
X. Zhou et al. (Eds.): APWeb 2006, LNCS 3841, pp. 806 – 811, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Chord-Based Novel Mobile Peer-to-Peer
File Sharing Protocol

Min Li1, Enhong Chen1, and Phillip C-y Sheu2

1 Department of Computer Science and Technology,
University of Science and Technology of China,

Hefei, Anhui, 230027, P.R. China
minli@mail.ustc.edu.cn, cheneh@ustc.edu.cn

2 Department of EECS,
University of California,

Irvine, CA 92697
psheu@uci.edu

Abstract. With the increasingly developed technology of mobile devices and
wireless networks, more and more users share resources by mobile devices via
wireless networks. Compared to traditional C/S architecture, P2P network is
more appropriate for mobile computing environment. However, all existing P2P
protocols have not well considered the characteristics and constraints of mobile
devices and wireless networks. In this paper, we will present a novel mobile
P2P protocol, M-Chord, by adopting hierarchical structure and registering
mechanism on the basis of Chord. The experimental results show that M-Chord
system has high-efficiency and good robustness in mobile P2P network.

1 Introduction

With the increasing technology of mobile devices and wireless networks, it gets more
and more prevalent to share various resources by mobile devices such as a PDA or a
mobile phone via different types of wireless access networks such as GPRS and IEEE
802.11 wireless LAN. On the other hand, compared to the constraints of traditional
Client/Server (C/S) architecture, such as the systemic fragility, the bottleneck of sys-
tem performance caused by high-load of the center server, the overmuch bandwidth
consumption for broadcasting message and so on, Peer-to-Peer (P2P) network is more
appropriate to employ in mobile computing environment because it adopts distribut-
ing services among equal nodes and improves the scalability and reliability of the
whole system. However unfortunately, all existing P2P protocols have not specially
considered the problems of wireless joining for mobile devices, for instance, limited
CPU and memory of mobile devices, intermittent disconnection, limited bandwidth,
high transmission delay etc. So how to obtain more efficient and effective mobile P2P
techniques have recently become prominent discussion topics.

For the new generation of scalable P2P systems that support distributed hash table
(DHT) functionality, such as Tapestry [1], Pastry [2], Can [3] and Chord [4], files are
associated with a key by hashing its title or its content, and each node is responsible
for storing a certain range of keys. Each DHT system employs a different routing

 A Chord-Based Novel Mobile Peer-to-Peer File Sharing Protocol 807

algorithm and has its own attractive respects and disadvantages at the same time. But
we appreciate the simplicity, scalability and high-efficiency of Chord much more.
Although some researchers have presented a mobile P2P protocol M-CAN [5] based
on CAN, the theory of hierarchical structure and registering mechanism can not be
applied to Chord directly. In this paper, we will propose a novel mobile P2P file shar-
ing protocol, M-Chord, by ameliorating Chord protocol and adopting hierarchical
structure and registering mechanism aim to accord with the characteristics of MP2P.

2 Design and Implementation of M-Chord

As an extensible P2P routing algorithm, Chord adopts the simple logic structure,
simple systematic interface and uses one-dimensional circular key space. Considering
the constraints of mobile environment, we have modified and improved the base
Chord protocol to obtain an efficient lookup protocol in MP2P, M-Chord.

2.1 Hierarchical Structure of M-Chord

M-Chord adopts hierarchical structure to organize mobile peers and it introduces the
theory of register mechanism used in M-CAN to manage resources. There are two
kinds of nodes in M-Chord, super nodes and ordinary nodes. Super nodes are the
nodes having larger memory, better computing capability and more reliable connec-
tion. Ordinary nodes are associated with super nodes by the register mechanism.
Firstly, when a sharing file is published in M-Chord system, it will be assigned a file
ID according to its content and title by hash function. Every super node manages a
range of file IDs separately. The node which has sharing files will be registered on
some super nodes according to the IDs of its shared files. The node which has no
sharing files will be appointed a super node with minimum load. A super node will be
registered on itself but it should also present the information of all its sharing files to
its corresponding super nodes. Every ordinary node needs to record the IDs and ad-
dresses of its super node(s). Every super node needs to maintain two tables: one is the
routing finger table, the other is sharing files directory, which records the information
about its registered files, such as the file IDs, the registered nodes’ addresses etc. For
super nodes, we use Chord to manage them.

