
Optimal Tree Structures for Group Key Tree
Management Considering Insertion and Deletion

Cost�

Weiwei Wu1, Minming Li2, and Enhong Chen3

1 USTC-CityU Joint Research Institute
Department of Computer Science, University of Science and Technology of China,

Department of Computer Science, City University of Hong Kong
wweiwei2@cityu.edu.hk

2 Department of Computer Science, City University of Hong Kong
minmli@cs.cityu.edu.hk

3 Department of Computer Science, University of Science and Technology of China
cheneh@ustc.edu.cn

Abstract. We study the optimal structure for group broadcast problem
where the key tree model is extensively used. The objective is usually
to find an optimal key tree to minimize the cost based on certain as-
sumptions. Under the assumption that n members arrive in the initial
setup period and only member deletions are allowed after that period,
previous works show that when only considering the deletion cost, the
optimal tree can be computed in O(n2) time. In this paper, we first prove
a semi-balance property for the optimal tree and use it to improve the
running time from O(n2) to O(log log n). Then we study the optimal tree
structure when insertion cost is also considered. We show that the opti-
mal tree is such a tree where any internal node has at most degree 7 and
children of nodes with degree not equal to 2 or 3 are all leaves. Based on
this result we give a dynamic programming algorithm with O(n2) time
to compute the optimal tree.

1 Introduction

Many recent works have researched group broadcast problem due to its cost ef-
fectiveness in the applications requiring content security. The applications based
on multicast can be divided into two types, one-to-many (e.g., television broad-
cast, pay per view) and many-to-many (e.g., teleconference, collaborate work,
distributed interactive game). All of them require content security which means
only authorized users are allowed to access the data broadcasted. Moreover, to

� This work was supported in part by the National Basic Research Program of China
Grant 2007CB807900, 2007CB807901, a grant from the Research Grants Council of
the Hong Kong Special Administrative Region, China [Project No. CityU 116907],
Program for New Century Excellent Talents in University (No.NCET-05-0549) and
National Natural Science Foundation of China (No.60775037).

X. Hu and J. Wang (Eds.): COCOON 2008, LNCS 5092, pp. 521–530, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

522 W. Wu, M. Li, and E. Chen

deliver messages on insecure channels, we should guarantee confidentiality when
users dynamically change in the group with the help of cryptography. Two kinds
of confidentiality are usually considered in the literature: future confidentiality
(to prevent users deleted from the group from accessing any future keys which
will be used to encrypt data) and past confidentiality (to prevent users newly
added into the group from accessing any past keys used to encrypt data).

To satisfy these security requirements, the basic strategy is to update the
group key whenever a user is deleted from or added into the group. The group
controller (GC) will maintain a key structure for the whole group. A recent
survey on key management for secure group communications can be found in
[2]. However, since encryption is most time consuming, the critical problem is
how to decrease the number of encryptions when group members dynamically
change. Key tree model proposed by Wong et al. [7] is widely used for key
management problem. In this model, it is assumed that a leaf node represents a
user and stores his individual key and an internal node stores a key shared by all
leaf descendants of that node. The above two assumptions imply that every user
possesses all the keys along the path from the leaf node to the root. Whenever
a new user is added or deleted, the GC will update the keys along the path in a
bottom-up fashion and notify the subset of nodes who share the keys. Wong et
al. [7] pointed out that the average measured processing time increases linearly
with the logarithm of the group size. Soneyink et al. [5] proved any distribution
scheme has a worst-case cost of Ω(log n) either for adding or for deleting a user.
They also proved that the updating cost of a key tree with n insertions followed
by n deletion is Θ(n log n). Chen et al. [9] studied the structure of the optimal
tree when a deletion sequence is performed. They show that the optimal tree is
a tree where any internal node has at most degree 5 and children of nodes with
degree not equal to 3 are all leaves. Based on this observation, they designed
a dynamic programming algorithm of O(n2) time to compute an optimal tree.
Another scenario where rekeying is done only periodically instead of immediately
is studied as batch rekeying strategy in [4]. This strategy is further investigated
in [8],[1] and [3] under the assumption that each user has a fixed probability p
of being replaced during the batch period.

