima cipher machine, and Kate Winslet, an actor of a
popular science fiction television show.

However, if we would like to know the relationship
among more people, for example, what is the relationship
among Alan Turing, Sharon Stone and Mike Jordan, then
how can we deal with the problem? In such case the
proposed electricity analogues based approach does not
work any more. We call this kind of more complicated
problem an n-Connection Subgraph Discovery Problem,
where n is greater than 2. The problem is formulated as
follows:

N-Connection Subgraph Discovery Problem (n-CSDP)
Given: an edge-weighted undirected graph G, n

interesting vertices v1, v2,…,vn from G, and an integer
budget β.

Find: a connection subgraph H containing v1,
v2,…,vn and at most other β vertices that well captures
the relationship among v1, v2,…,vn.

To n-CSDP, the electricity analogues based method
adopted in [1] does not work any more. The reason is that,
electricity analogues based method is proposed on the
basis of electrical currents in a network of resistors, thus
lead their method only to be suitable for two nodes CSDP.
So it is necessary for us to give a new approach to find
the subgraph that captures well the relationships among n
pre-specified nodes in a huge graph.

N-connection subgraph discovery may have wide
applications. It can be used to find the several websites
that most likely to leak some information (for example
documents, mp3 or movies) on the Internet. Similarly it
can be used to help us to control the infections. In other
domains like semantic search and information retrieval,
and in other networks like protein networks, language
networks, chemical reaction networks, n-Connection
Subgraph can also be useful for finding some special
information. Thus it is more and more important for us to
find effective approaches to discover special sub-
structures from these networks.

In this paper, we present a novel method to solve n-
CSDP. For this purpose, we first define our goodness
function to measure how well a connection subgraph
captures the relationship among the n pre-specified nodes.
Meanwhile we will design a special UTM code to
represent possible topology of a graph with fixed number
of nodes. Based on the UTM code and our goodness
function, we then design an evolutionary algorithm to
evolve the topology of a graph by using specially
designed genetic operators. Our experimental results
show that the proposed algorithm can be used to discover

the connection subgrapghs for different types of
networks.

The rest of this paper is organized as follows. Section
2 gives a brief review of the related work. Section 3
presents our proposed algorithm. Section 4 shows our
experimental results and brief analysis. The paper is
concluded in Section 5.

2. Related Work

The first work directly addressing the connection
subgraph mining problem is done by C. Faliutsos [1].
Then followed by that of S. Vast et al’s [7]. The other
indirect but related work includes community structures
mining [3] and survivable networks [4], PageRank [5],
RDF graph [12], graph clustering [10], graph partitioning
[11], frequent subgraph mining [6] and other works on
complex networks [9].

Figure 2: An example graph that C. Faliutsos’s

algorithm cannot find the connection subgraph among
nodes 1, 2 and 3 as needed.

C. Faliutsos et al present an electricity analogues based

method to find connection subgraph between two given
nodes [1]. When the number of the given nodes is more
than two, electricity analogues based method works any
more. The reason is that electricity analogues based
method is proposed on the basis of electrical currents in a
network of resistors. Thus their proposed function of
measuring the goodness of a connection subgraph is only
suitable for a 2-Keynodes CSDP. To an n-CSDP where
n>2, we may get some useless nodes, and meanwhile will
miss some important nodes. For instance, suppose that
node 1, 2 and 3 in Fig.2 are 3 Keynodes. If we still use
their function designed for two Keynodes case, we may
get a result subgraph excluding node 7. This is because
that the degree of node 7 is 3 and the degree of any other
node, i.e. node 4, 5, 6, is 2. So the weight of the edge
connected to node 7 is small. But node 7 is an important
node to describe the relationship among the three
designated Keynodes and is actually the node that we
hope to get.

S. Vast et al [7] present a method to extract a set of the
nodes that best capture the relevant nodes among the k
given nodes of interest. They project the nodes of the
network which is viewed as an undirected graph into a

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

Euclidean space. Fig. 3 presents the results of the
experiments of this method on the two real networks that
we use in our experiments. It shows that both result
subgrapghs are disconnected. Another problem of using S.
Vast et al’s algorithm to solve the n-CSDP is that the
complexity of the algorithm is O(n|G|2). If the size of the
given network is very large, the time cost of the algorithm
is unacceptable.

