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Abstract. We study the optimal tree structure for the key management
problem. In the key tree, when two or more leaves are deleted or replaced,
the updating cost is defined to be the number of encryptions needed to
securely update the remaining keys. Our objective is to find the optimal
tree structure where the worst case updating cost is minimum. We first
prove the degree upper bound (k + 1)2 − 1 when k leaves are deleted
from the tree. Then we focus on the 2-deletion problem and prove that
the optimal tree is a balanced tree with certain root degree 5 ≤ d ≤ 7
where the number of leaves in the subtrees differs by at most one and
each subtree is a 2-3 tree.

1 Introduction

In the applications that require content security, encryption technology is widely
used. Asymmetric encryption is usually used in a system requiring stronger se-
curity, while symmetric encryption technology is also widely used because of the
easy implementation and other advantages. In the applications such as telecon-
ferencing and online TV, the most important security problem is to ensure that
only the authorized users can enjoy the service. Centralized key management
technology can achieve efficiency and satisfy the security requirement of the sys-
tem. Hence, several models based on the key tree management are proposed to
safely multicast the content. Two kinds of securities should be guaranteed in
these applications: one is Future Security which prevents a deleted user from
accessing the future content; the other is Past Security which prevents a newly
joined user from accessing the past content. Key tree model, which was proposed
by Wong el al. [8] is widely studied in recent years. In this model, the Group

� This work was supported in part by the National Basic Research Program of China
Grant 2007CB807900, 2007CB807901, a grant from the Research Grants Council of
the Hong Kong Special Administrative Region, China [Project No. CityU 116907],
Program for New Century Excellent Talents in University (No.NCET-05-0549) and
National Natural Science Foundation of China (No.60775037).

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 77–88, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



78 W. Wu, M. Li, and E. Chen

Controller (GC) maintains a tree structure for the whole group. The root of the
tree stores a Traffic Encryption Key (TEK) which is used to encrypt the content
that should be broadcast to the authorized users. To update the TEK securely,
some auxiliary keys are maintained. Whenever a user leaves or joins, the GC
would update keys accordingly to satisfy Future Security and Past Security. Be-
cause updating keys for each user change is too frequent in some applications, [5]
proposed Batch Rekeying Model where keys are only updated after a certain pe-
riod of time. [10] studied the scenario of popular services with limited resources
which always has the same number of joins and leaves during the batch period
(because there are always users on the waiting list who will be assigned to empty
positions whenever some authorized users leave). A recent survey for key tree
management can be found in [2].

An important research problem in the key tree model is to find an optimal
structure for a certain pattern of user behaviors so that the total number of en-
cryptions involved in updating the keys is minimized. Graham et al. [3] studied
the optimal structure in Batch Rekeying Model where every user has a proba-
bility p to be replaced in the batch period. They showed that the optimal tree
for n users is an n-star when p > 1 − 3−1/3 ≈ 0.307, and when p ≤ 1 − 3−1/3,
the optimal tree can be computed in O(n) time. Specially when p tends to 0,
the optimal tree resembles a balanced ternary tree to varying degrees depending
on certain number-theoretical properties of n. Feng et al. [1] studied the optimal
structure in Key Tree Model under the assumption that users in the group are
all deleted one by one. Their result shows that the optimal tree is a tree where
every internal node has degree at most 5 and the children of nodes which have
degree d �= 3 are all leaves. [9] improved the result of [1] and showed that a bal-
anced tree where every subtree has nearly the same number of leaves can achieve
the optimal cost. They then investigate the optimal structure when the insertion
cost in the initial setup period is also considered and showed that the optimal
tree is a tree where every internal node has degree at most 7 and children of
nodes which have degree d �= 2 and d �= 3 are all leaves.

More related to this paper, Soneyink et al. [6] proved that any distribution
scheme has a worst-case cost of Ω(logn) for deleting a user. They also found an
optimal structure when only one user is deleted from the tree. In this paper, we
further investigate the problem when two or more users are deleted from a tree.
We first prove a degree upper bound (k + 1)2 − 1 for the problem of deleting k
users. Then we give a tighter degree bound for the problem of deleting two users.
After that, we investigate the maximum number of leaves that can be placed on
the tree given a fixed worst case deletion cost. Based on this, we prove that a
balanced tree with certain root degree 5 ≤ d ≤ 7 where the number of leaves
in the subtrees differs by at most one and each subtree is a 2-3 tree can always
achieve the minimum worst case 2-deletion cost.