We further investigate the scenario proposed in [9]. Firstly, we find an impor-
tant property of the optimal tree when only deletion cost is considered and use it
to improve the time for computing the optimal tree from O(n2) to O(log log n).
Secondly, we study the optimal tree structure when insertion and deletion cost
are simultaneously taken into consideration. Suppose in the initial setup period,
the group only accepts membership joins. In the end of this period, a certain key
tree is established by multicasting certain encryptions to the users. After that
period, the group closes new membership and only accepts membership leaves.
Notice that the GC update keys only at the end of the initial setup period and
whenever a user leaves afterwards. This is different from the scenario of n inser-
tions followed by n deletions considered in [5] where each insertion triggers an
update on the key tree. We show that when considering both key tree establish-
ment cost and deletion cost, the optimal tree is such a tree where any internal

Optimal Tree Structures for Group Key Tree Management 523

node has at most degree 7 and children of nodes with degree not equal to 2 or
3 are all leaves.

The rest of this paper is organized as follows. In Section 2 we review the
definition of the key tree model and introduce some related results. In Section 3,
we prove an important property of the optimal tree for n deletions and reduce
the computation time of the optimal tree from O(n2) to O(log log n). In Section
4 we investigate a more general cost definition where the cost of the key tree
establishment is also included. We prove the degree bound for the optimal tree
in this scenario and propose an O(n2) dynamic programming algorithm. Finally,
we conclude our work in Section 5. Due to space limit, most of the proofs are
omitted in this version.

2 Preliminaries

In this section, we review the key tree model which is referred to in the literature
either as key tree [7] or LKH (logical key hierarchy) [6].

In the key tree model, a group controller (GC) maintains the key structure
for all the users. A group member holds a key if and only if the key is stored in
an ancestor of the member. When a user leaves, GC will update any key that is
known by him in a bottom-up fashion, and notify the remaining users who share
that key. Take the structure shown in Figure 1 as an example, the user u1 holds
keys (k1, k6, k8), and u2 holds keys (k2, k6, k8). When u1 leaves, keys k6 and k8
need to be updated. GC will first encrypt the new k6 with k2 and multicast the
message to the group. Notice that only u2 can decrypt that message. Then GC
encrypts the new k8 with k5, k7 and with the new k6 separately and multicast
them to the group. Notice that all users except u1 can obtain the new k8 by
decrypting one of those messages. Hence, the GC need 4 encryptions to maintain
the key tree structure when u1 leaves. Based on the updating rule, we introduce
the definition of deletion cost.

Fig. 1. An example key tree structure for a group with 5 members

Definition 1. In a key tree T with n leaves, we say a node v has degree dv if
v has dv children. We denote the set of ancestors of v as anc(v) (not including
v itself) and define the ancestor weight of v as wv =

∑
u∈anc(v) du. The number

of leaf descendants of v is denoted as nv.

Given a leaf vi in a key tree T , let viu1u2 . . . uk be the longest path in T where uj

has only one child for 1 ≤ j ≤ k. We define k as the exclusive length of vi. Notice

524 W. Wu, M. Li, and E. Chen

that when the user vi is deleted from the group, we need not update any key
on the path viu1u2 . . . uk. Hence, we have the following deletion cost (defined in
terms of the number of encryptions needed to update the keys after deletions).
If not specified otherwise, we abbreviate wvi and nvi as wi and ni respectively.

Definition 2. The deletion cost of vi is wi−k−1 where k is the exclusive length
of vi, and we denote this deletion cost as ci.

Notice that when nodes are deleted, different deletion order may incur different
deletion cost. In the tree shown in Figure 1, deletion sequence u1, u2, u3, u4, u5
has cost 4+2+3+1+0 = 10, while deletion sequence u1, u3, u2, u4, u5 has cost
4 + 4 + 2 + 1 + 0 = 11.

In our work, we further investigate the scenario where a group only accepts
membership joins during the initial setup period. After that period, the only
dynamic membership changes are deletions. This requires us to focus on the
cost of a sequence instead of a single leaf. We first cite the following definitions
from [9].

