
Available online at www.sciencedirect.com
Information Sciences 178 (2008) 1498–1518

www.elsevier.com/locate/ins
Efficient strategies for tough aggregate
constraint-based sequential pattern mining

Enhong Chen a, Huanhuan Cao a, Qing Li b,*, Tieyun Qian c

a Department of Computer Science, University of Science and Technology of China, Hefei Anhui, PR China
b Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

c Department of Computer Science, Wuhan University, Wuhan, Hubei, PR China

Received 13 November 2006; received in revised form 2 July 2007; accepted 12 October 2007
Abstract

Frequent sequential pattern mining with constraints is the task of discovering patterns by incorporating the user defined
constraints into the mining process, thus not only improving mining efficiency but also making the discovered patterns to
better meet user requirements. Though many studies have been done, few have been carried out on the ‘‘tough aggregate
constraints’’ due to the diffIculty of pushing the constraints into the mining process. In this paper we provide efficient strat-
egies to deal with tough aggregate constraints. Through a theoretical analysis of the tough aggregate constraints based on
the concept of total contribution of sequences, we first show that two typical kinds of constraints can be transformed into
the same form and thus can be processed in a uniform way. We then propose a novel algorithm called PTAC (sequential
frequent Patterns mining with Tough Aggregate Constraints) to reduce the cost of using tough aggregate constraints
through incorporating two effective strategies. One avoids checking data items one by one by utilizing the features of prom-
isingness exhibited by some other items and validity of the corresponding prefix. The other avoids constructing an unnec-
essary projected database through effectively pruning those unpromising new patterns that may, otherwise, serve as new
prefixes. With these strategies, our algorithm obtains good performance in speed and space, as demonstrated by experi-
mental studies conducted on the synthetic datasets generated by the IBM sequence generator, in addition to a real dataset.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Frequent sequential pattern; Tough aggregate constraints
1. Introduction

Sequential pattern mining is the task of discovering frequent subsequences as patterns [16] in a sequence data-
base. It has been an active and important field of research and development since it was first introduced in [14].
Mining sequential patterns has found a variety of applications in analyzing genome sequences, capturing the
0020-0255/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.ins.2007.10.014

* Corresponding author. Fax: +852 2788 8292.
E-mail addresses: cheneh@ustc.edu.cn (E. Chen), caohuan@mail.ustc.edu.cn (H. Cao), itqli@cityu.edu.hk (Q. Li), qty@whu.edu.cn

(T. Qian).

mailto:cheneh@ustc.edu.cn
mailto:caohuan@mail.ustc.edu.cn
mailto:itqli@cityu.edu.hk
mailto:qty@whu.edu.cn

E. Chen et al. / Information Sciences 178 (2008) 1498–1518 1499
important relationship between network alarm signals in the form of frequent telecommunication alarm
sequences, acquiring the information for medical diagnosis or preventive medicine by identifying frequent tem-
poral patterns of symptoms and diseases exhibited by patients, and improving hyperlinked structure of e-com-
merce websites to promote the sales with frequent user browsing patterns discovered from web server logs [6].
However, early algorithms for mining frequent sequential patterns lack user-controlled focus in the pattern min-
ing process, thus only a small part of the large number of returned sequential patterns is actually of interest to the
users. As pointed out in [6], this kind of unfocused approach to sequential pattern mining suffers from the draw-
backs of disproportionate computational cost for selective users and overwhelming volume of potentially use-
less results. Indeed, if user-defined constraints can be pushed into the mining process, we can not only improve
mining efficiency but also make the discovered patterns meet user requirements better. Recently, a number of
different kinds of constraints have been proposed for different applications. The typical examples of these con-
straints are item constraint, aggregate constraints, regular expression constraints, duration constraints, gap con-
straints, aggregate constraints, average value constraints [12].

Among the proposed constraints, aggregate constraints are used to express user requirements on the aggre-
gate of items in a pattern. For example, a Max_Min constraint is used to express the requirement that the max
item’s value or the min item’s value in a given sequence has to be in a certain range, and a sum constraint with-

out negative values is used to denote that the sum of all items’ values of a given sequence has to be in a certain
range while all values are not negative. The above types of aggregate constraints are in fact easy to deal with
and have available effective methods to deal with. Thus such types of aggregate constraints are called simple
aggregate constraints. However, there exists another type of aggregate constraints which is more useful and,
meanwhile, more difficult to deal with. For example, a marketing analyst may be interested in any sequential
pattern whose average price of the contained items is over $100, which is actually an average value constrain

especially useful for analyzing the retail order sequences. However, such a commonly used constraint is diffi-
cult to deal with and there are few relevant algorithms existing. Another example of aggregate constraint ben-
eficial to marketing analysis is the sum constraint with negative values which is also difficult to be pushed into
the process of mining the desired frequent sequential patterns.

These aggregate constraints which are common but more difficult to deal with are called tough aggregate
constraints [12]. In this paper, we focus on tough aggregate constraint-based sequential pattern mining. First,
let us introduce these two constraints in detail. Suppose that every item of each sequence in a given sequence
database is associated with a negative or positive value, the sum constraint with negative values requires that the
sum of every item in a desired sequential pattern should not be less than a given constant value. For instance,
when mining telecommunication alarm sequences, we may want to assign those interesting items positive val-
ues and give the others negative values, thereby finding more important patterns via a sum constraint with neg-

ative values. Table 1 gives another example to show a sum constraint with negative values. Here, every
sequence records the information of a football player’s performance in one round of match. An item denotes
an action such as goal, dangerous pass, assist, foul, offside, getting yellow card or red card. Each action is asso-
ciated with a weight. In particular, the action of goal may be assigned with the highest weight 3, and the action
of getting red card is of the lowest weight �3. An element records a player’s performance in a period of time,
and a match is divided into four sessions. In Table 1, the first sequence says that the player Ballack kicked a
goal and made a misplay in the first session of the match, and had a dangerous pass in the second session. In
the third session, he had an assist. There is no record of the fourth session because he had left the playing field
during the third session. In order to analyze the player’s performance in different segments, a professional
Table 1
A sequence database of football player’s performance in one round of match

Sid Sequence

Ballack h(goal.3,foul.-1)(dangerouspass.1) (assist.2)i
Kaka h(yellow card.-2) (assist.2) (offside.-1)i
Zidane h(misplay.-1)(dangerous pass.1)(redcard.-3)i
Viera h(goal.3)(dangerous pass.1) (dangerouspass.1) (red card.-3)i
Lampard h(yellowcard.-2)(shoot.1,assist.2)(misplay.-1)i

Table 2
A sequence database that records the customers’ retail orders

Sid Sequence

Lee h(pen.$10, battery.$1) (bedsheet.$5)i
James h(pen.$10)(bedsheet.$5, shirt1.$25, shirt2.$30)i
Lily h(bedsheet.$5)(skirt1.$50)(shoe1.$100)i
Sabrina h(skirt1.$50)i

1500 E. Chen et al. / Information Sciences 178 (2008) 1498–1518
coach may want to find those patterns1 whose support is at least 2 and whose sum of weights has to be greater
than 0, which is actually an example sum constraint with negative values.

Similarly, given a sequence database, an average value constraint requires that, for every desired sequential
pattern, the average of all its items should not be greater or less than a given constant value. The average value
constraint is also very useful in applications. For example, consider the sequence database shown in Table 2.
The database records the retail orders of four customers and the value of every item corresponding to its price.
It is common that some retail organizations may like to get those sequences whose average price is higher than
a given threshold, which is in fact an average aggregate constraint. For example, if the constraint requires that
the average price of all items in the pattern is higher than $5, and that its support is not smaller than 2, then
<(pen.$10) (bedsheet.$5)>, <(skirt1.$50)> would be a targeted sequential pattern.