The rest of this paper is organized as follows. We review the key tree model in
Section 2 and then prove the degree bound of the optimal tree for the k-deletion
problem in Section 3. From Section 4 on, we focus on the 2-deletion problem
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and remove the possibility of root degree 2 and 3. In Section 5, we study the
maximum number of leaves that can be placed on a tree given a fixed deletion
cost and use the result to prove that the optimal tree for the 2-deletion problem
is a tree where each subtree of the root is a 2-3 tree and has the number of leaves
differed by at most 1. Finally, we conclude our work and propose a conjecture
on the optimal tree cost for the general k-deletion problem in Section 6.

2 Preliminaries

We first review the Key Tree Model [8] which is also referred to in the literature
as LKH(logical key hierarchy) [7].

In the Key Tree Model, there is a Group Controller maintaining a key tree for
the group. A leaf on the key tree represents a user and stores an individual key
that is only known by this user. An internal node stores a key that is shared by
all its leaf descendants. Thus a user always knows the keys stored in the path
from the leaf to the root. To guarantee content security, the GC encrypts the
content by the Traffic Encryption Key (TEK) which is stored in the root and
then broadcast it to the users. Only the authorized users knowing the TEK can
decrypt the content. When a user joins or leaves, the GC will update the keys
in a bottom-up fashion. As shown in Figure 1(a), there are 7 users in the group.
We take the deletion of user u4 as an example, since u4 knows k4, k9 and k10,
the GC need to update the keys k9 and k10 (the node that stores k4 disappears
because u4 is already deleted from the group). GC will encrypt the new k9 with
k5 and broadcast it to notify u5. Note that only u5 can decrypt the message.
Then GC encrypts the new k10 with k6, k7, k8 and the new k9 respectively, and
then broadcast the encrypted messages to notify the users. Since all the users
and only the users in the group can decrypt one of these messages, the GC can
safely notify the users except user u4 about the new TEK. The deletion cost
measured as the number of encryptions is 5 in this example.

In the following, we say that a node u has degree d if it has d children in the
tree. Note that the worst case deletion cost of the tree shown in Figure 1(a) is
6 where one of the users u1, u2, u3 is deleted. In [6], the authors investigate the
optimal tree structure with n leaves where the worst case single deletion cost is
minimum. Their result shows that the optimal tree is a special kind of 2-3 tree
defined as follows.
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Fig. 1. Two structures of a group with 7 users



80 W. Wu, M. Li, and E. Chen

Definition 1. In the whole paper, we use 2-3 tree to denote a tree with n leaves
constructed in the following way.

(1)When n ≥ 5, the root degree is 3 and the number of leaves in three subtrees
of the root differs by at most 1. When n = 4, the tree is a complete binary tree.
When n = 2 or n = 3, the tree has root degree 2 and 3 respectively. When n = 1,
the tree only consists of a root.

(2)Each subtree of the root is a 2-3 tree defined recursively.

In fact, [6] showed that 2-3 tree is a tree where the maximum ancestor weight
(summation of degrees of all ancestors of a node) of the leaves on the tree is
minimum among all the trees having the same number of leaves. As shown in
Figure 1(b), the optimal tree for a single deletion for a group with 7 users has a
worst case deletion cost 5.

In this paper, we study the scenario where two or more users leave the group
during a period and we update keys at the end of this period. There are two
versions of this problem to be considered here.

We denote the problem to find the optimal tree when k users are deleted as
pure k-deletion problem. For example, deleting two users u1 and u4 in Figure 1(a)
will incur cost 7 because we need to update k8 and k9 with 2 and 1 encryptions
respectively and then to update k10 with 4 encryptions. This is also the worst
case deletion. The objective is to find the optimal structure where the worst case
cost is minimum.