2.2 Routing in M-Chord

Before a source node sends out its file access request, it must calculate the ID of its
wanted file firstly. Then the source node would submit a request containing this ID to
the source super node which the source node is registered on [5]. After receiving the
request, the source super node would lookup its finger table and go on with the rout-
ing process until the destination super node whose ID space covers the ID of the
wanted file receives the request. The routing process on the ring is the same as Chord.
Then the destination super node would launch a lookup process locally. If the destina-
tion super node can find the very file ID in its directory, which means the destination
node which owns the wanted file is registered locally, it would return the destination
node’s address to the source node. After the source node gets the destination node’s
address, it would try to communicate with the destination node directly. A lookup is

808 M. Li, E. Chen, and P. C-y Sheu

considered to fail if it returns the wrong node among the current set of participating
nodes at the time the sender receives the lookup reply (i.e., the destination node has
left or failed already), or if the sender receives no reply within some timeout window.

2.3 Node Join

When a new node joins M-Chord, it must register itself on one or more appropriate
super nodes according to the IDs of its shared files. If succeed in registration, the
corresponding super nodes should update their sharing file directory in time.

In order not to make super nodes be the bottleneck of the whole system, we set a
rule that any super node can manage n nodes at most. If a super node manages more
than n nodes, a split process would be triggered. In this paper, we will present two
kinds of split strategies, real split and virtual spilt.

Real split strategy. In the “real split” process, the original super node (denoted as
OS) will first choose a new super node (denoted as NS) from its registered nodes. NS
is the node with the best connection among registered nodes. We assign an ID to the
new super node by the following formula.

NS.id = ⎣(OS.predecessor.id+OS.id)/2⎦ (1)

Unlike Chord system, which generate the node identifiers by hashing its IP address
to an m-bit space, M-Chord system will identify the ordinary node uniquely by its
address, and to the super node, it will assign its ID with the median of two existing
super nodes to ensure the uniqueness of the IDs of super nodes too.

Fig. 1. Before real splitting of super node 3,
n=4

Fig. 2. After real splitting of super node 3, n=4

The registered nodes will be divided into two groups. One group continues to be
managed by the original super node, and the other group is managed by the new super
node. Then we should go on with four steps. (1)Generate the finger table of the new
super node NS. (2)Update neighbor information of OS and NS. (3) Update sharing file
directories of OS and NS. (4)Update finger tables of all super nodes except NS.

 A Chord-Based Novel Mobile Peer-to-Peer File Sharing Protocol 809

Fig.1 and Fig.2 show an instance for super node splitting. Suppose one super node can
manage four ordinary nodes at most. Fig.1 shows the state when peer E joined and regis-
tered on super node 3. Super node 3 has exceeded the management maximum, so it will
be split. Fig.2 shows the state after super node 3 splitting. A new super node, super node
1 is generated and the rest registered nodes are divided into two groups.

Virtual split strategy. The rationale of virtual split strategy is very simple. Like real
split, in virtual split process the original super node OS will first choose a new super
node NS from its registered nodes, then divide the rest registered nodes into two
groups. Each group has the same number of nodes and each super node manages one
group. Unlike real split strategy, we assign the same ID as OS to NS. Then NS and OS
will update their sharing file directories to keep consistent. Because there is not a new
node ID generated on the M-Chord ring, it is unnecessary to update the finger tables
of other super nodes. We only need to copy the finger table and neighbor information
from OS to NS. But we should note that during the process of lookup operation, one
position of routing path may relate to more than one super node. If we need to check
the finger table of this position, we only need to check one node randomly. Moreover,
the destination super node ID may also correspond to more than one super node. In
this case we need to check all these virtual super nodes’ sharing file directories to
lookup the destination node.