Definition 3. In a key tree T with n leaf nodes, we define π =< v1, v2, ..., vn >
as the sequence of all nodes to be deleted in T . Let < c1, c2, ..., cn > be the
resulting sequence of deletion cost when the deletion sequence was performed. Let
C(T, π) =

∑n
i=1 ci denote the deletion cost of the whole tree T under the deletion

sequence π. The worst case deletion cost of the tree T is denoted as CT,deletion =
max

π
C(T, π). We define the optimal tree Tn,opt as a tree (not necessarily unique)

which has the minimum worst case deletion cost over any tree T containing n
leaf nodes.

Definition 4. Let T be a tree with n leaves. Given a tree T ′ with r leaves, we call
T ′ a skeleton of T if T can be obtained by replacing r leaf nodes v1, v2, . . . , vr

of T ′ with r trees T1, T2, . . . , Tr, where Ti has root vi for 1 ≤ i ≤ r.

Under this definition, they proved a recursive formula for the worst case deletion
cost CT,deletion. Let T ′ be a skeleton of T as defined above. Given a deletion
sequence π′ for T ′ as well as a deletion sequence πi for each Ti (1 ≤ i ≤ r),
they derive a deletion sequence π for T as follows. In the first step, π deletes
all leaves in subtree Ti in the order specified by πi, until there is only 1 leaf
left. In the second step, π deletes the sole remaining leaf of each Ti in the order
specified by π′. They denote the deletion sequence for T derived this way by
π =< π1, . . . , πr, π

′ >.

Lemma 1. [9] The sequence π = 〈π1, π2, . . . , πr, π
′〉 is a worst-case deletion

sequence for T if πi is a worst-case deletion sequence for Ti and π′ is a worst-
case deletion sequence for T ′. The worst case deletion cost for T is

CT,deletion = CT ′,deletion +
r∑

i=1

(CTi,deletion + (ni − 1)wi). (1)

In this formula, CT ′,deletion is the worst-case deletion cost for the skeleton T ′,
and CTi,deletion is the worst-case deletion cost for the subtree Ti. The values ni

and wi are the abbreviations of nvi and wvi respectively.

Optimal Tree Structures for Group Key Tree Management 525

3 Semi-balance Property of Key Tree Structure for n
Deletions

As [9] shows, to minimize the worst case deletion cost when all n subscribers
are deleted from the group one by one, an optimal tree can be found among the
trees satisfying the following two conditions: (1) every internal node has degree
d � 5 and (2) children of nodes with degree d �= 3 are all leaves. According to
this, they gave an algorithm to compute the optimal tree in O(n2) time. In this
section, we prove an important semi-balance property of the optimal tree.

According to the result of [9], if a node v has at least one child being an
internal node, it must have degree 3. We further prove the following lemma.

Lemma 2. There is an optimal tree where the children of any degree 3 node are
either all leaves or all internal nodes.

Proof. Suppose on the contrary in the optimal tree there exists an internal node
v with degree 3, which has an internal node child v1 and a leaf child v0, then v1
has at most two leaf descendants. Otherwise, if v1 has n1 � 3 leaf descendants, we
show in the following that the cost of the tree can be decreased, which contradicts
the optimality of the tree. Obviously, v1 can only have degree 2 � d1 � 5. Firstly,
when d1 � 3, we can decrease the cost by moving a subtree T2 (rooted at v2) of
v1 and combine it with the leaf child (v0) of v, as shown in Figure 2. Detailed
proof is omitted here. On the other hand, when d1 = 2, children of v1 are all
leaves because d1 �= 3, i.e. v1 has at most two leaf descendants. Therefore, v has
nv � 5 leaf descendants, and in this case the optimal tree is such a tree where
all v’s children are leaves.

As a result, if a node has at least one leaf child, its children are all leaves.
Furthermore, to make our explanation easier to read, we will give this kind of
node a new name in the following.

Fig. 2. A degree 3 node with at least one leaf child and one internal node child

Definition 5. Given a tree T with L levels, we define the pseudo-leaf nodes to
be the nodes whose children are all leaves. In addition, we use li to denote the
level where the pseudo-leaf node ui is placed and si to denote the number of its
children.