In popular applications, there is a fixed number of positions and new users are
always waiting to join. In such a scenario the number of joins and the number
of leaves during the period are the same, which means that the newly joined k
users will take the k positions which are vacant due to the leave of k users. In
this setting, when two users u1 and u4 are replaced on Figure 1 (a), the updating
cost is 9 which equals the summation of the ancestors’ degrees of these two leaves
where the common ancestors’ degrees are only computed once. We denote the
problem to find the optimal tree when k users are replaced as k-deletion problem.

We first define the k-deletion problem formally as follows.

Definition 2. Given a tree T , we denote the number of encryptions incurred by re-
placingui1 , . . . , uik

withknewusersasCT (ui1 , . . . , uik
) =

∑
v∈(
�

1≤j≤k ANC(uij
)) dv

where ANC(u) is the set of u’s ancestor nodes and dv is v’s degree. We use k-
deletion cost to denote the maximum cost among all possible combinations and
write it as Ck(T, n) = maxi1,i2,...,ik

CT (ui1 , ui2 , . . . , uik
).

We further define an optimal tree Tn,k,opt (abbreviated as Tn,opt if the context
is clear) for k-deletion problem as a tree which has the minimum k-deletion cost
over all trees with n leaves, i.e. Ck(Tn,opt, n) = min

T
Ck(T, n). We also denote

this optimal cost as OPTk(n). The k-deletion problem is to find the OPTk(n)
and Tn,k,opt.

The pure k-deletion cost and the pure k-deletion problem are defined similarly
by using the cost incurred by permanently deleting the leaves instead of the cost
by updating the leaves (Some keys need not be updated if all its leaf descendants
are deleted and the number of encryptions needed to update that key is also
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reduced if some branches of that node totally disappear after deletion). We will
show the relationship between these two problems in the following.

Definition 3. We say a node v is a pseudo-leaf node if its children are all leaves.
In the following two lemmas, we use t to denote the number of pseudo-leaf nodes
in a tree T .

Lemma 1. If t ≤ k, then the pure k-deletion cost of T is at least n − k.

Proof. When t ≤ k, we claim that in order to achieve pure k-deletion cost, we
need to delete at least one leaf from each pseudo-leaf node. Suppose on the
contrary there exists one pseudo-leaf node v where none of its children belongs
to the k leaves we delete. We divide the discussion into two cases.

First, if each of the k leaves is a child of the remaining t−1 pseudo-leaf nodes,
then there exists one pseudo-leaf node u with at least two children deleted. In
this case, a larger pure deletion cost can be achieved if we delete one child of v
while keeping one more child of u undeleted.

Second, if some of the k leaves are not from the remaining t − 1 pseudo-leaf
nodes, then we assume u is one of them whose parent is not a pseudo-leaf. Then
there exists one of u’s sibling w that contains at least one pseudo-leaf w′ (w′

can be w itself). If no children of w′ belong to the k leaves, then deleting a child
of w′ while keeping u undeleted incurs larger pure deletion cost. If at least one
child of w′ belongs to the k leaves, then deleting a child of v while keeping u
undeleted incurs larger pure deletion cost.

We see that in the worse case deletion, each pseudo-leaf node has at least
one child deleted, which implies that all the keys in the remaining n − k leaves
should be used once as the encryption key in the updating process. Hence the
pure k-deletion cost of T is at least n − k.

Lemma 2. If t > k, then the pure k-deletion cost is Ck(T, n)−k where Ck(T, n)
is the k-deletion cost.

Proof. Using similar arguments as in the proof of Lemma 1, we can prove that
when t > k, the pure k-deletion cost can only be achieved when the k deleted
leaves are from k different pseudo-leaf nodes. Then it is easy to see that the pure
k-deletion cost is Ck(T, n) − k where Ck(T, n) is the k-deletion cost.

Theorem 1. When considering trees with n leaves, the optimal pure k-deletion
cost is OPTk(n) − k where OPTk(n) is the optimal k-deletion cost.

Proof. Note that in the tree where all n leaves have the same parent (denoted
as one-level tree), the pure k-deletion cost is n− k. By Lemma 1, any tree with
the number of pseudo-leaf nodes at most k has the pure k-deletion cost at least
n − k. Hence we only need to search the optimal tree among the one-level tree
and the trees with the number of pseudo-leaf nodes larger than k. Moreover,
in the one-level tree T , the pure k-deletion cost is n − k = Ck(T, n) − k where
Ck(T, n) is the k-deletion cost. Further by Lemma 2, all the trees in the scope for
searching the optimal tree have pure k-deletion cost Ck(T, n)− k, which implies
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that the optimal pure k-deletion cost is OPTk(n) − k where OPTk(n) is the
optimal k-deletion cost (The structure of the optimal trees in both problems are
also the same).

