
International Journal on Artificial Intelligence Tools %%^. , , , , j —*.
Vol. 15, No. 3 (2006) 465-480 TO Worid SwentlflC

' v ' V I www.wortdscientific.cotn
© World Scientific Publishing Company

A NOVEL APPROACH OF TABLE DETECTION AND ANALYSIS
FOR SEMANTIC ANNOTATION

ENHONG CHEN and SHU WANG

Department of Computer Science, University of Science and Technology of China
Hefei Anhui 230027 P.R. China

PHILLIP C.-Y. SHEU

Department of BECS, University of California, Irvine, CA 92697

Received 31 January 2005
Accepted 13 July 2005

Semantic web mining is getting more attention in intelligent web applications. Many web sites, es
pecially those dynamically generate HTML pages to display the results of user queries, present in
formation in the form of lists or tables. It is very useful to extract concept instances from these ta
bles for many web applications such as intelligent agent systems for on-line product recommenda
tions. This paper describes a technique for extracting data from tables in two steps, namely table de
tection and table analysis. The table detection step identifies the existence of a table and extracts its
contents, and the table analysis step discovers the semantic meanings embedded in the table and as
sociates them with the concepts described in the domain ontology that are used for semantic annota
tion on these tables. Our algorithm has been tested based on real-life web documents and the ex
perimental results are encouraging.

Keywords: Semantic annotation; table detection; ontology.

1. Introduction

Capturing knowledge based on semantic annotations has been a major technique for creat
ing metadata. It is beneficial for a wide range of content-oriented applications. For exam
ple, current research about the Internet has been striving to augment the syntactic infor
mation already present with semantic metadata in order to achieve a semantic web that
human and software agents can understand. To this end one of the most urgent challenges
is knowledge capturing, i.e., turning existing syntactic resources into knowledge struc
tures. One possible solution is semantic annotation, i.e., to mark up the existing web
documents. It is getting more and more attention in the semantic web community1'2'3'4.

Most existing approaches have attempted to provide an annotation editor to facilitate
the annotation process manually or semi-automatically. Some efforts were made to solve
the problem automatically5,6, with a main focus placed on the annotation of free texts.
However, a large percentage of web documents contain data-rich tables or lists. Consider
for example a web document shown in Figure 1. It is desired to annotate these tables
when a search agent searches for the flights that will leave the JFK airport at 7:00am on

465

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.wortdscientific.cotn

466 E. Chen, S. Wang & P. C.-Y. Sheu

Friday. This is unfortunately not an easy task due to the complicated layout involved. The
existing automatic annotation approaches5'6 cannot be used in this case. Reference 8
proposed a deep annotation framework that combines the presentation layer with the data
description layer. But this approach involves certain requirements on the database and the
sever side which may hardly be satisfied in reality. Reference 7 proposed an automatic
approach by exploiting the structure of the corresponding web document, but it requires
that some instances of the table already exist in the ontology instance base.

tuf-Poo 2 : Monsters Unleashed
I f 2004)

Enhanced Widescreen (Sof t Mat te)
DVD

Editions

Rated: PS
Release Date:
0 9 / 1 4 / 2 0 0 4

u*etith&i feeing

America 's favori te teenage canine-led crime fighters earn
a second shot at the big screen in th is sequel to the hit
comedy Scooby-Doo, The reunited Mystery Inc. team - -
Fred (Freddie Prinze Jr. I , . . , More

Freddie Prinze, Jr... Sarah Michelle Cellar.,
Starring:

Matthew Li Hard, More

i Ha; II

" - - o n Fi ref2004)
Enhanced Widescreen Letterbox DVD

! d iti o n s

Rated:R
Release Date:
0 9 / 1 4 / 2 0 0 4

A n a n whose ideals have been shattered for the last t ime
is ' u t for v iolent jus t i ce in th is thri l ler. Creasy (Denzel

' >fi ashington) is a former United State intel l igence agent-
tLh-ied-mercenary who has... More

* * * *

Starring
_ Denzel Washington,. Dakota Fanning, Christopher
' Walken, More

Fig. 1. A web document containing data-rich tables and lists

This paper proposes an automatic approach to extract table instances including their
values and semantic meanings (ontology concepts). The semantic annotation process can
be performed automatically by creating a set of semantic metadata from the cells of these
tables using the related ontology concepts. Our approach includes table detection and
table analysis techniques, and no specific restriction is required.