As mentioned above, compared with simple aggregate constraints, tough aggregate constraints are more
difficult to deal with. The first reason is that tough aggregate constraints, different from other classes of con-
straints, have different concrete forms and are hard to be tackled in a uniform way. This can be seen from the
above two examples. Another reason is that unlike some typical constraints, it is difficult for these constraints
to be directly used to prune useless candidate sequences. Compared with monotony and anti-monotony
constraint, tough aggregate constraints are a lot more complex and difficult to be used to prune useless
sequential patterns, because it is difficult to decide when to prune a pattern with this constraint. For example,
given a pattern <(pen.$10)> in Table 2 and a tough aggregate constraint that requires the average value of a
target pattern should be larger than 5, it is difficult to decide whether or not use <(pen.$10)> to construct
longer sequential patterns. In fact, though <(pen.$10)> satisfies the constraint, some of its super sequences
may violate the constraint, such as <(pen.$10) (battery.$1)>, and some of its super sequences may satisfy
the constraint as itself, such as <(pen.$10) (battery.$1) (bedsheet.$5)>. Given the difficulty of taking advantage
of tough aggregate constraint to prune useless sequential patterns, special designed pruning strategies are
needed to be formulated.

In this paper we demonstrate that these typical kinds of tough aggregate constraints can be transformed
into the same form and thus can be processed in a uniform way. So our first major contribution of this paper
is to construct a framework to deal with the constraints uniformly. As the second contribution, we present
more effective strategies than existing work for tough aggregate constraints. Different from existing work
on pruning useless candidate sequential patterns, our strategies use divide-and-conquer technique to process
candidate sequential patterns to avoid unnecessary checking. In addition, to prune useless sequential patterns,
a more optimized partition approach is proposed to reduce the space cost. Moreover, with our strategies, the
operations of removing unpromising items and counting the support of all items are performed in the same
scan. Thus compared with existing work, our proposed strategies can fully utilize the properties of tough
aggregate constraints by further exploiting the features of tough aggregate constraints. Last but not the least,
we provide a uniform algorithm framework for dealing with tough aggregate constraints using our strategies.
With these strategies, the resultant algorithm obtains better performance in terms of speed and space.

The rest of the paper is organized as follows: Section 2 introduces some related work about frequent sequen-
tial pattern mining. Section 3 introduces some background knowledge about sequential pattern mining, and
theoretically demonstrates that both the average value constraint and the sum constraint with negative values
can be processed using the same strategies. In Section 4, we present the framework of PTAC (sequential frequent

Patterns mining with Tough Aggregate Constraints), and describe our new strategies and the optimization
1 In fact, there are commercial companies that have provided the similar analyzing services for coaches in Europe.

E. Chen et al. / Information Sciences 178 (2008) 1498–1518 1501
scheme in detail. The experimental results and analysis are given in Section 5, and Section 6 concludes the paper
with a summary.

2. Related work

For frequent sequential pattern mining, most existing works can be classified into two categories. One cat-
egory is Apriori based algorithm. Its basic idea is to generate candidate sequential patterns by joining frequent
sequential patterns that have been found and then check their frequencies. Thus, the algorithm uses all i-length
patterns to generate (i + 1) – length patterns and expires if no candidates can be generated. These works
include GSP [15], Apriori-all [14], SPADE [19], MSPS [9] and FSPAN [5]. The main drawback of these algo-
rithms is that lots of useless candidates are generated, which dramatically increases the cost of main memory,
when the min_support is small. The other category is FP-growth based algorithm. Its basic idea is to partition
the original sequence database to smaller sub databases by some partition cells, and then to mine patterns in
these sub databases. Unless no new patterns can be found, the partition is recursively performed with the
growth of partition cells. These works include FreeSpan [8] and PrefixSpan [11]. There are mainly two advan-
tages of these algorithms. The first one is that they can avoid generating numerous candidate sequential pat-
terns and then decrease the cost of main memory. The second is that they reduce the searching space of mining
and thus increase the efficiency of mining sequential pattern.

There are some studies focusing on specific application of sequential pattern mining. Chang and Lee [4] and
Ho et al. [7] give solutions to mine sequential patterns over online data streams. In addition, in real life, the user
of sequential patterns mining always query more than once. In order to mine sequential patterns efficiently, some
information of the previous query is potentially useful. Ren and Zong [13] propose an algorithm called
MIFSPM, which takes advantage of the information from the previous query to increase the efficiency of current
query. Furthermore, some applications such as analysis of DNA sequences do not only focus on the frequency of
a given pattern in the sequence dataset, but also take interest in the pattern’s frequency in specific sequences. For
this problem, [17] introduces the concept of M-seqeunce and gives a solution for this problem based on M-seqeu-
ence. Also in the application of analysis of DNA sequences, sometimes the patterns are too long that most of
algorithms of sequential pattern mining have difficulty in finding them in an acceptable time. For this problem,
Disc-all [3] adopts DISC strategy and perform better than most of other algorithms when mining long patterns.

To deal with the problem of different constraint-based sequential pattern mining, much research has been
done, which can be classified into two categories. The first category studies how to deal with diverse con-
straints in a general framework. For example, in [12], a framework called Prefixgrowth is built based on a pre-
fix-monotone property. The framework can adopt different strategies for dealing with different constraints
while assuring its high performance at the same time. Under this framework, frequent sequential patterns
are found recursively in the projected database, and then those patterns satisfying the prefix-monotone con-
straint are output and used as new prefix to construct a new projected database. In this way, most constraints
can be effectively used to prune those undesired patterns as early as possible. The second category is to design
efficient mining algorithms to deal with the problem of specific forms of constraint-based sequential pattern
mining. For example, for the monotony constraint, ExAnte [1] exploits the pruning power of monotony con-
straints through a pre-processing step by iteratively pruning infrequent items first, and pruning the sequences
not satisfying the monotony constraints next.

For tough constraints, as we discussed above, they have different concrete forms and thus specific methods
should be designed to deal with different forms of tough constraints. For example, for MaxGap constraint, the
available work includes cSPADE [18], CBPSAlgm [2] and CCSM [10]. However, compared with MaxGap
constraint, much less work on the other important classes of tough constraints, especially the tough aggregate
constraint, has been done. The most related work for dealing with tough aggregate constraint-based sequential
pattern mining is the specific strategies proposed in PrefixGrowth [12]. For tough aggregate constraints which
lack prefix-monotone property, PrefixGrowth adopts specific strategies in order to take the advantage of the
specific properties of these constraints in the process of mining desired sequential patterns. To handle the aver-
age value constraints, it adopts two pruning rules: one is unpromising sequence pruning rule and the other is
unpromising pattern pruning rule, but the corresponding pruning strategies do not fully utilize the benefit of
the constraints. As for the sum constraints with negative values, no specific strategies have ever been studied.

1502 E. Chen et al. / Information Sciences 178 (2008) 1498–1518
3. Sequential pattern mining and tough aggregate constraints

In this section, we first briefly introduce some basic concepts about sequential pattern mining, and then the-
oretically analyze the tough aggregate constraints.