The above theorem implies that the optimal tree for the pure k-deletion problem
and the k-deletion problem are in fact the same. Therefore, we only focus on
the k-deletion problem in the following and when we use “deleting”, we in fact
mean “updating”.

3 Degree Bound for the k-Deletion Problem

In this section, we try to deduce the degree bound for the k-deletion problem. In
the following proofs, we will often choose a template tree T and then construct
a tree T ′ by deleting from T some leaves together with the exclusive part of leaf-
root paths of those leaves. Here, the exclusive part of a leaf-root path includes
those edges that are not on the leaf-root path of any of the remaining leaves. We
also say that T is a template tree of T ′. By the definition of the k-deletion cost,
we have the following fact.

Fact 1. If T is a template tree of T ′, then the k-deletion cost of T ′ is no larger
than that of T .

Lemma 3. OPTk(n) is non-decreasing when n increases.

Proof. Suppose on the contrary OPTk(n1) > OPTk(n2) when n1 ≤ n2, then
there exist two trees T1 and T2 satisfying Ck(T1, n1) = OPTk(n1) and Ck(T2, n2)
= OPTk(n2). We can take T2 as a template tree and delete the leaves until the
number of leaves decreases to n1. The resulting tree T ′

1 satisfies Ck(T ′
1, n1) ≤

Ck(T2, n2) < OPTk(n1) by Fact 1, which contradicts the definition of OPTk(n1).
The lemma is then proved.

Lemma 4. Tn,opt has root degree upper bounded by (k + 1)2 − 1.

Proof. We divide the value of root degree d ≥ (k + 1)2 into two sets, {d|(k +
t)2 ≤ d < (k + t)(k + t + 1), d, k, t ∈ N, t ≥ 1} and {d|(k + t − 1)(k + t) ≤
d < (k + t)2, d, k, t ∈ N, t ≥ 2}. Take k = 2 for instance, the first set is
{9, 10, 11, 16, 17, 18, 19, 25, . . .} while the other is {12, 13, 14, 15, 20, 21, 22, 23, . . .}.
Case 1: (k + t)2 ≤ d < (k + t)(k + t + 1) (t ≥ 1).
We write d as (k + t)2 + r where 0 ≤ r < k + t. Given a tree T , we can transform
it into a tree with root degree k + t as Figure 2 shows. In the resulting tree T ′,
subtrees Tu1 , . . . , Tuk+t

are k+t subtrees where the root u1, . . . , uk+t are on level
one. Among the k + t subtrees, there are r subtrees with root degree k + t + 1
and k + t − r subtrees with root degree k + t. Suppose that the k-deletion cost
of T ′ is incurred by deleting k1, k2, . . . , ks users from subtree Ti1 , Ti2 , . . . , Tis

respectively where k1 + k2 + . . . + ks = k and s ≤ k. The corresponding cost
is Ck(T ′, n) =

∑s
j=1 Ckj (Tij , nij ) + D0 where nij is the number of leaves in Tij

and D0 is the cost incurred in the first two levels.
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Fig. 2. Transformation of the tree which has root degree d = (k + t)2 + r

In the original tree T , the corresponding cost for deleting those leaves is
Ck(T, n) =

∑s
j=1 Ckj (Tij , nij ) + d =

∑s
j=1 Ckj (Tij , nij ) + (k + t)2 + r. We will

prove that when t ≥ 1 we always have Ck(T, n) ≥ Ck(T ′, n), i.e. D0 ≤ (k+t)2+r.
Firstly, if r ≤ k, the cost D0 is at most r(k + t + 1) + (k − r)(k + t) + k + t

where there are r users coming from r subtrees with root degree k + t + 1 and
k − r users coming from k − r subtrees with root degree k + t. Therefore, we
have D0 ≤ (k + t+1)r +(k + t)(k− r)+ k + t = (k + t)(k +1)+ r ≤ (k + t)2 + r.