Figure 3: Results of S. Vast et al’s method on two
real networks. The red nodes are the relevant nodes

selected by the algorithm.

In [12], W.H. Milnor et al studied the problem of

discovering informative subgraph in RDF Graphs with
the electricity analogues approach. So in essence, their
method is also only used in two nodes conditions just like
[1], and is not suitable for n-CSDP (n>2). The work on
the survivable networks [4] studies the ability of
connection when some nodes of the network are missing.
This work can also not be directly used to solve n-CSDP.
For example, node 1 and node 2 in Fig.4 have the same
survivability. When deleting any of them, some paths will
be cut off. However, node 1 and node 2 have different
importance to our problem since the degrees of these two
nodes are quite different

Figure 4: An example graph

3. Algorithms to find candidate subgraph and
result subgraph

In the following we will first give some definitions to
be used in the rest of the paper, then formulate the
constraints to be considered in measuring the goodness of
the result subgrapgh. To get the needed subgraph we will

first extract a relatively bigger candidate subgraph
compared with that of result subgraph through our
neighbor-growth algorithm. Then we give a UTM code
having good property to encode the topology of subgraph.
On the basis of the UTM coding of individuals
representing the possible result subgraph, the
corresponding evolutionary operators are designed.

3.1. Preliminaries
3.1.1. Definitions

First, we give some definitions that we use in the rest

of this paper.
Definition 1: Keynodes. N pre-specified nodes v1,

v2,…,vn are called Keynodes if we need to find a
connection subgraph containing them. The connection
subgraph discovery problem having n Keynodes is called
n-CSDP. (b) Subgraph obtained

from movie-actor
network

(a) Subgraph obtained
from scientific

collaboration network
In social networks, as we have discussed in Section 2,

famous persons are less important than those who are not
famous. But how can we define whether a person is
famous or not? In [1], the nodes that have small degrees
are preferred. But actually whether a person is famous or
not depends on whom he compare with. So we give a
definition as follow:

Definition 2: Starnodes. The nodes having greater
degrees than the greatest degree of all the Keynodes are
called Starnodes.

3.1.2. How to judge the goodness of a subgraph

What we need to find is a connection subgraph that

well captures the relationship among three given nodes.
So an important problem is how to judge the goodness of
a subgraph. Considering what we have discussed above,
the result subgraph should satisfy the following
constraints:

1) The subgraph must be connected well: It is obvious
that the result subgraph must be connected. But what does
a subgraph is connected well mean? Here it means that
the result subgraph is not only a connection subgraph, but
also is still connected by removing all the Keynodes.
Under such condition, the topology of the subgraph may
capture as well as possible the relationship among n given
Keynodes. For example, if our result is like the graph
shown in Fig.2 but excluding node 7. Indeed it is a
connection subgraph, but node 4 is only connected to
node 1 and 2, and is not connected to node 3 without
node 1 and 2. The situation is the same for node 5 and
node 6. Here we suppose that every Keynode is not
connected directly to any other Keynodes.

2) The subgraph must have no more than a pre-
specified number β of nodes. This is obvious because
the size of our result subgraph is measured by the number
of nodes.

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

3) The total weight of all the edges of the subgraph
should be as heavy as it can be. How can a subgraph of a
certain size capture the relationship among the Keynodes?
The weight of an edge is heavier; the relationship
between the corresponding two nodes is stronger. So the
most natural way is to maximize the total weight of all the
edges in the subgraph.

4) The number of the Starnodes appearing in the result
subgraph must be constrained. As we have discussed in
section 2, the Starnodes sometimes may not be important
to represent the relationship among the Keynodes. This
does not mean that the Starnodes are not needed in the
result. The Starnodes may also help to represent the
relationship among Keynodes. But too many Starnodes
may not be well suited to capture the relationship among
the Keynodes. So we hope to reflect this consideration by
constraining the number of the appearances of Starnodes
with some conditions.

The above four factors are the most important
constraints that the result subgraph should satisfy. In our
algorithm these factors will be considered in the
judgement of the goodness of a subgraph.

Our algorithm can be divided into two steps: the first
step is to generate the candidate subgraph to reduce the
size of the computing space; the second step is to get the
final result from the candidate subgraph with an
evolutionary computational method.