The table detection process identifies a table and extracts any instances from the table.
Most existing table detection techniques have relied on machine learning9'10'15. There are
some problems associated with them however. For example, the approach proposed in
Ref. 10 uses a page template to indicate where a table is located and uses a separator for
cell extraction. But sometimes such page template does not exist and a user-defined sepa
rator can hardly fit different tables. In addition, column identification using AutoClass is
not stable enough for practical applications.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

A Novel Approach of Table Detection and Analysis for Semantic Annotation 467

Our table detection algorithm was developed based on the regularity of table struc
tures. The algorithm uses a JDOM parser to parse a web document, and extracts the rows
and columns of a table from the corresponding DomTree. We explore the DomTree in a
bottom up fashion. A pattern comparison technique based on hashing is used to improve
the efficiency. We use a set of Consecutive Tree Patterns to record the regularity of table
structures and to extract the instances of a table by a set of Maximum Consecutive Pat
terns. Our algorithm employs a subtree comparison technique similar to the one used in
Ref. 15 to mine a data region and extract its data records. However unlike the technique
discussed in Ref. 15 which traverses a tag tree from the root downward in a depth-first
fashion and executes the procedure CombComp is at each internal node, our algorithm
only needs to explore the DomTree once and compare each pattern once.

For table analysis, the instances of a table are associated with the related concepts in
the domain ontology (given) to accomplish the task of annotation. In this step, we distin
guish two kinds of tables, namely self-described tables and non-self-described tables
(defined in Section 3.2). For a self-described table, we extract a Semantic Indicator for
each column by finding the maximum prefix for all the values in that column. We then
find an appropriate ontology concept using the synonym chain available in the WordNet14

based on that semantic indicator. For a non-self-described table, three cases are consid
ered, namely the head of the table, the linguistic pattern of the value in each cell and the
link page of the value in the cell. A different strategy is provided in each case.

The rest of this paper is organized as follows: Section 2 first defines the table detec
tion problem and describes our table detection algorithm. Section 3 discusses table analy
sis algorithm and shows the strategies for all possible situations. Section 4 presents our
experiments and results. Section 5 concludes this paper.

2. Table Detection

In this section, we will introduce a table detection algorithm for identifying the structure
of a table. Furthermore, it prepares the table analysis step to extract the contents from the
table. Section 2.1 will introduce some basic definitions. Section 2.2 will give a compre
hensive description of the algorithm. An example is presented in Section 2.3 to explain
the algorithm.

2.1. Preliminaries

Our algorithm is designed based on the DOM tree derived from a web document in
HTML or XML. The tree structure can be treated as an ordered tree T= {V, E, R}, where
V designates a finite set of nodes, E designates the edges between the nodes, where
E C V2, and R designates the root node of T, where R • V.

We distinguish two kinds of nodes: Simple Nodes and Complex Nodes. A Simple
Node (S_node) is a leaf node in T that may be a text node (denoted as Text_Node) or a
single tag node (denoted as Single_Tag_Node). A Complex Node (C_node) is an interior
node in T. For example, in Figure 2, the nodes "Fender", "USA", etc. are text nodes.
{"
"} is single tag node. The sub_tree rooted at "<TR>" is a C_node. Also, each
sub_tree rooted at a "<TD>" is a C_node. For each node v • V, we denote paT{v) as the

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

468 E. Chen, S. Wang & P. C.-Y. Sheu

parent node of v and chT(v) as the set of children of v. For example, in Figure 2,
paT(<7D>) is <TR>.

<Table>
<TR>

<TD Width = "20%" Align="LEFT"> Name </TD>
<TD Width = "20%" Align="LEFT"> Producing Area</TD>
<TD Width.= "20%" Align="LEFT"> Catalogue </TD >
<TD Width = "20%" Align="LEFT"> Price </TD>

</TR>
<TR>

<TD> Fender </TD>
<TD> USA </TD>
<TD> 0117402 </TD>
<TD> $ 699.99</TD>

</TR>

</Table>

Fig. 2. An HTML document and its tree structure

Definition 1. A SubJTree Pattern is a kind of C_node in T, which occurs repeatedly. A
SubJTree Pattern Instance is an occurrence of one SubJTree Pattern.

For example, a pattern "<TD> —> Text_Node" in Figure 2 is a SubJTree Pattern,
while "<TD> —» Fender" is a SubJTree Pattern Instance. We can easily see that each
cell of a table must be a SubJTree Pattern Instance.

Definition 2. Consecutive Tree Patterns (Consecutive Patterns for short) are a set of
Sub_Tree Pattern Instances with the same SubJTree Pattern occurred in T consecutively.

In Figure 2, {"<TD> -> Fender", "<TD> -> USA"...} is a set of Consecutive Pat
terns. We can easily see that each row of a table is a set of Consecutive Patterns.

Definition 3. Size(n) denotes the number of tags and S_nodes in n, where n could be a
S_node or a C_node. So Size(n) =1 if n is a Sjaode, Size(n) > 1 if n is a C_node.

In Figure 2, the size of the complex node rooted at "<TR>" is 10. We can see that the
SubJTree Pattern Instances with the same SubJTree Pattern have the same size.