Secondly, if r > k, the cost D0 is at most (k + t) + (k + t + 1)k where the
k users are all from k subtrees which have root degree k + t + 1. Therefore, we
have D0 ≤ (k + t) + (k + t + 1)k ≤ (k + t)(k + 1) + k ≤ (k + t)2 + r.

Hence, in both situations, the condition t ≥ 1 ensures that the transformation
from T to T ′ does not increase the k-deletion cost.

Case 2 can be proved similarly.

Lemma 4 suggests that we can find an optimal tree for k-deletion cost among
trees whose root degree is at most (k + t)2 − 1. Note that our degree bound in
Lemma 4 is only for the root. We can also extend this property to all the internal
nodes (proof is also omitted).

Lemma 5. Any internal node in Tn,opt has degree upper bounded by (k+1)2−1.

4 Degree Bound for 2-Deletion Problem

From this section on, we focus on the 2-deletion problem.

Definition 4. We denote the maximum cost to delete a single leaf in a tree T
as ST and the maximum cost to delete two leaves as DT , i.e. ST = C(T, 1) and
DT = C(T, 2).

According to Lemma 5, for 2-deletion, Tn,opt has degree upper bounded by 8.
Furthermore, in a tree T with root degree 1, the two deleted users in any com-
bination are from the only subtree T1. Therefore, the tree T1 is better than T
because the 2-deletion cost of T1 is one less than that of T . Thus we need not
consider root degree d = 1 when we are searching for the optimal tree.

Fact 2. For 2-deletion problem, suppose that a tree T has root degree d where
d ≥ 2 and the d subtrees are T1, T2, . . . , Td. We have

DT = max
1≤i,j≤d

{DTi + d, STi + STj + d}.
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Proof. We know that deleting any two leaves from a subtree Ti will incur a cost
at most DTi + d, while deleting two leaves from two different subtrees Ti and Tj

will incur a cost at most STi + STj + d. The 2-deletion cost comes from one of
the above cases and therefore the fact holds.

We can further remove the possibility of degree 8 by the following lemma.

Lemma 6. For 2-deletion problem, we can find an optimal tree among the trees
with node degrees bounded between 2 and 7.

In the following, we show two important properties of the optimal tree (monotone
property and 2-3 tree property) and then further remove the possibility of root
degree 2 and 3 to reduce the scope of trees within which we search for the optimal
tree. Due to space limit, most of the proofs are omitted in this version.

Lemma 7. (monotone property) For 2-deletion problem, suppose a tree T has root
degree d where d ≥ 2 and d subtrees are T1, T2, . . . , Td. Without loss of general-
ity, we assume that T has a non-increasing leaf descendant vector (n1, n2, . . . , nd),
where ni is the number of leaves in subtree Ti. Then, there exists an optimal tree
where ST1 ≥ ST2 ≥ . . . ≥ STd

and Ti is a template of Ti+1 for 2 ≤ i ≤ d − 1.

Fact 3. For trees satisfying Lemma 7, we have

DT = max{DT1 + d, ST1 + ST2 + d}.
Proof. By Fact 2 we have DT = max1≤i,j≤d{DTi + d, STi + STj + d}. Lemma 7
further ensures that max1≤i,j≤d{DTi + d, STi + STj + d} = max{DT1 + d, DT2 +
d, ST1 + ST2 + d}. Since DT2 < 2ST2 ≤ ST1 + ST2 , we have DT = max{DT1 +
d, ST1 + ST2 + d}.
In the following, we further reduce the scope for searching the optimal tree by
proving the following lemma.

Lemma 8. (2-3 tree property) For a tree T satisfying Lemma 7, we can trans-
form subtrees T2, . . . , Td into 2-3 trees without increasing the 2-deletion cost.