3.2. Neighbor-growth based Algorithm to find
candidate subgraph

Our goal is to find connection subgraph in a large

graph, for example, the social networks which are
complex graphs of very large size. Apparently searching
directly in such large graph is a work of low efficiency.
We also know that the mean distance between every two
nodes in the complex network is small. For instance, in
the condense matter physicist collaboration network the
mean distance is 6.4 [8]. So we need to cut the nodes that
are far away from the Keynodes, and extract a candidate
subgraph.

Formally, this step takes vertexes v1, v2,…,vn from
the original graph G, and produces a much smaller graph
Gcand by growing the neighborhoods around v1, v2,…,vn.
But the neighborhoods should be grown carefully because
we do not want to miss important nodes. We grow the
subgraph according to the several principals we give out
in section 3.1.2. In this step, the constraints of the
candidate subgraph are as follows:

1) The candidate subgraph must be connected well.
2) The candidate subgraph must have more thanβ

nodes, but not too big.
3) The total weight of the candidate subgraph’s edges

should be as large as it can be.

Here we can see that the second constraint is
somewhat different from the constraint on the result
subgraph. To make full use of the evolutionary
computational algorithm in the second step, we consider
it would be better that the size of the candidate subgraph
is several times larger than the required size of result
subgraph. We do not make any constraint on the number
of the appearance of the Starnodes because the size of
candidate subgraph is larger than that of the result
subgraph and some Starnodes are useful.

In the following we give a function g to evaluate the
connectivity importance of a node u:

∑
=

=
n

i i

i

vulength
vuweight

ug
1

2)),((
),(

)(

where is the length of the path with
smallest number of the edges from node u to Keynode v

),(ivulength
i,

and is the sum of the weights of the
edges on the path. To compute g(u) for each u in the
graph we traverse the graph n times, each time traversing
from a different Keynode. It is obvious that if u is far
from Keynodes, function g(u) returns a low value. So if
the function g(u) returns a high value, it means that the
node u is either near to a Keynode or not far from every
Keynode.

),(ivuweight

Algorithm 1. Finding Candidate Subgraph containing
most of the interesting connections among v1, v2,…,vn.

Input: a weighted and undirected graph G, n
keynodes v1, v2,…,vn

Output: G which is much smaller than
G but contains most of the interesting
connections among v

Gcond ⊂

1, v2,…,vn.
Begin

1) For each u in G and ∉ {v1, v2,…,vn} in G do
2) Compute g(u);
3) maxu = the node u which has the biggest g(u);
4) H = {maxu, v1, v2,…,vn };
5) Gcond =H;
6) For each vi in H do
7) k = length(u, vi);
8) Tk= {maxu};
9) Tk-1 = { }
10) While (k>1)
11) For each node t in Tk
12) Tk-1 = Tk-1 ∪ pickthemax (t, vi, c);
13) Gcond = Gcond ∪ Tk-1;
14) k--;

End

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

Figure 5: Algorithm of finding candidate subgraph

Our algorithm shown in Fig. 5 starts from the node

maxu whose function value g(maxu) is the greatest to
grow the neighbors around maxu, each growing operation
grows c neighbors for each node in Tk. In Algorithm 1
this growing operation is performed through the function
pickthemax(t, vi, c) which returns c neighbors of node t.
The weight of each neighbor of t is among the top c
greatest ones and length(t, vi) = k-1, where t is a node of
set Tk. So we can control the size of candidate subgraph.
For each Keynode vi, growing operation can find the
nodes that are on those paths from maxu to vi whose total
weights are among the biggest ones. This algorithm can
find the most important nodes and keep the candidate
subgraph small and well connected.

The computational complexity of finding maxu (step 1
and 2) is O(nE) because each edge is needed to be
traversed n times to compute the g(u), where n is the
number of the Keynodes and E is the number of the edges
of the given graph. The computational complexity of
finding neighbors (from step 6 to 14) is O(n*2*E).
Because each time of growing neighbors from maxu to vi
each edge will be visited twice in the worst case. So the
computational complexity of our algorithm is O(nE) +
O(2nE) = O(nE).

3.3. Evolutionary Algorithm to find the result
subgraph

In this step, the algorithm is given a candidate

subgraph whose size is much smaller than the input graph
and finds the final result subgraph which well captures
the relationship among the given Keynodes. First every
graph is uniquely coded, so that each different graph is
differently coded. On the basis of this coding mode, an
evolutionary computational method is presented to
optimize the topology of the result subgraph.