In fact, the processes of node joining and super node splitting are also the system
construction process. At first, there is only one node that covers the whole ID space in
the system. In this case, any node will be registered on the original super node until
the number of registered nodes exceeds the limit n. Then the split process will be
triggered. If sharing files are distributed equally on the whole ID space, real spilt will
balance the load of M-Chord ring perfectly. But if there are too many sharing files
within a certain continuous file ID range, real splitting may cause a “local saturation”
situation. That is to say, several continuous positions on the ring have existed super
nodes and the super node in this series can not split any more although there are many
vacant positions on the other part of the ring. To solve this problem, we set the rule
that if the same file is shared and registered so many times by different nodes as to
exceed a certain limit, it is forbidden when the file attempts to be published by later
joined nodes. Compared with virtual split, real split will increase some expenses, such
as the expense of updating all super nodes’ finger tables. However although virtual
split is simple and highly efficient, it will cause the whole system load-unbalance
because it allows too many nodes congregating on one position of M-Chord ring. So
in practice, we can combine these two strategies to achieve the best performance. In
our simulation experiment, we stipulate that to every node ID on the ring, there exist
two virtual super nodes at most. If exceeds, real split will be performed.

2.4 Node Departure

When an ordinary node leaves the system, we only need to modify the directory of its
super node(s). But if the missing node is a super node, we should extend the file ID
space of its successor to cover the missing space. If the successor super node manages
more than n nodes, a split process would be triggered.

810 M. Li, E. Chen, and P. C-y Sheu

3 Theoretical Analysis and Simulation Results

To evaluate the performance of M-Chord system, we design our simulation based on
the platform P2PSIM [6], a P2P simulation software developed by MIT. P2PSIM has
provided the interface of Chord and we made some modification and extension on the
basal Chord to implement M-Chord. We design two data sets with different n stand-
ing for the maximum that one super node can manage ordinary nodes with the value 5
and 10 separately. For each data sets, we will compare the average data flow of Chord
node, super node of M-Chord and ordinary node of M-Chord, measured by the unit
bw (bytes/node/s), under different total node number (128, 256, 512, 1024, 2048). Our
testing data accords with Kingdata [7]. Fig.3~4 show the result with different parame-
ter value. Clearly we can find that the average data flow of super node in M-Chord is
the largest, Chord node is secondary and the minimum is ordinary node of M-Chord.
This demonstrates that super nodes have shielded most expenses and the total network
bandwidth occupation of the whole M-Chord is reduced remarkably.

Fig. 3. Node average bandwidth consumption comparison with n=5

Fig. 4. Node average bandwidth consumption comparison with n = 50

 A Chord-Based Novel Mobile Peer-to-Peer File Sharing Protocol 811

4 Conclusions and Future Work

In this paper, we have presented a mobile P2P protocol M-Chord. The particularities
and constraints of MP2P make traditional P2P protocols lowly-efficient and unreli-
able. Aim to accord with the characteristics of MP2P, we introduce hierarchical struc-
ture and registering mechanism into Chord. From our experimental results, we know
that compared to Chord, M-Chord greatly reduces the network bandwidth occupation.
M-Chord system has high-efficiency and good robustness in mobile computing envi-
ronment. In the future, we intend to improve the performance of M-Chord by decreas-
ing super node’s load and the additional expenses of super node splitting and so on.

Acknowledgements

This work is supported by Natural Science Foundation of China (No.60573077), and
the Nature Science Foundation of Anhui Province (No.050420305).

References

1. Ben Y.Zhao, John Kubiatowicz, and Anthony D.Joseph. Tapestry: An infrastructure for
Fault-tolerant Wide-area Location and Routing. Tech. Rep. UCB/CSD-01-1141, University
of California at Berkeley, Computer Science Division, 2001.

2. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. Proceedings of IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), Heidelberg, Germany, pages 329-350, No-
vember, 2001.

3. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp and Scott Shenker. A Scal-
able Content-Addressable Network. Proceedings of ACM SIGGOMM (San Diego, CA,
August 2001), pp.161-172.

4. Ion Stoica, Robert Morris, David Karger, M.Frans Kaashoek, Hari Balakrishnan. Chord: A
scalable peer-to-peer lookup service for Internet applications. Tech. Rep. TR-819, MIT
LCS, March 2001.

5. Gang Peng, Shanping Li, Hairong Jin, Tianchi Ma. M-CAN: a Lookup Protocol for Mobile
Peer-to-Peer Environment. Proceedings of the 7th International Symposium on Parallel Ar-
chitectures, Algorithms and Networks (ISPAN’04).

6. http://pdos.csail.mit.edu/p2psim/
7. http://www.cs.washington.edu/homes/gummadi/king/

	Introduction
	Design and Implementation of M-Chord
	Hierarchical Structure of M-Chord
	Routing in M-Chord
	Node Join
	Node Departure

	Theoretical Analysis and Simulation Results
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