Definition 4. Distance(n) denotes the distance from the root node R to the start tag of n,
where n could be a S_node or a C_node. If the web document is treated as a text stream,
Distance(n) is equal to the number of tags and S_nodes in the stream before the occur
rence of the start tag of n.

For example, in Figure 2, if "<Table>" is the root of the tree, then Distance
(S_node("Name")) =3, Distance(S_node("FendeT")) =13. In our table detection algo-

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

A Novel Approach of Table Detection and Analysis for Semantic Annotation 469

rithm, we will calculate the Distance for every node in T and all these can be done in the
HTML parsing phase using our extended JDOM parser.

Definition 5. Two Consecutive Patterns X and Y are called Maximum Consecutive Tree
Patterns {Maximum Consecutive Patterns in short) if there are no other Consecutive Pat
terns X' and Y' with Size (X') > Size (X).

Definition 6. Depth{n) indicates the depth of the start tag of n in T, where n is a Sjiode
or Cjiode.

For example, Depth(R) = 0 while Depth (R_ch)=l, where R_ch is any child node of
the root node R. So Depth(n_ch)= Depth(n)+l, where n_ch is any child node of n.

Lemma 1. For any two nodes X and Y which are SubJTree Patternjnstances with the
same SubJTree Pattern, if Distance(Y) - Distance(X) is equal to Size(X), then X and Y are
Consecutive Patterns.

This lemma is based on the continuity of HTML texts and can be easily proofed.

2.2. The table detection algorithm

Figure 3 shows our table detection algorithm. In Ref. 9 the authors classified two kinds of
tables, genuine tables and non-genuine tables. Genuine tables are document entities where
a two dimensional grid is semantically significant in conveying the logical relations
among the cells. On the other hand non-genuine tables are document entities where the
<TABLE> tags are used as a mechanism for grouping contents into clusters only for the
ease of viewing. We can clearly see that only the genuine tables need to be annotated. We
will try to extract only the genuine tables in this step.

We can detect a genuine table structure by finding the Maximum Consecutive Pat
terns between a "<Table>" and "</Table>" pair where the Size of each pattern is above a
certain threshold G

In a non-genuine table, Maximum Consecutive Patterns certainly exist. But these pat
terns contain fewer structures and less information than those in a genuine table. Thus the
size of such a pattern is always less than O . Using a threshold <T =3 or 4 will prevent the
extraction of most non-genuine tables in real world documents. However, some non-
genuine tables may still be extracted. We will drop those meaningless non-genuine tables
in the table analysis step. Sometimes a web document may miss a "</TabIe>" tag or other
end tags of a node; they will be added during the parsing phase with our extended JDOM
parser.

In the algorithm we use an extended JDOM parser to parse an input web document.
For every node three attributes are considered: node.depth(=Depth(node)), node.sj'ze
(=Size(node)), and node.dist (=Distance(node)). In line 2, we find the sub_tree Twith the
maximum size among all sub_trees (C_nodes) rooted at the tag "<Table>" of the Dom-
Tree. Usually many sub_trees rooted at the "<Table>" tag can be found in a DomTree,
but the rows of the table we want to find are always hidden in the sub_tree rooted at the
"<Table>" tag with the maximum size.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

470 E. Chen, S. Wang & P. C.-Y. Sheu

Algorithm Table Detection
Input : a web document D
Output: Max Consecutive Patterns on the DomTree corresponding to the rows of the

table we hope to find
Method:
1 Parsing on D using an extended JDOM and get its DomTree // Parsing Phase
2 Finding sub_tree T with maximum Size in all sub_trees rooted at the "<Table>"

tag of the DomTree. // Initial Phase
3 F\ = all S_nodes in T, listed in their occurrence order
4 int deepest = maximum Depth for all the node in Fl
5 int limit = T. depth
6 int/ = 2
7 while (deepest>limit) do begin
8 foreach node N • F;_1 do begin
9 if {N.depth == deepest)
10 F[.add(Up_Extension(N))
11 else
12 Fi.add(AZ)
13 NodeMerge(Fi)
14 for (int y'=0; j< F[.size -1 ; j++) do begin
15 Nj = F,-.get(/) // Nj is the y'th element in Fi

16 A^+i = Fj.get(/+1) H Nj+\ is the j+ lth element in Fi

17 \I(Nj.pHash == Nj+1 .pHash) II Nj and Nj+ \ are of the same pattern

18 {
19 if ((A^+1 .dist- Nj.dist) == Â \ size) II Consecutive Patterns
20 {
21 Fj.conseqPattern.addCA'y);
22 F;.conseqPattern.add(A^+i);
23 }
24 }
25 deepest—
26 i++
27 end //end loop while
28 List maxCP = maxCPFinding(i-l)
29 return maxCP