3.3.1. Individual Representation with UTM Code

When using evolutionary computational method to get

a good result subgraph we first need to give an individual
coding method to represent an edge-unweighted
undirected graph. The 0-1 adjacency matrix is usually
used for its convenience. But it is obvious that if the size
of a subgraph increases the scale of its adjacency matrix
increases very fast. Given a graph that has n nodes, its 0-1
adjacency matrix consists of n2 elements. For its
symmetry only the upper triangular matrix is needed to be
represented. So we give the UTM (Upper Triangular
Matrix) code of a graph as follows:

Definition 4: UTM code. Given an edge-weighted
undirected graph, its adjacency matrix An×n, a 0-1
sequence (ei) can be constructed based on the upper
triangular part of the matrix, where i = 1, 2,…, l, and l is
the length of the sequence (ei). In the sequence the k-th
row is directly after (k-1)-th row, where k = 2, …, n. The
m-th subsequence qm = (ej) consisting of s elements,
where j = m,…,m+s-1, i.e., qm = em,…,em+s-1, and

s
nnm

×
−

≤≤
2

1
2

, can be represented as a certain decimal

number um (if the length of the sequence is smaller than s,
then add enough zeros to its end), where s is the number
of the elements in qm. The sequence consisting of ⎡ ⎤sl /
decimal number ui is called a UTM code U, i.e.

⎡ ⎤),...,,...,(/1 sluuuU i= , where ui is called the i-th

part of U, s denotes the UTM code element length and l
denotes the UTM code length.

Given a graph and its adjacency matrix An×n, the kth
part of the UTM code uk is defined as follows:

∑
=

−−×=
s

ps

p
ijk au

1

12

where aij is an element of An×n, and

sj
n
ksi

n
sk

≤<⎥⎥
⎤

⎢⎢
⎡≤<⎥⎥

⎤
⎢⎢
⎡ − 0,)1(,

 ⎥⎥
⎤

⎢⎢
⎡ −+−−

=
s

ijiink 2)1)(2(,

sijiinp mod)2)1)(2((−+−−≡ , 0≤ p<s.

From the above we know that uk has the following
property:

⎪⎩

⎪
⎨
⎧

=≡

=≡
−

−

0 02mod

1 12mod

ij
ps

k

ij
ps

k

aifu

aifu

For example, Fig.6 shows a graph and its adjacency
matrix. Suppose that UTM code element length s is set to
be 8, and the sequence (ei) = (1010110001). Then the first
eight zeros or ones can be represented by decimal number
172. The rest of the sequence is (01) and six zeros are
added to its end to get (01000000) which is represented
by a decimal number 64. So the UTM code of the graph is

(172, 64), and its code length l =
2

555
2

2 −×
=

− nn =

10.

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

Figure 6: An example of the UTM code

The topology of a graph and its corresponding UTM
code has the following relation:

Theorem 1: The mapping is a

bijection, where dom f = GSet, ran f =USet , GSet denotes
the set of graphs each of which has n nodes, and USet
denotes the set of UTM codes of graphs with n nodes.

USetGSetf →:

Proof: Let’s first prove that f is an injection.
Suppose that U1 and U2 are two different

randomly selected elements from USet, i.e., U1≠ U2,
and their respectively corresponding UTM codes of
length l are as follows:

U1 = (c1, c2, …, cp) and U2 = (d1, d2, …, dp),
where p= . ⎡ ⎤sl /

⇒ 1≤i ≤p, such that c∃ i≠ di.
Meanwhile we suppose that U1 and U2 are
decoded into the binary sequences (e1k) and (e2k)
respectively, where k = 1, 2, …, l.

⇒ 1≤j ≤l, such that e∃ 1j≠ e2j
We also know that from sequence (e1k) we can
get its corresponding adjacency matrix denoted
as An×n, so we have f(U1) = An×n. To sequence
(e2k), we can also get its adjacency matrix BBn×n
and have f(U2) = Bn×nB

⇒ f(U1) =An×n≠BBn×n=f(U2)

⇒ f(U1)≠f(U2)
⇒ The mapping f is an injection.