3.1. Sequential pattern mining

Let I = {i1, i2, . . . , im} be a set of items. An element is a subset of items and denoted as e = (e1, e2, . . . , ei)
where ek(k 2 [1, i]) represents an item in I. In an element, the same item can only occur at most once and we
assume that all items are sorted in alphabetical order. A sequence is an ordered subset of elements and denoted
as s = h s1, s2, . . .sji where sk(k 2 [1, j]) is an element. The same element can occur more than once in a
sequence. A sequence a = h a1, a2, . . . , ani is called a sub-sequence of another sequence b = h b1, b2, . . . , bmi
and b a super-sequence of a, denoted as a � b, if there exist integers 1 6 j1 < j2. . .jn 6 m such that a1 � bj1,
a2 � bj2, . . . , an � bjn. A sequence database S is a set of tuples where a tuple hsid, sequencei contains a sequence
and its ID. If a sequence a is a subsequence of f sequences in the tuples of S and f > m(a given constant value),
we say that a is frequent in S and m is the minimum support.

Let a be a sequence ha1, a2, . . . , ani, b be a sequence hb1, b2, . . . , bmi, where m 6 n. Sequence b is called a
prefix of a if and only if (1) bi = ai for i 6 m � 1; (2) bm � am; and (3) all the items in (am � bm) are alphabet-
ically sorted after those in bm. Given sequences a and b such that b is a prefix of a, a subsequence a 0 of
sequence a is called a projection of a w.r.t. prefix b if and only if (1)a 0 has prefix b and (2) there exists no proper
super-sequence a 0 of a 0 such that a 0 is a subsequence of a and also has prefix b. Let a 0 = he1, e2, . . . , eni be the
projection of a w.r.t. prefix b = he1, e2, . . . , em�1, em0i (m 6 n). Sequence c = hem00, em+1, . . . , eni is called the
suffix of a w.r.t. prefix b, denoted as c = a/b, where em00 = em � em 0. A projected database Sp of a sequence
database S w.r.t. prefix a is the set of tuples where every tuple hsid, suffixi includes its original sequence ID
and the suffix of a sequence in S w.r.t prefix a. Note that each tuple’s suffix is not empty, which means that
a suffix of a sequence in S w.r.t. prefix a can not be put into Sp if it is empty. More details about the back-
ground knowledge of sequential pattern mining can be found in [11].

3.2. Theoretical analysis

In fact, both the average value constraints and the sum constraints with negative values can be expressed in
a uniform way. To begin with, for a sum constraint with negative values, if an item’s value is positive, we can
say that it does positive contribution on the sum. Otherwise, we can say that it does negative contribution on
the sum. In this way, we can get the sum of a sequence through calculating the contribution of its items by an
appropriate method. More importantly, an average constraint is similar to a sum constraint with negative val-
ues from the following view: for an item whose value is greater than the constant value, we can regard that it
does positive contribution to the required average value. For the purpose of designing a uniform strategy to
deal with these different forms of tough constraints, we first give two definitions as follows.

Definition 1. Let s be a sequence and c be a constant value, and suppose that every item i of s is associated with
a value vi. The positive contribution of item i w.r.t. c is max(vi � c, 0), the negative contribution of item i w.r.t. c
is min(vi � c, 0), and the total contribution of item i w.r.t. c is vi � c.

Definition 2. Let s be a sequence and c be a constant value, and suppose that every item i of s is associated with
a value vi. The positive contribution, negative contribution and total contribution of sequence s w.r.t. c are,
respectively, the sum of all its items’ positive contributions, negative contributions and total contributions

w.r.t. c.

For instance, let us consider the sequence database shown in Table 3. In the table each item is represented
by its associated value. Let constant value c be 25. The negative contribution of Sequence 1 w.r.t. c is �30,
while its positive contribution w.r.t. c is 25 and its total contribution is �5. For the sake of brevity, we denote
positive contribution w.r.t. c for sequence s as s.pc(c). Similarly negative contribution and total contribution
w.r.t. c for sequence s are, respectively, denoted as s.nc(c) and s.tc(c).

Table 3
An example of sequence database

Sid Sequence

1 h(50, 20)(20)(20, 10)i
2 h(20)(10, 50)i
3 h(30, 20)(30, 20)(30, 20, 10)(45)i
4 h(30) (20, 10)i

E. Chen et al. / Information Sciences 178 (2008) 1498–1518 1503
Theorem 1. Given a sequence s and a constant value c, let s.sum be the sum of the values of all items in s, s.length

be the length of s. We say that s satisfies the average value constraint s.sum/s.length P c, if and only if
s.tc(c) P 0.

Proof. Because sequence s satisfies the average value constraint s.sum/s.length P c, we have
2 To
s:sum P c� s:length() s:sum� c� s:length P 0()
Xs:length

i¼1

ðthe ith item’s value-cÞP 0() s:tcðcÞP 0 �
Analogously, it is also true that s satisfies the average value constraint (s.sum/s.length) 6 c, if and only if
s.tc(c) 6 0. In the following all the conclusions are also true in the case that ‘‘P’’ (or ‘‘6’’) is substituted simul-
taneously by ‘‘6’’ (or ‘‘P’’). For succinctness, we do not enumerate them here case by case.

Theorem 2. Given a sequence s containing some items associated with negative values and a constant value c, let
s.sum be the sum of the values of all items in s. We say that s satisfies the sum constraint with negative values

s.sum P c, if and only if s.tc(0) P c.

Theorem 2 is easy to prove because s.sum equals to s.tc(0). Therefore, for both the average value constraint
and the sum constraint with negative values, we can use a uniform strategy to deal with them, i.e., for every
desired sequential pattern p, its total contribution w.r.t c1 is not smaller than c2, i.e. p.tc(c1) P c2 where both c1

and c2 are the given constant values.

4. PTAC – a new algorithm for the tough aggregate constraints

In this section, we firstly give an overview of the framework of our proposed algorithm PTAC. Secondly,
we discuss how to improve the pruning efficiency, and then introduce our new strategies for dealing with the
tough aggregate constraints. At the end, some further optimization issues of these strategies are considered.

4.1. The framework

PTAC is a prefix-growth based algorithm for the tough aggregate constraints. Fig. 1 shows how PTAC
works. After finding all frequent items, PTAC constructs projected databases w.r.t these frequent items as pre-
fixes. For an a-projected database, PTAC finds all frequent and promising items and then partitions them into
several subsets, which are at different promising levels. We say that some items in a sequence are promising
only if they belong to some patterns that satisfy the constraint. For each subset, we use specific strategies
to deal with them and extend truly promising items as new prefixes. Then a projected database is constructed
for every new prefix and we recursively invoke PTAC.2

Fig. 2 presents the pseudo code of PTAC. The most important part of PTAC is pushing constraints into the
process of finding promising and frequent items in the a-projected database. Another important part is how to
divide and conquer all candidate items. In PTAC, we always try to extend the most promising items first, and
then check other items with the important information obtained from the previous mining stage, therefore
improve the performance of the PTAC algorithm, the pseudo database technology [8] can be used in practice.

Fig. 1. The process of executing PTAC.

Input: sequence database: SDB; minimum support:
min_support; and the constraint C

Output: all sequential patterns satisfying the constraint C.

Method: call PTAC(<>, SDB, G);

//G is a data structure to record the information obtained in
the previous mining stage

procedure PTAC(a, S|a, G)
Var: Set, Set 1, Set 2, ……Setk, item, a’;

1. Set = GetAllValidFrequentItems(a, S|a)
2. partition Set into Set 1, Set 2, ……Setk

3. for each Seti

4. for each promising item in Seti

5. a’= ExtendPrefix(a, item)
6. modify G if necessary
7. call PTAC (a’, S|a’, G)
8. end for
9. end for

10. end procedure

Fig. 2. The pseudo Code of PTAC Framework.

1504 E. Chen et al. / Information Sciences 178 (2008) 1498–1518
avoiding constructing projected databases for those useless items. In the following section we give two specific
strategies for dealing with these two issues.