Obviously, all pseudo-leaf nodes can only be placed on level 1 � li � L − 1 and
have 2 � si � 5 children.

526 W. Wu, M. Li, and E. Chen

Lemma 3. Given a tree T and a pseudo-leaf ui in T , if we remove one child of
ui, the cost of the resulting tree T̄ decreases by 3li + si − 1.

Proof. The lemma can be proved by choosing all the nodes in T except the
children of ui as the skeleton. The details are omitted here.

Lemma 4. In an optimal tree Tn,opt, if a pseudo-leaf node ui satisfies 1 � li �
L − 2 , then we have si = 5.

Proof. Suppose si < 5 and another pseudo-leaf node uj is on level lj = L − 1.
We can get a better tree by moving a child of uj to be a child of the node ui

when si � 4, as shown by Figure 3. The detailed analysis is omitted here.

Fig. 3. Transformation of tree T where at least one pseudo-leaf node ui with si � 4
children is on level li where 1 � li � (L − 2)

Lemma 5. In an optimal tree Tn,opt, for any two pseudo-leaf nodes ui and uj

satisfying lj > li, we have lj − li ≤ 1, which means the pseudo-leaf nodes should
only be on level L − 1 or L − 2.

Proof. Suppose on the contrary there are two pseudo-leaf nodes ui and uj with
lj − li � 2 in the optimal tree. According to Lemma 4, we have si = 5. We can
show that the cost decreases at least by 2 after moving a child of uj to ui as
shown in Figure 4. Details are omitted here.

Lemma 6. If all pseudo-leaf nodes are on the same level, we have the property
that any node ui, uj on level L − 1 satisfy the inequality |ni − nj | � 1 where ni

and nj are the number of leaf descendants of ui and uj respectively.

Fig. 4. Transformation of tree T where there are two pseudo-leaf nodes ui and uj who
was respectively on level li and lj , and (lj − li) � 2

Optimal Tree Structures for Group Key Tree Management 527

Proof. Because ni = si for all pseudo-leaf nodes, we only need to prove |si−sj| �
1 for any pseudo-leaf ui and uj on the same level. In this case, according to
Lemma 5, all of them can only be on level L − 1. If si − sj � 2, we can get a
better tree by moving a child of ui to uj , because the cost decreased is a positive
value, which is equal to si − 1 − sj � 1. For the other case when sj − si � 2, we
can get a better tree in a similar way. Hence,the lemma is proved.

Lemma 7. If some of the pseudo-leaf nodes are on different levels, then we
have the property that for any node vi, vj on the same level (L− 2 or L− 1), the
inequality |ni − nj | � 1 holds.

Lemma 8. Given a tree T , for any subtree Ti, Tj whose root vi, vj have the
same ancestor weight wi = wj, if we exchange these two subtrees, the cost of the
resulting tree does not change.

Notice that when all pseudo-leaf nodes are on level L − 1, the nodes vi, vj on
level k (1 � k � L − 1) have ancestor weight wi = wj = 3k. Therefore, the total
deletion cost will not change when we exchange the subtrees with root nodes on
the same level L − 1. For the other case when some pseudo-leaf nodes are on
level L − 2 and others are on level L − 1, the nodes vi, vj on level 1 � k � L − 2
also have ancestor weight wi = wj = 3k. According to this observation, for any
two nodes vi, vj on the upper level, we prove inequality |ni − nj | � 1 also holds
by exchanging the subtrees.

Lemma 9. There is an optimal tree Tn,opt where for any node vi, vj on the same
level 1 � li = lj � (L − 2), the relation |ni − nj | � 1 holds.

Based on these lemmas, we get the following theorem:

Theorem 1. When the number of leaves n � 6, there is an optimal tree Tn,opt

where the sizes of its three subtrees differ by at most 1.