Then we prove that the mapping f is a surjection.
For U�USet, suppose that U = (c∀ 1,c2,…,cp).
We can decode U and get its corresponding
binary sequence (ei).
From sequence (ei) we can get an adjacency
matrix An×n which corresponds to a graph
G�GSet.

⇒ For ∀ U�USet we can find its preimage
G�GSet

⇒ The mapping f is a surjection.
 Considering that we have proved that the mapping f is
both an injection and a bijection, thus we can obtain the
conclusion that Theorem 1 is true. ■

A certain topological graph has its corresponding

adjacency matrix that is different to those of other
topological graphs. So different graphs have different

UTM codes. Theorem 1 can ensure that the using of
operators to UTM codes will create new UTM codes
which make sense. The UTM code can also be used to
represent the directed graphs where elements 0, 1, 2 and 3
will be used to construct the adjacency matrix. We can
represent any part of the matrix by a quaternary number
in a similar way to what we have done to the undirected
graphs.

The benefit of adopting our UTM code to encode the
graph is that the space cost of representing a graph will
largely be reduced, especially when the size of the graph
is very large. For example, to represent a graph of 15000
nodes, we have to use 225 million numbers in the
adjacency matrix, but the UTM code (s is set to be 16)
only need 0.7 million numbers, about 3% of that of the
corresponding adjacency matrix need.

Furthermore, we do not need to decode the UTM code
when performing crossover and mutation operators. We
can use these operators without knowing the topology of
a graph. The reason for this will be explained later.

3.3.2. Topology Evolution

The n-CSDP can be viewed as a topology optimization

problem. The final result is the best topology that can
satisfy the constraints mentioned in Section 3.1.2. So we
evolve the UTM code of the candidate subgraph, judge its
goodness by the topology of the subgraph H’ and finally
get the result subgraph.

a) Fitness Function
The goodness of the topology of the given subgraph

H’ is judged with a fitness function by considering the
four constraints mentioned in Section 3.1.2. Here we
divide them into the following two categories:

 Constraints on the edge and node:
1. The total weight of the subgraph’s edges

should be as big as it can be.
2. The appearance of Starnodes must be

constrained.
 Constraints on the whole subgraph:

1. The subgraph must have no more than the
pre-specified number of nodes.

2. The subgraph must be connected well.
To each individual, we first calculate its total weight

according to the constraints on the edge and node. Then
those individuals that violate the constraints on the whole
graph will be punished and finally we can get the fitness
value for each individual.

Before calculating the total weights of all edges, the
weight of each edge e is normalized as follows:

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

m a x

()'() w ew e
w α

=
×

where is the given weight of edge e, is
the max of all the weights of edges of candidate subgraph
H’, and

()w e maxw

α is a punishment factor. To any edge e, α is a
constant bigger than 1 when one node of e is a Starnode,
and α is 1 otherwise. In this way we can constrain the
appearance of Starnodes.

Then the total weights of all the edges in the candidate
subgraph H’ is calculated as follows:

∑
∈

=
'

)(')'(
He

ewHE

)'(HE is the fitness value of a subgraph H’ which
satisfies the constraints on the whole graph.

There are three cases that the subgraph H’ violates the
constraints on the whole subgraph:

(1) At least one of the Keynodes is not connected.
(2) H’ is not connected well. (Mentioned in 3.1.2)
(3) There are more thanβ nodes in H’.
Here the violation of the constraint that the subgraph

H’ must be connected well is divided into the two cases:
1) at least one of the Keynodes is not connected; 2) H’ is
not connected well. The reason for our division is that the
individual belongs to case 1 is useless for evolution. For
any subgraph H’, the function P(H’) for punishing its
violation of the constraints is as follows:

P(H’)=1
if at least one of the Keynodes is not connected

P(H’)=0.00001; //case 1: severely punished
else if H’ is not connected well

 ; //case 2 5.0)()'(×= HPHP
else if there are more than β nodes in H’