Fig. 3. Table detection algorithm

All the leaf nodes (S_nodes) are stored in F\ with their pHash values. Reference 11
proposed a hash function to calculate the hash value for a node. Here the same function is
used to calculate pHash for every node, but all Text_nodes are assigned the same pHash
value. Therefore if two nodes have the same pattern, they will have the same pHash
value. In the initial phase, we define some integer value based on the depth of the node,
which will be used to terminate the loop later. After that, we adopt a Consecutive Patterns
mining method by exploiting T from the leaf nodes to the root node. In lines 8-12, we

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

A Novel Approach of Table Detection and Analysis for Semantic Annotation 471

use an Up_Extension technique to extend the nodes in Fi. Only those nodes with the
maximum depth need to be extended, and the others will be extended later. In line 13
we use the function NodeMerge{Fi) as shown in Figure 4 to merge the nodes with the
same root. In lines 14-24, we find all the Consecutive Patterns in Fi based on Lemma 1,
and all these Consecutive Patterns are stored in Fi.conseqPattern. In line 28,
maxCPFinding(\-\) finds the Max Consecutive Patterns in [Fi.conseqPattern,
Fi.conseqPattern, ..., Fi-\.conseqPattern).

The UpJExtension technique is used to extend node n with its paT(n) to get a new
node as shown in Figure 5 and to calculate the pHash value for the new node. The func
tion NodeMerge(Fi) is used to merge the nodes in Fi. The merged nodes should share
the same start tag as shown in Figure 5.

Algorithm NodeMerge
Input: NodeList F
Output: Merged Nodes in List F
Method:

1 int k=0;
2 while (F.hasnext()) do begin
3 Nk F.get(fc) II Nk is the kth element in F
4 Nk+1 = F.get(/t+l) // Nk+l is the (£+l)th element in F
5 if (Nk-rootNode ==Nk+\-rootNode)
6 merge Nk and Nk+l to get new node Nnew and calculate

pHash value for Nnew

7 F.remove(yV£) // remove A^ in F
8 F.replace(N£+1, Nnew) II replace Nk+1 with Nnew in F
9 k+ +
10 end // end while
11 return F

Fig. 4. NodeMerge function

2.3. An example

Figure 5 gives an example to illustrate our algorithm. We transform a real world HTML
page into a DomTree rooted at node 101. The tag for node A is "<Table>", the tag for
node B is "<TR>", the tag for node C is "<TD>", and the dark nodes are leaf nodes with
a text value. We can see that F\ is the UpJExtension of FQ, and F2 is the UpJExtension of
Fu {(301, 401), (302, 402)} are Consecutive Patterns, so are {(303, 403), (304, 404)},
{(201, 301, 401), (201, 302, 402)} and {(201, 301, 302, 401, 402), (201, 303, 304, 403,
404), and (201, 305, 306,405, 406)}. The Max Consecutive Patterns are {(201, 301, 302,
401, 402), (201, 303, 304, 403, 404), (201, 305, 306, 405, 406)}, where each stands for
an instance of the row in the table.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

472 E. Chen, S. Wang & P. C.-Y. Sheu

Osspits

D « p t h

D e p *

Oepi f - f

F O :

F 1 :

F2-.

fv ferctes:

- < - * • &

3 0 1

•^01

a r t

3D f.

4Q1

L

_ ^

A
2

3 0 2 I

—3L- -

T
3 0 ? r)

4 0 2 J n &

2 0 2

3<33

T %•

^ 4f -i

3 0 3

4 0 3

(t > 3 0 4

0 4

5)3 "<jD

T
1 * * . < •

4HJlJP 4 0 5

30& C^>

40s a j

iflBl 4 ° 6

* M 4 P 4GS 4 ^

?
1

l

2-02 C&>

3 0 4 (C !•

4 0 4 d w

)

203 OE)

3D3 (o l

4C»S ^gg&

::1

•
•

4Q S5 A

203 C^)

3CJS3 ^ C)

306 C^p

4 08 4 P

Fig. 5. Table detection process.

3. Table Analysis

3.1. Overview

In this section, we will analyze the table instances found in the table detection step, and
explore the semantic meanings behind them with a given ontology. After the table detec
tion step, the table structure in the web document is converted into a relational data set
called Table JMatrix that shares the same rows and columns appeared in the web browser.
However, some noisy data may exist (e.g., non-genuine tables) and most of these noisy
data will be dropped in this phase.

The ontology describing the site is assumed to be available in our annotation system.
For example, the table shown in the left hand side of Figure 1 describes "movies", while
the table shown in the right hand side describes "flights". A real-world ontology called
Onto contains a set of concepts or properties to describe movies. As usually a small sub
set of the concepts are used to annotate the corresponding values in a table, our task there
fore is to identify the related concepts in Onto for every column of the table; subsequently
these related concepts are used to annotate the cells of the column.

3.2. Strategies for table analysis

First we will separate two kinds of genuine tables (self-described and non-self-described)
appeared in a web document. We will then use different strategies to associate some se
mantic meanings with them.