4.2. Two new strategies

Generally speaking, in PrefixGrowth-based algorithms for sequential pattern mining, the cost of using
tough aggregate constraints to prune invalid items comes from the following two aspects:

(1) checking all candidate sequences;
(2) constructing the projected database for each new pattern serving as a new prefix.

In order to reduce these costs, we propose two corresponding new strategies. For the ease of description of
our strategies we first give some formal definitions related to the promising items.

Given an a-projected database, let x be an item belonging to suffix b, and the tough aggregate constraint
p.tc(c1) P c2, where p is the desired pattern and p.tc(c1) stands for the total contribution w.r.t c1. Pre.x rep-
resents the sequence obtained by removing x and all the items behind x from sequence b. For example, for a
sequence h(20)(30, 10)i, Pre.30 is h(20)i, and (b-Pre.x) represents the sequence constructed by removing Pre.x
from b.

E. Chen et al. / Information Sciences 178 (2008) 1498–1518 1505
Definition 3. If [a.tc(c1) + x.tc(c1) + (b/x).pc(c1)] P c2, x is called promising.

Under the condition that x is promising, we can certainly find those items behind x with which a can be used
to extend them into a valid pattern.

Definition 4. If [a.tc(c1) + (b � Pre.x).pc(c1).] P c2, x is called approximately promising.

Under the condition that x is approximately promising, there must exist certain items behind x that can be
used to construct a valid pattern with x and a, except that when x.tc(c1) is negative and a.tc(c1) is negative. In
the latter case x. tc(c1) has not been counted, so it is possible that x is not promising.

Definition 5. If [a.tc(c1) + (b � Pre.x).nc(c1)] P c2, x is called extremely promising.

Under the condition that x is extremely promising, all the items behind x can be used to construct a valid
pattern with x and a.

For example, let us consider the (20)-projected database of Table 3. The projected database is illustrated in
Table 4.

Notice that the underscore in the suffix h(_10)i means item 10 is in the same element as the prefix h(20)i.
Given a constraint p.tc(15) P 0 which means that c1 = 25 and c2 = 0, the first item (20) in Suffix 1 is approx-
imately promising, since [h20i.tc(15) + h(20)(20, 10)i.pc(15)] = [5 + 10] = 15i0. Meanwhile it is also promising

and extremely promising, since [h20 i.tc(15) + (20).tc(15) + h(20, 10)i.tc(15)] = 10 > 0 and [h20i.tc(15) +
h(20)(20, 10)i.nc(15)] = 0. Similarly, the item (10) in Suffix 2 is approximately promising and promising but
not extremely promising.

Let us start from analyzing how PrefixGrowth [12] decides whether an item is promising with tough aggre-
gate constraints. Given a tough aggregate constraint p.tc(c1) P c2, this constraint is an average value con-
straint when c2 is 0 according to the definition in Section 2.2, and it is a sum constraint with negative
values when c1 is 0. Moreover, let s.valid_sum be the sum of the values of all the valid items of a sequence
s, and s.n be the number of the occurrences of them in s. Here, we say that a sequence s is valid if it satisfies
the given constraint, and an item x is valid if it satisfies the given constraint when we treat it as a sequence
consisting of only one item. The decision of whether an item is promising with tough aggregate constraints
in PrefixGrowth can be described with our proposed definitions as follows: with an average value constraint
p.tc(c1) P 0, for an invalid item x of s, if (x.value + s.valid_sum)/(s.n + 1) < c1, x is considered as unpromising
and should be removed; with a sum value constraint p.tc(0) P c2, if (x.value + s.valid_sum) < c2, for an invalid
item x of s, x is also considered as unpromising and should be removed. This assertion is self-evident. In fact,
we can design a uniform strategy to effectively decide whether an item should be removed on the basis of the
concept of item contribution defined in Section 2.2.

Theorem 3. Given a sequence s with a tough aggregate constraint p.tc(c1) P c2, an item x in s must be invalid and

thus can be removed safely if (x. tc(c1) + s.pc(c1)) < c2.

Proof. (1) For the average value constraints, c2 is 0. According to [12], we have (x.value + s.valid_sum)/
(s.n + 1) < c1. Thus ðx:valueþ s:valid sumÞ < c1 � ðs:nþ 1Þ. It follows that ðx:valueþ
s:valid sum� c1 � ðs:nþ 1ÞÞ < 0, i.e., (ðx:value� c1Þ þ ðs:valid sum� c1 � ðs:nÞÞÞ < 0. So we have
(x.tc(c1) + s.pc(c1)) < 0.

(2) For the sum constraints with negative values, c1 is 0. Since (x.value + s.valid_sum) < c2 thus we also
have (x.tc(0) + s.pc(0)) < c2. h
Table 4
(20)-projected database based on the sequence database in Table 3

Sid Suffix

1 h(20)(20, 10)i
2 h(10, 50)i
3 h(30, 20)(30, 20, 10)(45)i
4 h(_10)i

1506 E. Chen et al. / Information Sciences 178 (2008) 1498–1518
Theorem 4. For a suffix b in thea-projected database with a tough aggregate constraint p.tc(c1) P c2, an invalid

item x in b can be removed safely if (a.tc(c1) + x.tc(c1) + (b/x).pc(c1)) < c2.

Proof. (1) For the average value constraints, c2 = 0. Since (x.value + (ab).valid_sum)/(ab.n + 1) < c1, thus
ða:valid sumþ x:valueþ b:valid sumÞ < c1ða:nþ 1þ b:nÞ. Due to that a.valid_sum 6 a.sum and
a.n 6 a.length, we have
ða:sumþ x:valueþ b:valid sumÞ < c1ða:lengthþ 1þ b:nÞ
() ½a:sumþ x:valueþ b:valid sum� c1ða:lengthþ 1þ b:nÞ� < 0

() ½ða:sum� c1 � a:lengthÞ þ ðx:value� c1Þ þ ðb:valid sum� c1 � b:nÞ� < 0

() ða:tcðc1Þ þ x:tcðc1Þ þ b:pcðc1ÞÞ < 0

() ða:tcðc1Þ þ x:tcðc1Þ þ ðb=xÞ:pcðc1ÞÞ < 0
(2) For the sum constraints with negative values, c1 = 0. Since (x.value + (ab).valid_sum) < c2, thus
(a.valid_sum + x.value + b.valid_sum) < c2. So (a.tc(0) + x.tc(0) + b.pc(0)) < c2. Due to that
b.pc(0) 6 (b/x).pc(0), we have (a.tc(0) + x.tc(0) + (b/x).pc(0)) < c2. h
With these two theorems we can assert that an item can be safely removed if it is unpromising. Furthermore,
both the average value constraints and the sum constraints with negative values can be processed in a uniform
way.

4.2.1. Pruning candidate sequences

When tackling the problem of constraint-based sequential pattern mining, we should prune the unprom-
ising candidate sequences as early as possible so that the cost of checking all candidate sequences can be
reduced as much as possible. Here, ‘‘candidate sequences’’ refer to those potentially frequent patterns
obtained by extending an old pattern with frequent items in PatternGrowth-based algorithms. For example,
in Table 3, we find that item (20), viewed as an old pattern, is frequent. Considering its (20)-projected data-
base illustrated in Table 4, we find that both items (20) and (10) are frequent, so both (20) (10) and (20) (20)
are candidate sequences. For a PatternGrowth-based algorithm, if unpromising items are pruned when
counting all items’ supports in the a-projected database, we can assure that all the items used to extend a
are both frequent and promising. Therefore we can avoid generating and checking those unpromising
sequences. However, it is not efficient to check all items one by one. In fact, for many items in a projected
database, it is possible for us to decide, on the basis of the features of some other items and the prefix,
whether they can be removed or not without checking. Therefore in order to prune those unpromising items
effectively, we adopt divide-and-conquer to deal with these two situations separately, depending on whether a
is valid or not.