))'((
)'()'(

βε −×
=

Hsizeof
HPHP ; //case 3

 // ε is a constant greater than 1.
The final fitness function for subgraph H’ is defined as

follows:
)'()'()'(HPHEHfitness ×=

With this function each individual violating the
constraints on the whole subgraph will be punished by
reducing its fitness value. Fig.7 gives a graph H with 3
Keynodes shown as darkened nodes, the weights for each
edge, and its three subgraphs. Suppose thatβ=5, l =2,
α =1.5, we can get the fitness value of H1, H2 and H3
according to the fitness functionas follows:

fitness(H1) = E(H1)P(H1)=(1+2/α+1/α+1/α) ×0.5=1.83
fitness(H2) = E(H2)P(H2)=(1+2/α+2/α+1/α+2/α+1/α)

×
)56(2

1
−×

=1.83

fitness(H3) = E(H3)P(H3)=(1+2/α+1/α+1/α) ×1=3.67
From the above we can see that subgraph H3 has the

greatest fitness value and obviously H3 is the subgraph
that best captures the relationship among the 3 Keynodes
according to our constraints.

(a) H (b) H1 (c) H2 (d) H3

(a) is original graph H ; (b), (c) and (d) are different
topological subgraphs of H

Figure 7: An example of a graph and its different
subgraphs

b) UTM Mutation Operator
Given a UTM code ,

, the mutation operator is as follow:

),...,,...,,(21 nx uuuuU =

)20(1+<≤ s
iu

⎪⎩

⎪
⎨
⎧

≥−

<+
=

+−+−+−

+−+−+−

121

121

22mod2

22mod2
'

ksks
x

ks
x

ksks
x

ks
x

x
uu

uu
u

 if

 if

This mutation operator only changes the connection
condition of one certain edge e represented by the kth part
of the subsequence corresponding to ux in U and get new
ux’, where k =1, 2, …s. If edge e is not connected in the
topology of this individual, edge e is added in the
topology; otherwise edge e is removed from the topology.

(a) The graph H (41, 22) (b) The graph H’

(41, 6)
 before mutation before mutation

Figure 8: An example of mutation operation

For instance, the UTM code of graph H shown in Fig.

8(a) is (41, 22). The mutation operation on the individual
will remove one edge. Suppose that the edge to be
removed is red edge of graph H. Then after mutation the
second part of its UTM code will change from 22 to (22 -
24) = 6. So the UTM code of graph H’ in Fig. 8(b) is (41,
6).

To avoid that the mutation operator to add an edge
which does not exist in the original graph to produce the
nonsense subgraph, we should restrict this operator only
to perform mutation on the edges really existing in the

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

candidate subgraph. So the algorithm can constringe
much faster than without this restriction.

Even if we do not know the topology of a graph, we
can also perform this mutation operator to the graph. We
need not decode the UTM code to the corresponding
adjacency matrix. Thus it saves a lot of time spent on the
mutation operation for every generation.

c) UTM Crossover operator
The UTM crossover operator in our algorithm is

similar to normal one-point crossover operator. Its
operation is: select a crossover point in UTM code
randomly, exchange the parts before the point of two
individuals to get two new individuals.

A B A’ B’

(a) two individuals A and B (b) two new individuals
before crossover A’ and B’ after
crossover

Figure 9: An example of crossover operation

For instance, as shown in Fig.9, given two individuals

A and B, s = 8, the crossover operation will be performed
directly on the UTM code of A and B.

For the special property of UTM code, the crossover
operator can exchange the topological subparts around
one node of two individuals and produce two new
individuals. Similar to the mutation operation, we also
need not know the topologies of the two individuals. This
will also be helpful to save a lot of time spent on the
crossover operation in every generation. If needed, multi-
point crossover operator or other type crossover operators
can also be easily designed.

4. Experiment and Analysis

Two practical graphs are used in our experiments.

They are two social networks, a kind of complex
networks, i.e., scientific collaboration network and
movie-actor network. Each node in the social networks
represents a person and each edge between any two nodes
represents the corresponding two persons exist a kind of
relationship.

The scientific collaboration network and movie-actor
network are small-world networks. The structures of the
two networks are different [13]. The scientific
collaboration network is a scale-free network that is
characterized by a vertex connectivity distribution that
decays as a power law. The movie-actor network is a
broad-scale network which is characterized by a
connectivity distribution that has a power law regime
followed by a sharp cutoff. The experiments performed

on these two different kinds of networks show that our
algorithm has the ability to solve n-CSP on the networks
with different topological characteristics.