Proof. Given a tree T satisfying Lemma 7 and Fact 3, we transform subtrees
T2, T3, . . . , Td into 2-3 trees T ′

2, T
′
3, . . . , T

′
d to get a new tree T ′. For 2 ≤ i ≤ d,

since ST ′
i

= OPT1(ni), we have ST ′
d
≤ . . . ≤ ST ′

3
≤ ST ′

2
≤ ST2 (Lemma 3) and

DT ′
i
≤ 2ST ′

i
≤ 2ST ′

2
≤ ST1 + ST ′

2
(2 ≤ i ≤ d). Thus DT ′ = max{DT1 + d, DT ′

2
+

d, ST1 + ST ′
2

+ d} ≤ max{DT1 + d, ST1 + ST2 + d} = DT , which implies the
transformation does not increase 2-deletion cost. The lemma is then proved.

We denote the trees satisfying Lemma 8 as candidate-trees. By Lemma 8, we can
find an optimal tree among all the candidate trees. For a candidate tree T with
root degree d, we define branch Bi to be the union of Ti and the edge connecting
the root of T with the root of Ti. We say the branch B1 is the dominating branch
and other branches B2, . . . Bd are ordinary branches. We then prove the following
theorem to further remove the possibility of root degree 2 and 3 in the optimal
tree (details are omitted in this version).

Theorem 2. For 2-deletion problem, a tree T with root degree 2 or 3 can be
transformed into a tree with root degree 4 without increasing the 2-deletion cost.
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5 Optimal Structure of 2-Deletion Problem

Although we have removed the possibility of the root degree 2 and 3 in Section 4
and have fixed the structure of the ordinary branches, we still do not have an
effective algorithm to exactly compute the optimal structure because we need to
enumerate all the possible structures of the dominating branch. In this section,
we will prove that among the candidate trees with n leaves, a balanced structure
can achieve 2-deletion cost OPT2(n). The basic idea is to first investigate the
capacity g(R) for candidate trees with 2-deletion cost R (Theorem 3). Note that
the optimal tree has the minimum 2-deletion cost with n leaves, which reversely
implies that if we want to find a tree with 2-deletion cost R and at the same
time has the maximum possible number of leaves, then computing the optimal
tree for increasing n until OPT2(n) > R will produce one such solution. We
then analyze and calculate the exact value for the capacity (maximum number
of leaves) given a fixed 2-deletion cost R (Theorem 4). Finally, we prove that
certain balanced structure can always be the optimal structure that minimizes
the 2-deletion cost (Theorem 5).

Definition 5. We use capacity to denote the maximum number of leaves that
can be placed in a certain type of trees given a fixed deletion cost. According to
[6], function f(r) defined below is the capacity for 1-deletion cost r (among all
the possible trees). We use function g(R) to denote the capacity for 2-deletion
cost R (among all the possible trees). In other words, when g(R−1) < n ≤ g(R),
we have OPT2(n) = R.

f(r) =

⎧
⎨

⎩

3 · 3i−1 if r = 3i
4 · 3i−1 if r = 3i + 1
6 · 3i−1 if r = 3i + 2

To facilitate the discussion, according to Fact 3, we can divide the candidate
trees with 2-deletion cost R and root degree d into two categories as summarized
in the following definition.

Definition 6. Candidate trees of category 1: The two leaves whose deletion cost
achieves 2-deletion cost are from different branches, i.e. DT = ST1 + ST2 + d,
which implies ST1 + ST2 ≥ DT1 .

Candidate trees of category 2: The two leaves whose deletion cost achieves
2-deletion cost are both from the dominating branch B1, i.e. DT = DT1 + d,
which implies ST1 + ST2 < DT1 .

Correspondingly, we denote the capacity of the candidate trees belonging to cat-
egory 1 with 2-deletion cost R as g1(R) and denote the capacity of the candidate
trees belonging to category 2 with 2-deletion cost R as g2(R). Note that we can
find the optimal tree among the candidate trees according to Lemma 8, which
implies that with the same 2-deletion cost R, the best candidate tree can always
have equal or larger number of leaves than the general trees. That is, we have
g(R) = max{g1(R), g2(R)}. Thus in the following discussions, we only focus on
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the candidate trees. On the other hand, because we are finding trees with the
maximum number of leaves, it is easy to see that we can assume the number of
leaves in ordinary branches are all the same (Otherwise, we can make the tree
bigger without affecting the 2-deletion cost).