For the a-projected database, our strategy is as follows: if a is invalid, then for every suffix b, we check all its
items from the first to the last. While an item x of suffix b is approximately promising, x is counted if it is also
at the level of promising; otherwise item x and all the items behind it are omitted. On the other hand, if a is
valid, then for every suffix b, its all valid items are counted and its invalid items are checked from the first to
the last: when an invalid item x is extremely promising, we count it in along with all the items behind it; other-
wise we count it in only if it is promising. In this way we avoid the checking of the valid items in the case that
the prefix is valid.

For example, considering the (20)-projected database illustrated in Table 4 with the constraint p.tc(25) P 0,
we know that the prefix (20) is invalid and its total contribution is �5. For h(20)(20, 10)i, we see that the first
item (20) is not approximately promising because the sum of the total contribution of prefix (20) and the posi-
tive contribution of h(20) (20, 10)i equals to �5. So it is unnecessary for us to check all the remaining items,
i.e., (20) and (10) in (20, 10) of Sequence 1. Table 5 shows in italics those items that are avoided from checking.
If the constraint is p.tc(15) P 0, the total contribution of the prefix is 5. For h(20) (20, 10)i, we can see that the
first (20) is extremely promising because the sum of the negative contribution of h(20)(20, 10)i and the total
contribution of the prefix is 0. As a result, we can count all the remaining items without checking.

Table 5
Items (in italics) avoided from checking for the given constraint p.tc(25) P 0

Sid Suffix

1 h(20) (20, 10)i
2 h(10, 50)i
3 h(30, 20) (30, 20, 10)(45)i
4 h(_10)i

E. Chen et al. / Information Sciences 178 (2008) 1498–1518 1507
4.2.2. Pruning new patterns before constructing projected databases

Though all frequent items that we get are promising, the new patterns obtained by extending an old pattern
(i.e. prefix) with them may be unpromising. For example, consider again the sequence database shown in
Table 3 and its (20)-projected database illustrated in Table 4. Given an average constraint p.avg P 25, from
the (20)-projected database we can find that (10) is a frequent and promising item and, plausibly, we should
generate a new pattern h(20) (10)i as a new prefix and construct a projected database for the new prefix. How-
ever, we find that the new pattern can not be the prefix of any sequential pattern, so the construction of its
projected database and the pattern mining from the projected database is absolutely a waste. To solve this
problem on the basis of PrefixGrowth, we first describe and prove a new theorem below.

Theorem 5. Given a tough aggregate constraint and a-projected database, for any item x that violates the

constraint, if {ax} violates the constraint and there is a valid sequential pattern {axb}, then there must be a valid

sequential pattern {ab 0} so that the first item of b 0 is a valid item and b 0 � b.

Proof. Suppose that b is denoted as hI1, I2, I3, . . . , Ini, where Ii(i = 1, 2, . . . , n) is an item. Let
Sk

i¼1hI ii ¼
hI1; I2; . . . ; Iki. It is apparent that for a valid sequence s, if an invalid item I is removed from s, then the result
sequence (s � hIi) is still valid. This leads us to the following observation:

• There must exist at least one valid item in b: Assume otherwise (i.e. there does not exist a valid item Ij in b),
then ðhaxbi �

Sn
i¼1hI iiÞ) is valid, which means that haxi is valid. This obviously contradicts with the

assumption.

So without losing generality, let Ik be the first valid item in b. From the above observation we know that
ðhaxbi �

Sk�1
i¼1 hI ii � hxiÞ is valid. Let b0 ¼ b�

Sk�1
i¼1 hI ii, we can conclude that Theorem 5 is true. h

Based on Theorem 5, we present here a strategy for pruning new patterns with tough aggregate constraints
as follows. In an a-projected database, we find all frequent and promising items and categorize them into three
classes: (1) the set of the valid items (denoted as I1); (2) the set of the items that are invalid but can construct a
valid sequential pattern with a (denoted as I2); and (3) the set of the items that are invalid and can not con-
struct a valid sequential pattern with a (denoted as I3). Then our strategy works as follows: firstly, we extend a
with items in I1 and construct projected databases for new patterns. When mining these projected databases, if
we find a frequent and valid pattern habi while the first item of b is valid, we check whether there exists certain
item xi that belongs to I3 and can be added to habi to make the result pattern haxibi valid. If so, all such items
will be marked. After finding all sequential patterns habi in these projected databases, a will be extended with
the items belonging to I2 to obtain new patterns as new prefixes, and then for each new prefix its corresponding
projected database is constructed. Now, in these newly constructed projected databases, we directly mine
sequential patterns without going through the kind of checking as we do for the items in I1. Finally, we extend
a with the marked items belonging to I3, thus we can avoid constructing unpromising patterns and corre-
sponding (useless) projected databases.

PrefixGrowth [12] adopts a similar strategy. But it simply categorizes the candidate items into two classes:
the valid items and invalid items. As a result, if we find a frequent and valid pattern habi and the first item of b
is valid, we have to check all the invalid items including those that are apparently promising. Even worse,
when adopting this kind of strategy, we need a data structure to record the information of marked items
for every recursive level. Furthermore, PrefixGrowth requires recording at every recursive level the informa-
tion of the items that need not to be checked, which incurs a lot of space and also the performance is lowered.

1508 E. Chen et al. / Information Sciences 178 (2008) 1498–1518
Let us consider the sequence database shown in Table 3 again and try to mine all the desired sequential
patterns by PTAC with both strategies. Assume that the adopted constraint is p.tc(25) P 0 and the min_sup-
port is 2.

Step 1: Scan the database once and we find (10), (30) as the frequent and promising items with the first strat-
egy. Then (30) and (10) are categorized into I1 and I3, respectively.

Step 2: According to the second strategy, we firstly process (30)-projected database as shown in Table 6.
With the first strategy, we find the only frequent and promising item (20). With the second strategy, we try
to check whether h(30)(10)(20)i is valid. Obviously it is not, so (10) for the original sequence database in Table
3 is not marked.

Step 3: According to the second strategy, (20) is classified into I2 and no items can be classified into I1 nei-
ther I3. Then h(30)(20)i-projected database is constructed as shown in Table 7. In this database, no item is both
frequent and promising.

Step 4: Now we go back to step 1. Since (10) in the original database is not marked, its projected database is
not constructed. The mining process terminates, and the final result is h(30)(20)i.

Fig. 3 gives the pseudo code of GetAllValidFrequentItems(a, Sja) which is the most important function of
PTAC. Based on that, Fig. 4 illustrates the pseudo code of PTAC which adopts all foregoing strategies. Here
Table 6
(30)-projected database based on the sequence database of Table 3

Sid Suffix

3 h(_20)(30, 20)(30, 20, 10)(45)i
4 h(20, 10)i

Input: prefix a; S|a, the projected database of a
Output: promising and frequent items in the a-projected
database
procedure GetAllValidFrequentItems(a, S|a)
var: item, seq;

1. if (a is invalid) then
2. for each seq in S|a
3. for each item in seq
4. if (item is approximately promising) then
5. if (item is promising) then
6. call Count(item)
7. else break
8. endfor
9. endfor
10. else for each seq in S|a
11. for each item in seq
12. if (item is valid) then call Count(item)
13. else if (item is extremely promising) then
14. call Count(items behind item);
15. break
16. else if (item is promising) then
17. call Count(item)
18. end for
19. endfor

Fig. 3. The pseudo code of GetAllValidFrequentItems.