All experiments were performed on a PC with Pentium
IV 2.0GHz CPU and 512M main memory running
Microsoft Windows 2000 Professional Edition. Our
algorithms are implemented with Microsoft Visual C++
6.0.

4.1. Scientific Collaboration Network

The Scientific Collaboration Network provided by M.

Newman [8] has 16726 nodes and 95188 edges. It is a
social network that represents the coauthor relationships
among physicists. Each node in this network corresponds
to a physicist. Each edge between two physicists has a
weight, and the bigger the weight is, the stronger the
coauthor relationship between them is. The weight wij of
an edge between two physicists i and j is defined as:

1

k k
i j

ij
k k

w
n
δ δ

=
−∑

If physicist i is one of the coauthors of the paper k then
k
iδ = 1 else

k
iδ = 0. The number of coauthors of paper k

is denoted as nk.

() () 1

k k
i j k

ij i
j i k j i kk

w
n
δ δ

δ
≠ ≠

= =
−∑ ∑∑ ∑

The total weight of all edges for every physicist is
equal to the sum of his coauthor papers. So the weight wij
can represent the strength of the coauthor relationship
between physicists i and j.

(a) Candidate subgraph (b) Result subgraph

Figure 10: The candidate subgraph and the result
subgraph. The result subgraph shows the relationship

among the three nodes (black square).

In our evolutionary algorithm, the size of population is

set to be 30, UTM code length d is 8, and the termination
generation is 15000. We choose three nodes representing
three physicists Casati. G, Stern. A and Kim. D, in the
network as the Keynodes.

Fig.10 (a) is the candidate subgraph that we get from
the scientist collaboration network. It consists of 19 nodes

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

and 35 edges. Fig.10 (b) is the result subgraph. The
square shape nodes are the Keynodes and the diamond
shape nodes are the Starnodes. There are two Starnodes in
the candidate subgraph. But we can see that the Starnodes
are not included in the result subgraph. The result
subgraph consists of 8 nodes and 9 edges, and it satisfies
the constraints given before. This result subgraph can
capture the relationship among the three Keynodes very
well.

(a) Average Fitness Value

(b) Average Running Time

Figure 11: Performance on the scientist collaboration
networks

In Fig.11 (a), β is set to be 15. The x-axis corresponds

to the running generations of our evolutionary algorithm,
and the y-axis corresponds to the average fitness value of
all the individuals of a generation. The evolutionary
algorithm converges in no more than 100 generations
when solving 5-CSDP and converges after 5000
generations when solving 3-CSDP. This is because to a
given graph when β is fixed, the bigger n is, the smaller
the searching space is.

Fig.11 (b) shows the time spent when the running
generation of our evolutionary algorithm is set to be
15000 for 3-CSDP, 4-CSDP and 5-CSDP respectively.
The x-axis corresponds to the number of nodes that the
candidate subgraph has, and the y-axis corresponds to the
ten times’ average running time of the algorithm. We can
find that the n-CSDP that has bigger n cost a little less
time than the smaller ones.

4.2. Movie-Actor Network

The movie-actor network constructed on basis of the
IMDB by R. Albert and A. Barabasi has 392304 nodes
and 15012983 edges [2]. Each node of the movie-actor
network represents an actor, every edge means that the
corresponding two actors have acted in one movie and the
weight of the edge denotes the number of the movies that
the two actors have acted together.

We performed the experiments on movie-actor
network just like what we have done on the scientist
collaboration network. The size of population is set to be
30, UTM code element length s is 8, and the termination
generation is 15000.

Fig. 12 (a) shows the candidate subgraph, and Fig. 12
(b) shows the result subgraph. The candidate subgraph
has 21 nodes and 53 edges. The movie-actor network has
more connection and its structure is more complex than
that of the scientist collaboration network. We choose
three nodes that are less famous actors than those of many
other nodes in the network. We find in the candidate
subgraph that only 4 nodes are not Starnodes and in the
result subgraph only one node is not Starnode. But the
degrees of the Starnodes (Diamond shape node) in result
subgraph are close to those of the Keynodes (Sqaure
shape node). This means that the Starnodes correspond to
the actors not very famous. So it shows that the obtained
result subgraph can capture well the relationship among
the three Keynodes.

(a) Candidate subgraph (b) Result subgraph

Figure 12: The candidate subgraph and the result
subgraph. The result subgraph shows the relationship

among the three black nodes.