• Self-described tables: Every cell in a self-described table has specific semantic mean
ings with a text string, like the table shown in the left hand side of Figure 1.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

A Novel Approach of Table Detection and Analysis for Semantic Annotation 473

• Non-self-described tables: Every cell in a non-self-described table has no specific
semantic meaning but only a value, like the table shown in the right hand side of
Figure 1.

For a self-described table, every cell in Table-Matrix has some semantic meaning by
itself, that is to say, there exist both a Semantic Indicator and a value in the cell. For ex
ample, in the self-described table about "Movie", the following value may exist in a cell:
"[name] - Matrix : ReLoad", where "[name]" is a Semantic Indicator indicating that the
cell is used to describe the name of a film, "Matrix : ReLoad" is the value of the name,
and "-" is the separator between the Semantic Indicator and its value.

Algorithm Semantic_Finding for self-described table
Input: Onto and Table-Matrix of a self-described table
Output: Concept_Column_Set in which Concepts in Onto that describe the semantic

meanings for each column in Table-Matrix
Method:
1 Concept_Column_Set = null;
2 Foreach column Col in Table-Matrix do Begin
3 Semantic Indicator = maximum prefix for all cells in Col
4 Delete all the nonsense characters in Semantic Indicator and only leave mean

ingful words.
5 Foreach Concept C • Onto do Begin
6 if (Semantic Indicator has the same meaning with C in WorldNet)

// C can describe the semantic meaning of Col
7 Concept_Colum_Set.add(pair(Col, Q);
8 break;
9 End_if
10 End
11 End
12 return Concept_Column_Set

Fig. 6. Semantic_Finding for self-described table.

However, we cannot depend on the separator sometimes because they do not always
exist. Fortunately in a self-described table, all the cells in a column always have the same
Semantic Indicator. Based on this observation we propose the algorithm Seman-
ticjinding as shown in Figure 6. In the algorithm, we find the maximum prefix for all
the cells in a column. The prefix would contain the Semantic Indicator for that column.
After the Semantic Indicator is extracted, we decide whether some concept in Onto is in a
synonym chain of the Semantic Indicator in the WordNet. If so, this concept can be used
to describe the semantic meaning of the column, and can be used to annotate the column.

For a non-self-described table, the task is more difficult. We have developed three
strategies for this task: (1) Exploiting table head information; (2) Exploiting the linguistic
pattern of a cell and associating it with a concept; and (3) Exploiting the link page for the
value in each cell.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

474 E. Chen, S. Wang & P. C.-Y. Sheu

(1) Exploiting table head information

If a table has a table head, then the semantic meanings for each column are hidden in the
table head. In this situation, we need to find every value in the table head that can be used
to describe the semantic meaning of a column such that some appropriate ontology con
cepts can be used to associate with the column. Our case study shows that table heads are
always presented in either of the following two forms:

(i) The table head appearing on the top of the row instances has the same pattern with
those of the row instances. In this case, the table head is extracted together with the
row instances in Table_Matrix.

(ii) The table head appearing on the top of the row instances has a different but similar
pattern with those of the row instances. If there are n columns in the row instances,
there might be a node HeadNode containing n children appearing right before the
row instances and the pHash value of HeadNode is very close to those of the row in
stances. In this case, we extract the table head from HeadNode.

After the table head is found, its value includes the Semantic Indicators for the re
lated columns. So we can use lines 4-9 of the algorithm shown in Figure 6 to find the
correct ontology concepts.

(2) Exploiting the linguistic pattern of each cell

This strategy is popular in some wrapper systems (e.g.,Refs. 12 and 13). The basic idea
lies in that we can learn the semantic concept for some typical values in each cell. For
example, consider "10018 Fourth Ave Brooklyn" and "120 Orchard Street New York".
These values share a common linguistic pattern "NUMBER + STREET + CITY" which
actually corresponds to the concept of "Address". Thus we can associate them with the
concept "Address". As another example, the values "$17.95" and "$25.99" can be associ
ated with the concept "Price".

(3) Exploiting the link page for the value in each cell

Link analysis is heavily used in web information retrieval. The link(s) in a row is often
used as a pointer to a page that contains the details of a cell. In most cases, all values in
the same row of a table are repeated in the corresponding detail page. We can use strategy
(2) to find the corresponding concepts using the linguistic patterns identified in the detail
page. These concepts designate the semantic meanings of the row.