Table 7
h(30)(20)i-projected database based on the sequence database of Table 3

Sid Suffix

3 h(30, 20, 10)(45)i
4 h(_10)i

Input: sequence database: SDB; minimum support:
min_support; and the aggregate constraint Ca

Output: all sequential patterns that satisfy the constraint Ca

Method: call PTAC (<>, SDB, G);

procedure PTAC (a, S|a, G)
// a is prefix; S|a is the projected database of a

var: item, Set, ValidItems, IPItems, ICItems, a’

1. Set = GetAllValidFrequentItems(a, S|a)
2. Divide Set into ValidItems, IPItems, ICItems
 3. Add ICItems into G;
4. for each item in ValidItems
5. a’ = ExtendPrefix(a, item);
6. if (a’ satisfies Ca) then
7. { call WriteIntoPatternTbl (a’);
8. call Modify(a’, G); }
9. call PTAC (a’, S|a’, G)
10. endfor
11. for each item in IPItems
12. a’ = ExtendPrefix(a, item)
13. if (a’ satisfies Ca) then
14. call WriteIntoPatternTbl(a’);
15. call PTAC (a’, S|a’, G)
16. endfor
17. for each item in G and ICItems)
18. if (item is marked) then
19. { a’ = ExtendPrefix(a, item);
20. if (a’ satisfies Ca) then
21. call WriteIntoPatternTbl(a’);
22. call PTAC(a’, S|a’, G)}
23 endfor
24. Remove ICItems from G
25. end procedure

Fig. 4. The pseudo code of PTAC for dealing with the tough aggregate constraint.

E. Chen et al. / Information Sciences 178 (2008) 1498–1518 1509
we briefly explain some newly introduced variables and functions: G is a data structure for recording which
invalid and unpromising items have been marked, and it is empty at the beginning. IPItems denotes all Invalid

but Promising items and, correspondingly, ICItems denotes all the items which are Invalid and need to be
Checked. The function Modify(newPrefix, GlobalICitemInfo) finds and marks those IC items that can be used
to construct valid sequential patterns with newPrefix in GlobalICitemInfo.

4.3. Room for further optimization

In our above-presented strategy for pruning candidate sequences, for every item x to be checked in
sequence s, it is needed to compute the positive contribution or negative contribution of the suffix of s with
respect to (w.r.t.) x, so as to decide whether it is necessary to count x or not. If these contribution values
are computed and recorded in advance, they can be directly used when checking items and thus the efficiency
of the algorithm can be improved. For this purpose, two data structures called GPCset (Global Positive Con-
tribution) and GNCset (Global Negative Contribution) can be introduced. GPCset is a 1-dimension vector.
Assume that si is the ith sequence of the original sequence database, xj is its jth item and MaxLength is the
max length of all sequences, GPCset[(i � 1) * MaxLength + j � 1] records the positive contribution of the suf-
fix of si w.r.t. xj�1. Similarly GNCset is also a 1-dimension vector and its element GNCset[i][j] stores the neg-
ative contribution of the suffix of si w.r.t. xj�1. Every element of GPCset and GNCset is computed in the step
of preprocessing the sequence database. GPCset and GNCset can be repeatedly used even when the min_sup-
port has been changed. Certainly, if the constant value c of the aggregate constraint changes to c 0, GPCset and
GNCset for c 0 need to be computed again.

1510 E. Chen et al. / Information Sciences 178 (2008) 1498–1518
5. Experiment and analysis

5.1. Experimental datasets

To evaluate the performance of the (plain) PTAC, the optimized version of PTAC and PrefixGrowth [12], we
have conducted extensive experiments both on two synthetic datasets and a real dataset. The formers are gen-
erated by the IBM sequence generator [14], including (1) the sequence dataset C5T4S2.0I1.25D50K containing
50,000 sequence records, whose average length is 5, with each element averagely having 4 items, and the size of
the item set being 5000; (2) the long sequence dataset C10T10S2.0I1.25D10K containing 10,000 sequential
records whose average length is 100, and the size of the item set is 5000. In addition, for scalability testing pur-
pose, we also generate the datasets C5T4S2.0I1.25D5K, C5T4S2.0I1.25D10K, C5T4S2.0-I1.25D20K,
C5T4S2.0I1.25D35K, which have the same settings as C5T4S2.0I1.25D50K except the number of sequences.
The sizes of these four datasets are 5000, 10,000, 20,000 and 35,000, respectively. The real dataset is 10,000
VIP customers’ purchase records of a supermarket. Each sequence represents a customer’s purchase record
in the March of 2006, an element represents the customer’s purchase record in a week and an item represents
a kind of commodity with its price as value. In this dataset, each sequence has just four elements, and 1008 kinds
of commodity have been recorded.

In order to impartially evaluate the performance of these algorithms, an identical bottom level implemen-
tation is used to represent sequences and the same preprocessing is performed. In these experiments, we adopt
the same constraint that the total contribution w.r.t. c of every desired sequential pattern has to be no smaller
than 0. Because this constraint is equivalent to an average value constraint and c is the minimum average value
of a target sequential pattern, we give constant c a meaning name, i.e. minimum average value (minAvg for
short). For the synthetic datasets, the value of an item is set to be
item:value ¼ item:subscript Mod100þ 1:
From this we know that the average value of a pattern must be an integer in the range of [1, 100]. So in our
experiments minAvg should be less than 100.

5.2. Experimental platform

All experiments were performed on a PC with Pentium IV 2.0 GHz CPU and 512M main memory running
Microsoft Windows XP Professional Edition. PTAC, its optimization, and PrefixGrowth are all performed
using Microsoft Visual C++ 6.0 and Microsoft SQL Server 2000.

5.3. Experiments on synthetic datasets

In this subsection, we report our experiments on the two synthetic data sets and analyze the results.

5.3.1. Comparing the running time and scalability

Fig. 5 illustrates the comparison of the efficiency of PTAC, its optimization (optimized version), and Pre-
fixGrowth with a constant minimum support 0.2% and variable minAvg values. From the figure we can see
clearly that both PTAC and its optimization outperforms PrefixGrowth when the minimum average value
minAvg changes from a very small value 5 to a very large value 95, and their performance are almost the same
when the minimum average value approaches to its maximum value 100. When the minimum average value is
extremely big, the number of sequential patterns that satisfy the constraint is very small. Therefore most of the
candidate sequences and items can be pruned easily. Under this condition, PrefixGrowth can also mine the
desired sequential patterns effectively.

As mentioned above, the performance comparison is meaningless when the minimum average value is too
large. So we perform the experiments to evaluate the performance of PTAC and its optimization with small or
medium minimum average values minAvg. Fig. 6 and 7 present the performance of PTAC, its optimization
and PrefixGrowth on the same dataset with the constant minimum average value set to be 5 and 50, respec-
tively, and the min_support varies form 0.2% to 1%. From these two figures we can see that both PTAC and its

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

minAvg

tim
e(

s)

PrefixGrowth
PTAC
Optimization

Fig. 5. The performance of PTAC, its optimization and PrefixGrowth on dataset C5T4S2.0I1.25D50K with the minimum support 0.2%.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

minSupport(%)

tim
e(

s)

PrefixGrowth
PTAC
Optimization

Fig. 6. The performance of PTAC, its optimization and PrefixGrowth on dataset C5T4S2.0I1.25D50K with the minimum average value 5.