In Fig.13 (a), β is also set to be 15, the x-axis
corresponds to the running generations of our
evolutionary algorithm, and the y-axis corresponds to the
average fitness value of all the individuals of a generation.
The evolutionary algorithm converges in no more than
100 generations when solving both 5-CSDP and 4-CSDP,
and it usually converges after 5000 generations when
solving 3-CSDP. This shows again that to a given graph
when β is fixed, the bigger n is, the smaller the searching
space is. Fig.13 (b) shows the ten times’ average running
time spent when the running generation of our
evolutionary algorithm is set to be 15000 for 3-CSDP, 4-
CSDP and 5-CSDP respectively. It also shows again that

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

the n-CSDP that has bigger n cost a little less time than
the smaller ones.

(a) Average Fitness Value

(b) Average Running Time

Figure 13: Performance on the movie-actor networks

The experiments on the two different social networks
show that our proposed approach solves n-CSDP
efficiently and has good scalability. To a given graph
when β is fixed, the bigger the n is, the smaller the
searching space is. Thus the algorithm converges faster
when n is set to be larger.

5. Conclusion

This paper proposes a method of solving the n-
connection subgraph discovery problem. With our
algorithm we can get a small subgraph that captures well
the information about the relationships among more than
2 pre-specified nodes. The main contributions of the
paper are as follows: First we propose a candidate
subgraph generation algorithm which can get the most
useful parts from the originally given huge graph. Then
we define the goodness function to measure how well a
subgraph can capture the relationship among the
designated nodes. Third a UTM code to represent every
topology of a certain size graph is designed. Our UTM
code can guarantee that for each different the graph
topology has its unique code representation. Last we
provide an evolution algorithm to evolve the graph
topology based on the UTM code and the special
operators we designed.

The experiments on the real dataset demonstrate that
our algorithm performs well on the complex networks

having different topology characteristics, and also has
good scalability. Furthermore the experimental results
show that as the number of pre-specified number of
Keynodes, i.e. n increases, the algorithm converges faster.
In the future we will extend our work by considering the
case that graphs may contain more than one type of
entities, e.g. people, company, products.

6. References

[1] C. Faloutsos, K. Mccurley, A. Tomkins, Fast

Discovery of Connection Subgraphs. KDD 2004: 118-
127.

[2] R. Albert and A. Barabasi. Statistical mechanics of
complex networks. Review of Modern Physics, 2002.

[3] L. Danon, A. Diaz-Guilera, J. Duch and A. Arenas,
Comparing community structure identification, J. Stat.
Mech. (2005) P09008.

[4] F. Ablayev, Lower bounds for one-way probabilistic
communication complexity and their application to
space complexity. Theoretical Comp. Sc., 157 (1996),
139--159.

[5] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library
Technologies Project, 1998.

[6] J. Huan, W. Wang, and J. Prins. Efficient mining of
frequent subgraph in the presence of isomorphism. In
Proc. of the 3rd IEEE International Conference on
Data Mining (ICDM), 2003.

[7] S. Vast, P. Dupont and Y. Deville, Automatic
extraction of relevant nodes in biochemical networks,
Atelier Apprentissage et Bioinformatique, CAp 2005,
Conférence d'Apprentissage, Nice, pp. 21-31, 2005.

[8] M. E. J. Newman. Structure of Scientific
Collaboration Networks. Proc. Natl. Acad. Sci. USA
98, 404-409 (2001).

[9] Albert-László Barabási, Réka Albert. Emergence of
scaling in random networks Science 286, 509 (1999).

[10] U. Brandes, M. Gaertler, and D. Wagner.
Experiments on graph clustering algorithms. In Proc.
11th European. Symposium of Algorithms (ESA ’03),
LNCS 2832, pages 568–579. Springer-Verlag, 2003.

[11] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. The Bell System
Technical Journal, 49(2):291–307, 1970.

[12] W.H. Milnor, C. Ramakrishnan, M. Perry, A.P.
Sheth, J.A. Miller and K.J. Kochut, Discovering
Informative Subgraph in RDF Graphs. 4th
International Semantic Web Conference (ISWC 2005)

[13] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E.
Stanley, Classes of small-world networks, Proc. Natl.
Acad. Sci. U.S.A. 97(2000), 11149-11152.

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