3.3. An example

In real world web pages, some part of a table may be self-described and other part may be
non-self-described. As an example, Figure 7 is such a sample table describing movie from
www.blockbuster.com. So in our experiment, both kinds of table analysis strategies are
integrated. This section will illustrate the whole table analysis process. Figure 8 is a
part of movie ontology MoviejOnto that we built consisting of a concept and its related
properties. In this ontology, linguistic patterns for some properties have been built. For
example, "Name" has linguistic pattern "Name_String [String] (Year)", "Release Date"

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.blockbuster.com

A Novel Approach of Table Detection and Analysis for Semantic Annotation 475

• A

Terminal 1WS 1(20041
Enhanced Widescreen LetterboH DVD
All Ed i t ions

Rated : PG13 Afembec Barint
Release D a t e :
1 1 / 2 3 / 2 0 0 4

Shot a lmos t ent i re ly on a t w o - a n d - a - h a l f - s t o r y recreat ion
of a fu l l -s ize operat ing a i rpor t terminal. , t h i s romant ic
comedy f rom d i rec to r Steven Spie lberg revo lves around
an Eastern European man by the. . . More

,._ _ T o m Hanks.. Cather ine Z e ta-J ones, Cather ine Starr ing : rr— : —
Zeta-JoneSj More

Bot i rae Sys ramao) I W S 1(20041
Enhanced Widescreen LetterboH DVD
All Ed i t ions

Rated : PG13 Jfembea' feting
Release D a t e :
1 2 / 0 7 / 2 0 0 4

The second chap te r in the "Bourne T r i l o g y / ' based on
Robert Lud lum's bes t - se l l i ng espionage nove ls , reaches
the screen in th i s sequel to the 2 0 0 2 t h r i l l e r T h e Bourne
I d e n t i t y . Jason Bourne fMat t . . . More

M a t t Damori j Frank a Fo ten te , Frank a Potente.. 4 Starring:
More

Fig. 7. Sample Table describing movie.

ne; NameJString [String] (Year)

Rated: {PG, R, PG13, NR, NC-17, 6}

Release Date: NumNum/NumNunVNumNuiti

Starring: NarneJItring

iirector; Name String

ining Time: Num hour Num minutes

'rice; $ Float

Synopsis: String

Fig. 8. Concept and related properties describing movie.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

476 E. Chen, S. Wang & P. C.-Y. Sheu

has linguistic pattern "Num Num/ Num Num/ Num Num", and "Running Time" has lin
guistic pattern "Nun hour Nun minutes". Table 1 shows the Table JAatrix constructed by
the table detection phase. From Table 1, we can see 9 columns are detected and each of
them is assigned a virtual name "A, B, C ..." Note, here we record the link page of each
column (if available) for further use. Table analysis will identify the related concepts in
Movie_Onto (see Figure 7) for each column of the Table_Matrix.

Tablet 1. Table_Matrix

A
[link]

IMG

IMG

IMG

IMG

IMG

IMG

B
[link]

Terminal

[WS](2004)

Bourne

Supremacy

[WS](2004)

Collateral

[WS] (2004)

I,Robot

[WSR2004)

Stepford

Wives

[WS](2004)

Manchurian

Candidate

[WSK2004)

c
Enhanced

Widescreen

Letterbox DVD

Enhanced

Widescreen

Letterbox DVD

Enhanced

Widescreen

Letterbox DVD

Letterbox DVD

Enhanced

Widescreen

Letterbox DVD

Enhanced

Widescreen

Letterbox DVD

D
[link]

All

Editions

All

Editions

All

Editions

AD

Editions

All

Editions

All

Editions

E

[link]

IMG

IMG

IMG

IMG

IMG

IMG

F
[link]

Rated:

PG13

Rated:

PG13

Rated: R

Rated:

PG13

Rated:

PG13

Rated: R

G

Release Date:

11/23/2004

Release Date:

12/07/2004

Release Date:

12/14/2004

Release Date:

12/14/2004

Release Date:

11/09/2004

Release Date:

12/21/2004

H
[link]

Text

Text

Text

Text

Text

Text

I
[link]

Starring:

Tom

Hanks

Starring:

Matt

Damon

Starring:

Tom

Cruise

Starring:

Will

Smith

Starring:

Nicole

Kidman

Starring:

Denzel

Wash

ington

Firstly, using algorithm Semantic_Finding on each column, we can find that column B
has common suffix "[WS] (2004)" and column D contains the same value on each rows,
so as column C. But from this information, we can find no relationship with the
Movie_Onto. However, we can find Semantic Indicator "Rated" on column F, and
"Rated" is a property of Movie_Onto. So we successfully identify an ontology property
for column F, so as column G and I. Note, column A and E only contains images, so we
ignore them in this step.

Secondly, exploring the linguistic pattern information on column B, we find that each
value in it could match with the linguistic pattern in the ontology property "Name". So we
successfully identify an ontology property for column B.

Thirdly, building wrappers for the link pages of the values in column A, B, D, E, F, H
and I, we find the wrapper building process succeeded in column A, B, H and I, but failed
in column D and E. From the wrappers, we find more property instances of Movie_Onto
like "Director", "Running Time", "Price" and "Synopsis". Here we can also find that the
instances of "Synopsis" have nearly the same values with those in column I. So column I
can be used to describe the ontology property "Synopsis".