The correctness of the theorem is evident with the support of Lemma 6, 7 and
9. Theorem 1 in fact implies that we can get an optimal tree by distributing
the leaves into subtrees in a semi-balanced way until all the pseudo-leaf nodes
ui satisfy 2 � si � 5. This can be interpreted as the following optimal tree
constructing rule:

(1) When n � 5, optimal tree is a one level tree with all leaves on the same level.
(2) When n � 6, optimal tree is a tree with root degree 3. We distribute n leaves
into its three subtrees in a semi-balanced way respectively with �n

3 �, �n−1
3 �,

�n−2
3 � leaves.

(3) For each subtree, recursively construct its optimal structure according to (1)
and (2).

The rule above implies that the deletion cost can be computed along with the
constructing process. In fact, there are (n mod 3k) nodes which have � n

3k � leaf
descendants and (3k − n mod 3k) nodes which have � n

3k � − 1 leaf descendants.
Notice that when 2 � � n

3k � � 5 these nodes are pseudo-leaf nodes, while the
optimal structure when � n

3k � = 6 is the tree where root degree is 3 and each
child has 2 leaves. Hence, we have

528 W. Wu, M. Li, and E. Chen

Theorem 2. The worst case deletion cost of the optimal tree Tn,opt can be com-
puted in O(log log n) time according to the equation below.

Tn,max = (n mod 3k)·T (� n

3k
�)+(3k−n mod 3k)·T (� n

3k
�−1)+3n·k−3k+1+3

where k =
{

�log3 n� − 1 if 2 � � n
3�log3 n�−1 	 � 5,

�log3 n� − 2 if 2 � � n
3�log3 n�−2 	 � 5.

For basic cases 2 � n � 5, we have C(2) = 1, C(3) = 3, C(4) = 6, C(5) = 10.
Since it needs O(log log n) time to compute the value of 3O(log n), the cost of the
optimal tree can be computed in O(log log n) time, which is much better than
the dynamic programming algorithm with O(n2) time. Furthermore, to construct
the optimal tree, we can distribute the users into subtrees in a semi-balanced
way.

4 Optimal Tree Structures for n Insertions Followed by n
Deletions

In this section, we investigate a more general setting where the cost of the initial
group setup is also considered. In this new setting, the optimal tree we computed
in the previous section is probably no longer optimal. We aim to study the
optimal tree structure to minimize the cost for the initial setup followed by n
deletions.

Lemma 10. The number of encryptions needed to build the initial tree equals
N − 1 where N is the number of the nodes in the tree.

Proof. The tree is built after all the members arrive, we distribute the keys to
the users securely in the bottom-up fashion with respect to the tree. Therefore,
every key except the key stored in the root will be used once as an encryption
key in the whole process, which amounts to N − 1 encryptions in total. The
lemma is then proved.

To represent the total cost of insertion and deletion in one formula, we modify
the cost of skeleton a bit as follows.

Definition 6. Suppose the skeleton T ′ has t non-root nodes, the worst-case cost
for T ′ is CT ′,max = CT ′,deletion + t.

In fact, CT ′,deletion is the worst-case cost when only deletion is considered, and t
is the number of messages encrypted by the keys stored in the t non-root nodes
when establishing the initial key tree.

Lemma 11. If the skeleton T ′ of T has r leaves, the worst-case cost for T is
CT,max = CT ′,max +

∑r
i=1(CTi,max + (ni − 1)wi).

Proof. By distributing the initial setup cost to every non-root node in the tree,
it is easy to see that this lemma is implied by Lemma 1. We omit the detailed
proof here.

Optimal Tree Structures for Group Key Tree Management 529

We then prove the following structural property of the optimal tree which then
enables us to find an optimal tree in O(n2) time. We omit our proof of this
property in this version due to space limit.

Lemma 12. There is an optimal tree Tn,opt where every internal node v has
degree at most 7 and children of nodes with degree not equal to 2 or 3 are all
leaves.

Based on this lemma, we have the following theorem:

Theorem 3. Algorithm 1 can compute an optimal tree in O(n2) time.

Proof. In Algorithm 1, we use Ri to denote the minimum cost of trees with i
leaves and root degree restricted to be 3, Di to denote the minimum cost of
trees with i leaves and root degree restricted to be 2, and Ci to denote the
minimum cost of all the trees with i leaves. The analysis is similar with the
dynamic programming algorithm in [9] and omitted here.