E. Chen et al. / Information Sciences 178 (2008) 1498–1518 1511
optimization perform better. Moreover, compared with that of PrefixGrowth, the smaller the minimum aver-
age value is, the better the performance of PTAC and its optimization is.

Fig. 8 shows the performance of PTAC, its optimization and PrefixGrowth with the minimum support fixed
to be 1% and variable minAvg values on long sequence dataset C10T10S2.0I1.25D10K. The result shows that
PTAC and its optimization still largely outperform PrefixGrowth when tackling long sequences.

In the experiment on C10T10S2.0I1.25D10K, we also mainly care about the performance of PTAC and its
optimization with small or medium minimum average values minAvg. Fig. 9 presents the performance of
PTAC, its optimization and PrefixGrowth on C10T10S2.0I1.25D10K. The constant minAvg is set to be 5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

minSupport(%)

tim
e(

s)

PrefixGrowth
PTAC
Optimization

Fig. 7. The performance of PTAC, its optimization and PrefixGrowth on dataset C5T4S2.0I1.25D50K with the minimum average
value 50.

10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

minAvg

tim
e(

s)

PrefixGrowth
PTAC
Optimization

Fig. 8. The performance of PTAC, its optimization and PrefixGrowth on dataset C10T10S2.0I1.25D10K with the minimum support 1%.

1512 E. Chen et al. / Information Sciences 178 (2008) 1498–1518
and the min_support varies from 1% to 5%. From this figure we can see that both PTAC and its optimization
perform better. Moreover, compared with that of PrefixGrowth, the smaller the minimum average value is, the
better the performance of PTAC and its optimization is. Limited by the space, we omit the experimental
results when the constant minimum average values are medium. In fact, under the same condition, it is similar
to the result obtained on C5T4S2.0I1.25D50K.

To evaluate the scalability of PTAC, its optimization and PrefixGrowth, we perform experiments on the data-
sets C5T4S2.0I1.25D5K, C5T4S2.0I1.25D10K, C5T4S2.0I1.25D20K, C5T4S2.0I1.25D35K and C5T4S2.0I1.
25D50K, respectively. The min_support is set to be 0.2% and the minAvg is set to be 5. Fig. 10 shows the

1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

800

minSupport(%)

tim
e(

s)

PrefixGrowth
PTAC
Optimization

Fig. 9. The performance of PTAC, its optimization and PrefixGrowth on dataset C10T10S2.0I1.25D10K with the minimum average
value 5.

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

110

size of data set(K)

tim
e(

s)

PrefixGrowth

PTAC
Optimization

Fig. 10. The scalability of PTAC, its optimization and PrefixGrowth on dataset C5T4S2.0I1.25.

E. Chen et al. / Information Sciences 178 (2008) 1498–1518 1513
performance of PTAC, its optimization and PrefixGrowth when the size of dataset increases form 5K to 50K.
From Fig. 10 we can see that even though the running time of all three algorithms increases almost linearly, the
time cost of PrefixGrowth is always larger and increases faster than those of the others. It means that the larger
the sequence database size is, the better PTAC and its optimization perform, which implies that our methods
have better scalability than that of PrefixGrowth. Moreover, the time cost of PTAC increases a little faster than
that of its optimization and becomes higher than the latter when the dataset size reaches to a certain degree,
which means that the optimization of PTAC is more effective in dealing with a larger sized dataset.

1514 E. Chen et al. / Information Sciences 178 (2008) 1498–1518
5.3.2. Comparing the effectiveness of pruning strategies and the cost of space

The number of checked items reduced is an important factor used to evaluate the effectiveness of a pruning
strategy. A well-designed pruning strategy should avoid checking useless items as many as possible. To eval-
uate the pruning effectiveness of PTAC and PrefixGrowth (because the optimized PTAC adopts the same
strategies as the plain PTAC, its pruning effectiveness is the same as the plain PTAC), we perform experiments
on the datasets C5T4S2.0I1.25D5K, C5T4S2.0I1.25D10K, C5T4S2.0I1.25D20K, C5T4S2.0I1.25D35K and
C5T4S2.0I1.25D50K, respectively. Fig. 11 shows, with the constant min_support 0.2%, minAvg 5 and the var-
iable number of sequences, the number of the checked items when pruning candidate sequences under PTAC
and PrefixGrowth. The figure illustrates that the number of the checked items under both PTAC and Prefix-
Growth increase linearly with the increase of the sequence database size. However, compared with that under
PrefixGrowth, the number of the checked items under PTAC increases much more slowly. It is due to that our
strategies avoid lots of unnecessary checking for the item promisingness, which confirms that our strategies of
pruning candidate sequences are more effective than the counterparts in PrefixGrowth.

When mining the projected databases whose prefixes are constructed with those items with the highest prom-
ising level, both PrefixGrowth and PTAC have an associated data structure to store some promisingness infor-
mation for not yet mined invalid items. In PTAC, the associated data structure is GlobalICitemInfo, and we call
the total space of this data structure occupied in all iterative processes as total associated space. For instance, the
algorithm iterates five times and the spaces of the associated data structure occupied in these iterative steps are,
respectively, 4KB, 3KB, 2KB, 1KB, 0.8KB. Thus the total associated space is 10.8KB. Because we adopt differ-
ent strategies to partition candidate items under their promising level, for each iterative process, the size of this
associated data structure is smaller than that under PrefixGrowth. Therefore, the total associated space under
PTAC should also be smaller than that under PrefixGrowth in the same environment. In fact, our experiment
validates our assumption, as Fig. 12 shows. Experiments are performed on the datasets C5T4S2.0I1.25D5K,
C5T4S2.0I1.25D10K, C5T4S2.0I1.25D20K, C5T4S2.0I1.25D35K and C5T4S2.0I1.25D50K, respectively.
Overall, the total associated spaces for both two algorithms, under the same environment as that in Fig. 11 (with
the constant minimum support 0.2%, the constant minimum average value 5 and variable number of sequences),
increase slowly and sometimes decrease for the noise reason. But it is obvious that the associated space under
PTAC is always much smaller. Meanwhile, the total associated space for the optimized PTAC is the same as that
for PTAC, due to the reason that they adopt the same strategies.
5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

size of data set(K)

nu
m

be
r

of
 c

he
ck

ed
 it

em
s(

K
)

PrefixGrowth

PTAC

Fig. 11. The number of the checked items under PTAC and PrefixGrowth on dataset C5T4S2.0I1.25.

5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

size of data set (K)

to
ta

l a
ss

oc
ia

te
d

sp
ac

e (
KB

)

PrefixGrowth
PTAC

Fig. 12. The total associated space under PTAC and PrefixGrowth on dataset C5T4S2.0I1.2.

10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

400

minAvg

tim
e(

s)

PrefixGrowth
PTAC
Optimization

Fig. 13. The performance of PTAC and PrefixGrowth on the real dataset with the minimum support 1%.

E. Chen et al. / Information Sciences 178 (2008) 1498–1518 1515
5.4. Experiments on the real dataset

In this subsection, we report our experiments on the real dataset mentioned previously. Fig. 13 and 14 show
the efficiency comparison of PTAC, its optimization and PrefixGrowth with variable minAvg on the real data-
set. In the experiment illustrated in Fig. 13, the minimum support is fixed to be 1%, and in the experiment
illustrated in Fig. 14, the minimum support is fixed to be 2%. The results obtained on these two experiments
show that PTAC and its optimization perform better than PrefixGrowth on this dataset.