So, we have correctly identified the 5 ontology properties for column B, F, G, H and
I, and these properties can be used to add semantic annotation for these cells. As a sup-

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

A Novel Approach of Table Detection and Analysis for Semantic Annotation 477

plemental result, we also find the property instances of "Director", "Running Time" and
"Price". They can also be used for semantic annotation.

4. Experiments

To evaluate the effectiveness of our approach, we designed experiments based on a set of
real-life web sources including 11 sites. These sites describe 7 concepts {faculty, airport,
movie, book, restaurant, stocks, hotel}. We used SWOOGLE to get the corresponding
ontologies and made some improvements manually to each concept in order to make them
usable for our experiments. As an example, Figure 9 shows the faculty ontology.

In each of these 11 sites, we selected 5 pages containing genuine tables, and some
pages containing non-genuine tables. The table detection algorithm successfully extracted
all the table structures from all the HTML pages in the data set as shown in Table 2.

Name:Name_String

Area:Research

Email:Email_String

Phone: Phone_S tring

Address: AddressString

Publication: String

Homepage: URL

Fig. 9. Faculty ontology

Table 2. Results of table detection.

source

www.uci.edu
www.nationsonline.org
www.blockbuster.com

www.bordersstores.com
www.restaurantrow.com

finance.yahoo.com
www.hotel.com

canberra.citysearch.com.au
boston.citysearch.com
boston.citysearch.com

www.amazon.com

No. of
genuine tables

given
5
5
5
5
5
5
5
5
5
5
5

No. of
non-genuine
tables given

3
3
2
5
4
3
5
4
4
2
5

No. of extracted
genuine tables + No. of

non-genuine tables
5 + 0
5 + 1
5 + 0
5 + 2
5 + 1
5 + 3
5 + 0
5 + 1
5 + 3
5 + 0
5 + 5

accuracy

100%
87.5%
100%
80%

88.8%
62.5%
100%
88.8%
66.7%
100%
50%

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.uci.edu
http://www.nationsonline.org
http://www.blockbuster.com
http://www.bordersstores.com
http://www.restaurantrow.com
http://finance.yahoo.com
http://www.hotel.com
http://canberra.citysearch.com.au
http://boston.citysearch.com
http://boston.citysearch.com
http://www.amazon.com

478 E. Chen, S. Wang & P. C.-Y. Sheu

Table 2 also shows the number of non-genuine tables extracted. The accuracy of the algo
rithm was calculated by the following formula:

Accuracy = 9^,+nonGTori - nonGT^
GTori+nonGTori

(1)

In the formula, GTori and nonGT^ denote respectively the total number of genuine
tables and non-genuine tables given originally, and GTori and nonGTat designate the
number of genuine tables and non-genuine tables that have been extracted by our table
detection algorithm.

Note from the results of the table detection algorithm, we found most pages of a site
containing genuine tables share the same structure because they were produced by the
same template. Therefore we only need to choose one page from each site for semantic
analysis. In Table 3 we list the number of columns appeared in the tables, the number of
columns that should be annotated and the number of columns that were successfully anno
tated.

Table 3. Table analysis results for semantic annotation.

Source

www.uci.edu
www.nationsonline.org

www.blockbuster.com

www.bordersstores.com

www.restaurantrow.com

finance.yahoo.com

www.hotel.com
canberra.citysearch.com.au

boston.citysearch.com

boston.citysearch.com
www.amazon.com

Domain

Faculty

Airport

movie

book
restaurant

stock

hotel

restaurant

hotel

restaurant
book

Number of
columns

8

3

7

4

2

7

4

7

4

5
8

Number of
columns

needed to be
annotate

4

3

5

4

2

7

2
4

3

3
5

Number of
the columns
annotated

3
2

4

4

2

5

2
4

2

3
4

accuracy

75%
66.7%

80%

100%
100%

71.4%

100%

100%

66.7%

100%
80%

From the results we can see that both algorithms are of quite high accuracy. The inac
curacy of table analysis was mainly resulted from certain specific features of a column.
For example, at "www.amazon.com", an important column "Customer Rating" is reported
with an image. As another example, at "boston.citysearch.com", a non-self-described
table with a "brief introduction" column could not be correctly analyzed because the
concept corresponding to the column is not contained in the ontology.