Algorithm 1. Sequence OPT

1. R1 = 1; R2 = 3; R3 = 6; R4 = 10; R5 = 15;R6 = 21; R7 = 28;
2. D1 = 1; D2 = 3; D3 = 8; D4 = 13; D5 = 18; D6 = 23;D7 = 29;
4. C1 = 1; C2 = 3; C3 = 6; C4 = 10; C5 = 15;C6 = 21; C7 = 28;
5. for i = 8 to n
6. Di = i2; Ri = i2; Ci = i2;
7. for k1 = 1 to i/2
8. k2 = i − k1;
9. if Di > Ck1 + Ck2 + 2 · i − 1 then
10. Di = Ck1 + Ck2 + 2 · i − 1;
11. if Ri > Ck1 + Dk2 + i + 2 · k1 − 2 then
12. Ri = Ck1 + Dk2 + i + 2 · k1 − 2;
13. end for
14. Ci = min(Di, Ri);
15.end for

5 Conclusion

While many works focus on fixing the cost bound under some multicast protocol,
we try to find the optimal structure to minimize the cost. We investigate the
scenario where the members all arrive in the initial setup time and then leaves one
by one. This can be applied in teleconferencing or applications where the member
list can be fixed beforehand. Chen et al. [9] found the optimal tree structure when
only deletion cost is considered. We prove an important property of the optimal
key tree based on their work. We show that the members can be distributed
in a semi-balance way in the optimal tree. Using this property we improve the
running time from O(n2) to O(log log n). We then focus on the optimal tree
structure when insertion cost for the initial period is simultaneously considered.
We obtain a recursive formula and use it to eliminate the impossible degrees in

530 W. Wu, M. Li, and E. Chen

the optimal tree. Based on this observation, we give an algorithm to compute
the optimal tree with O(n2) time.

One possible direction of the future work is to investigate whether there is
similar balanced structure for the optimal tree when insertion cost of the initial
setup is considered together with the deletion cost.

References

1. Graham, R.L., Li, M., Yao, F.F.: Optimal Tree Structures for Group Key Manage-
ment with Batch Updates. SIAM Journal on Discrete Mathematics 21(2), 532–547
(2007)

2. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient Tree-Based Revocation in Groups
of Low-State Devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
511–527. Springer, Heidelberg (2004)

3. Li, M., Feng, Z., Graham, R.L., Yao, F.F.: Approximately Optimal Trees for Group
Key Management with Batch Updates. In: Proceedings of the Fourth Annual Con-
ference on Theory and Applications of Models of Computation, pp. 284–295 (2007)

4. Li, X.S., Yang, Y.R., Gouda, M.G., Lam, S.S.: Batch Re-keying for Secure Group
Communications. In: Proceedings of the Tenth International Conference on World
Wide Web, pp. 525–534 (2001)

5. Snoeyink, J., Suri, S., Varghese, G.: A Lower Bound for Multicast Key Distribution.
In: Proceedings of the Twentieth Annual IEEE Conference on Computer Commu-
nications, pp. 422–431 (2001)

6. Wallner, D., Harder, E., Agee, R.C.: Key Management for Multicast: Issues and
Architectures. RFC 2627 (1999)

7. Wong, C.K., Gouda, M.G., Lam, S.S.: Secure Group Communications Using Key
Graphs. IEEE/ACM Transactions on Networking (8)(1), 16–30 (2000)

8. Zhu, F., Chan, A., Noubir, G.: Optimal Tree Structure for Key Management of
Simultaneous Join/Leave in Secure Multicast. In: Proceedings of Military Commu-
nications Conference, pp. 773–778 (2003)

9. Chen, Z.-Z., Feng, Z., Li, M., Yao, F.F.: Optimizing Deletion Cost for
Secure Multicast Key Management. Theoretical Computer Science (2008),
doi:10.1016/j.tcs.2008.03.016

	Optimal Tree Structures for Group Key Tree Management Considering Insertion and Deletion Cost
	Introduction
	Preliminaries
	Semi-balance Property of Key Tree Structure for n Deletions
	Optimal Tree Structures for n Insertions Followed by n Deletions
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