In the experiment on the real data, we also mainly care about the performance of PTAC with a small
or medium minimum average value minAvg. Fig. 15 and 16 present the performance of PTAC, its

10 20 30 40 50 60 70 80 90
0

50

100

150

200

minAvg

tim
e(

s)

PrefixGrowth
PTAC
Optimization

Fig. 14. The performance of PTAC and PrefixGrowth on the real dataset with the minimum support 2%.

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

minSupport(%)

tim
e(

s)

PrefixGrowth
PTAC
Optimization

Fig. 15. The performance of PTAC and PrefixGrowth on the real dataset with the minimum average value 10.

1516 E. Chen et al. / Information Sciences 178 (2008) 1498–1518
optimization and PrefixGrowth with variable min_support on the real dataset. In the experiment illustrated
in Fig. 15, minAvg is set to be 10 and min_support varies from 1% to 8%. In the experiment illustrated in
Fig. 16, minAvg is set to be 35 and min_support varies from 1% to 6%. In this experiment, the performance
of PTAC is too close to its optimization that their result curves are hardly separated. So in Fig. 16 only the
performances of PTAC and PrefixGrowth are showed without that of PTAC’s optimization. From these
figures we can see that PTAC and its optimization perform better again. Moreover, compared with Prefix-
Growth, the smaller the minimum average value minAvg is, the better the performances of PTAC and its
optimization are.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

250

300

minSupport(%)

tim
e(

s)

PrefixGrowth
PTAC

Fig. 16. The performance of PTAC and PrefixGrowth on the real dataset with the minimum average value 35.

E. Chen et al. / Information Sciences 178 (2008) 1498–1518 1517
6. Conclusion

In this paper, we have presented efficient strategies to deal with two typical kinds of tough aggregate con-
straints in a uniform way. Based on the notion of sequence contribution, we have theoretically demonstrated
that the two typical kinds of tough aggregate constraints can be converted to a uniform form, and can thus be
processed by the same strategies. We have come up with a new tough aggregate constraint-based sequential
pattern mining algorithm called PTAC, in which two effective strategies for improving the constraint-related
processing efficiency are presented. Finally, we conducted experiments to evaluate the performance of PTAC
and its optimization on the datasets generated by the IBM sequence generator as well as a real dataset. It is
shown that PTAC and its optimization outperform PrefixGrowth based on the experiments.

In PTAC, items are classified into three promising levels, i.e. approximately promising, promising, and extre-
mely promising, and corresponding judging rules are designed to reduce the number of the checked items and
the searching space. Aiming at the applications in which a quick overview of approximate results is required
without considering the completeness of the results, we plan to move on to mining sequential patterns with
aggregate constraints approximately by exploiting further the classification of promising levels. In particular,
the approximate results may be discovered more quickly, even though the precision of the results may decrease
a little bit. It is an interesting problem to strive a good balance between the precision and efficiency, which will
mainly depend on appropriate strategies to speed up the mining process with an acceptable precision.

Acknowledgements

This work was supported by Natural Science Foundation of China (No. 60573077), Program for New
Century Excellent Talents in University (No. NCET-05-0549), City University of Hong Kong under strategic
research Grants (Nos. 7001956 and 7001997).

References

[1] Francesco Bonchi, Fosca Giannotti, Allessio Mazzanti, Dino Pedreschi, ExAnte: Anticipated data reduction in constrained patterns
mining, in: PKDD, Cavtat-Dubrovnik, Croatia, 2003, pp. 59–70.

[2] E.H. Chen, T.S. Li, Phillip C-y SHEU, A general framework for monotony and tough constraint based sequential pattern mining, in:
DaWak05, Copenhagen, Denmark, 2005, pp. 458–467..

1518 E. Chen et al. / Information Sciences 178 (2008) 1498–1518
[3] Ding-Ying Chiu, Yi-Hung Wu, Arbee L.P. Chen, An efficient algorithm for mining frequent sequences by a new strategy without
support counting, in: ICDE’04, Boston, USA, 2004, pp. 375–386.

[4] Joong Hyuk Chang, Won Suk Lee, Efficient mining method for retrieving sequential patterns over online data streams, Journal of
Information Science 31 (2005) 420–432.

[5] Xiaoyu Chang, Chunguang Zhou, Zhe Wang, Ping Hu, A novel method for mining sequential patterns in datasets, in: ISDA’06,
Jinan, China, 2006, pp. 611–615.

[6] Minos Garofalakis, Rajeev Rastogi, Kyuseok Shim, Mining sequential patterns with regular expression constraints, TKDE 14 (2002)
530–552.

[7] Chin-Chuan Ho, Hua-Fu Li, Fang-Fei Kuo, Suh-YinLee, Incremental mining of sequential patterns over a stream sliding window,
data mining workshops, in: ICDM Workshops, Hong Kong, China, 2006, pp. 677–681.

[8] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.-C. Hsu, Freespan: Frequent pattern-projected sequential pattern mining, in:
Knowledge Discovery and Data Mining (KDD’00), Boston, USA, 2000 pp. 355–359.

[9] Congnan Luo, Soon M. Chung, A scalable algorithm for mining maximal frequent sequences using sampling, in: TCTAI(04), Boca
Raton, USA, 2004, pp. 156–165.

[10] Salvatore Orlando, Raffaele Perego, Claudio Silvestri, A new algorithm for gap constrained sequence mining, in: ACM Symposium
on Applied Computing, Lisbon, Portugal, 2004, pp. 540–547.

[11] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, PrefixSpan: mining sequential patterns efficiently by prefix-projected
pattern growth, in: ICDE, Heidelberg, Germany, 2001, pp. 215–226.

[12] Jian Pei, Jiawei Han, Wei Wang, Mining sequential patterns with constraints in large databases, in: CIKM, McLean, USA, 2002, pp.
18–25.

[13] Jia-Dong Ren, Jun-Sheng Zong, A fast interactive sequential pattern mining algorithm based on memory indexing, in: Machine
Learning and Cybernetics, Guangzhou, China, 2006, pp. 1082–1087.

[14] R. Srikant, R. Agrawal, Mining sequential patterns, in: ICDE, Taipei, Taiwan, 1995, pp. 3–14.
[15] R. Srikant, R. Agrawal, Mining sequential patterns: Generalizations and performance improvements, in: EDBT, Avigon, France,

1996, pp. 3–17.
[16] J.T.-L. Wang, G.-W. Chirn, T.G. Marr, B. Shapiro, D. Shasha, K. Zhang, Combinatorial pattern discovery for scientific data: some

preliminary results, in: SIGMOD, Minneapolis, USA, 1994, pp. 115–125.
[17] Yun Xiong, Yang-yong Zhu, A multi-supports-based sequential pattern mining algorithm, in: CIT05, New York, USA, 2005, pp.

170–174.
[18] Mohammed J. Zaki, Sequence mining in categorical domains: incorporating constraints, in: CIKM, Washington, DC, USA, 2000, pp.

422–429.
[19] Mohammed J. Zaki, SPADE: an efficient algorithm for mining frequent sequences, Machine Learning 1 (2000) 1–31.

	Efficient strategies for tough aggregate constraint-based sequential pattern mining
	Introduction
	Related work
	Sequential pattern mining and tough aggregate constraints
	Sequential pattern mining
	Theoretical analysis

	PTAC - a new algorithm for the tough aggregate constraints
	The framework
	Two new strategies
	Pruning candidate sequences
	Pruning new patterns before constructing projected databases

	Room for further optimization

	Experiment and analysis
	Experimental datasets
	Experimental platform
	Experiments on synthetic datasets
	Comparing the running time and scalability
	Comparing the effectiveness of pruning strategies and the cost of space

	Experiments on the real dataset

	Conclusion
	Acknowledgements
	References