5. Conclusions

This paper presents an approach to automatically extracting instances from the tables in
existing web documents. The core of our approach consists of two processes: table detec
tion and table analysis. Based on the regularity of table structures, we have proposed an
efficient table detection algorithm that uses an extended JDOM parser to parse a web

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.uci.edu
http://www.nationsonline.org
http://www.blockbuster.com
http://www.bordersstores.com
http://www.restaurantrow.com
http://finance.yahoo.com
http://www.hotel.com
http://canberra.citysearch.com.au
http://boston.citysearch.com
http://boston.citysearch.com
http://www.amazon.com
http://www.amazon.com
http://boston.citysearch.com

A Novel Approach of Table Detection and Analysis for Semantic Annotation 479

page and explore the DomTree in a bottom up fashion. We use Consecutive Tree Patterns
to record the structure regularity of tables, and extract the instances of a table by the Max
Consecutive Patterns. In table analysis, we associate the instances of a table with their
related concepts in a given ontology. In this step, we distinguish two kinds of tables: self-
described tables and non-self-described tables. For a self-described table, we extract its
Semantic Indicators by finding the maximum prefix from all the values in the same col
umn. We then find the appropriate ontology concepts using the synonym chains in the
WordNet from the Semantic Indicators. For a non-self-described table, we consider in
formation that may be derived from the head of a table, the linguistic pattern of a cell and
the link page from a cell. A different strategy is designed for each situation and integrated
into our system.

The performance of the proposed algorithms has been verified by a set of experiments
based on real world web documents and the results are encouraging.

We are currently improving the table analysis by considering context information of
the web document and building intelligent system on deep web by integrating our seman
tic annotation technique with the interface query technique discussed in Ref. 16.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China
(No.60573077), Program for New Century Excellent Talents in University, Microsoft
Research Asia and 973 Program of China (No. 2003CB317002).

References

1. J. Heflin and J. Hendler. Searching the web with SHOE. In: Proceedings of AAAI-2000 Work
shop on Alfor web Search, 2000, pp. 35^-0.

2. S. Handschuh, S. Staab, and A. Maedche. CREAM - Creating Relational Metadata with a
Component-based, Ontology-driven Annotation Framework. In: Proceedings of First Interna
tional Conference on Knowledge Capture, 2001, pp. 76-83.

3. S. Handschuh, S. Staab, F. Ciravegna. S-CREAM: Semi-automatic CREAtion of Metadata.
In: Proceedings of 13th International Conference on Knowledge Engineering and Knowledge
Management, 2002, pp. 358-372.

4. J. Kahan and M.-R. Koivunen. Annotea: an open RDF infrastructure for shared web annota
tions. In: Proceedings of WWW 2001, pp. 623-632.

5. S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, et al. SemTag and Seeker: Bootstrapping
the Semantic web via Automated Semantic Annotation. In: Proceedings of WWW 2003,
pp. 178-186.

6. A. Dingli, F. Ciravegna, and Y. Wilks. Automatic Semantic Annotation using Unsupervised
Information Extraction and Integration. In: Proceedings of the K-CAP 2003 Workshop on
Knowledge Markup and Semantic Annotation, 2003.

7. S. Wang, E. Chen. An Instance Learning Approach for Automatic Semantic Annotation. In:
International Conference on Computational and Information Sciences, Lecture Notes in
Computer Science 3314, 2004, pp. 962-968.

8. S. Handschuh, S. Staab, and R. Volz. On Deep Annotation. In: Proceedings of WWW 2003,
pp. 431^138.

9. Y. Wang, J. Hu. A Machine Learning Based Approach for Table Detection on the web. In:
Proceedings of WWW 2002, pp. 242-250.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

480 E. Chen, S. Wang & P. C.-Y. Sheu

10. K. Lerman, C. Knoblock, and S. Minton. Automatic Data Extraction from Lists and Tables in
web Sources. In: Proceedings of the workshop on Advances in Text Extraction and Mining,
IJCAI-2001.

11. Y. Wang, D. J. DeWitt, and J. Cai, X-Diff: A Fast Change Detection Algorithm for XML
Documents. In: Proceedings of ICDE 2003.

12. W. Cohen and L. Jensen. A Structured Wrapper Induction System for Extracting Information
from Semi-structured Documents. In: Proceedings of the Workshop on Adaptive Text Extrac
tion and Mining, IJCAI 2001.

13. I. Muslea and S. Minton and C. Knoblock: Active Learning with Strong and Weak Views: A
Case Study on Wrapper Induction. In: Proceedings of 18th International Joint Conference on
Artificial Intelligence, IJCAI 2003.

14. G. Miller. WordNet: A lexical database for english. CACM, 38(11), 1995, pp. 39-41.
15. B. Liu, R. Grossman, Y. Zhai. Mining Data Records in Web Pages. In: Proceedings of ACM

SIGKDD 2003, pp. 601-606.
16. Z. Zhang, B. He, and K. C.-C. Chang. Understanding Web Query Interfaces: Best Effort

Parsing with Hidden Syntax. In: Proceedings of ACM SIGMOD 2004.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

00
6.

15
:4

65
-4

80
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F
C

H
IN

A
 o

n
02

/1
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