In all candidate trees with 2-deletion cost R, by Fact 3, we only need to
consider the case where at most one of the two leaves whose deletion cost achieves
2-deletion cost are from the ordinary branches. Suppose each ordinary branch
has 1-deletion cost r−, and correspondingly T1 has 1-deletion cost r+ where
r+ ≤ R − d − r− (otherwise we have DT ≥ r+ + r− + d > R, a contradiction).
For fixed cost R, Lemma 7 (monotonous property) implies that r+ ≥ r−. We
first prove the following capacity bound (details are omitted in this version).

Theorem 3. We have gi(R) ≤ (R − 2r−) · f(r−)(i = 1, 2).

In the following theorem, among these candidate trees we study the optimal
structure which achieves the maximum capacity for different values of R.

Theorem 4. For 2-deletion cost R, the maximum capacity is

g(R) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

6 · 3i−1 if R = 6i
7 · 3i−1 if R = 6i + 1
8 · 3i−1 if R = 6i + 2
10 · 3i−1 if R = 6i + 3
12 · 3i−1 if R = 6i + 4
15 · 3i−1 if R = 6i + 5

After we have obtained the capacity for the 2-deletion cost R, we finally prove
that among the candidate trees with n leaves, the optimal cost can be achieved
by some balanced structure as shown below.

Definition 7. We use the balanced tree to denote a tree with root degree d where
each subtree is 2-3 tree and has number of leaves differed by at most 1.

Theorem 5. Among trees with n leaves,

(1)when n ∈ (15 · 3i−1, 18 · 3i−1], the optimal tree is a balanced tree which has
root degree 6 and 2-deletion cost 6i+6.
(2)when n ∈ (12 · 3i−1, 15 · 3i−1], the optimal tree is a balanced tree which has
root degree 5 and 2-deletion cost 6i+5.
(3)when n ∈ (10 · 3i−1, 12 · 3i−1], the optimal tree is a balanced tree which has
root degree 6 and 2-deletion cost 6i+4.
(4)when n ∈ (8 ·3i−1, 10 ·3i−1], the optimal tree is a balanced tree which has root
degree 5 and 2-deletion cost 6i+3.
(5)when n ∈ (7 · 3i−1, 8 · 3i−1], the optimal tree is a balanced tree which has root
degree 6 and 2-deletion cost 6i+2.
(6)when n ∈ (6 · 3i−1, 7 · 3i−1], the optimal tree is a balanced tree which has root
degree 7 and 2-deletion cost 6i+1.
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Proof. When n ∈ (15 · 3i−1, 18 · 3i−1], we have OPT2(n) = 6i + 6. We will prove
that the balanced tree with root degree 6 can always achieve this optimal cost.
In the balanced tree, each subtree Tj (1 ≤ j ≤ 6) has the number of leaves
nj = �n−j+1

6 � ∈ [	 5
2 · 3i−1
, 3 · 3i−1]. By function f(·), we have STi ≤ 3i. Thus

any two leaves from the tree will incur a deletion cost at most 2 · 3i+6 = 6i+6.
When n ∈ (12 · 3i−1, 15 · 3i−1] we have OPT2(n) = 6i + 5. Then we will prove

that the balanced tree with root degree 5 can always achieve the optimal cost.
In the balanced tree, each subtree Tj (1 ≤ j ≤ 5) has the number of leaves
nj = �n−j+1

5 � ∈ [	 12
5 · 3i−1
, 3 · 3i−1]. By function f(·), we have STi ≤ 3i. Thus

any two leaves from the tree will incur a deletion cost at most 2 · 3i+5 = 6i+5.
When n ∈ (10 · 3i−1, 12 · 3i−1] we have OPT2(n) = 6i+4 and nj = �n−j+1

6 � ∈
[	 5

3 · 3i−1
, 2 · 3i−1]. By function f(·), we have STi ≤ 3i− 1. Thus any two leaves
from the tree will incur a deletion cost at most 2 · (3i − 1) + 6 = 6i + 4.

When n ∈ (8 · 3i−1, 10 · 3i−1], we have OPT2(n) = 6i+ 3 and nj = �n−j+1
5 � ∈

[	 8
5 · 3i−1
, 2 · 3i−1]. By function f(·), we have STi ≤ 3i− 1. Thus any two leaves

from the tree will incur a deletion cost at most 2 · (3i − 1) + 5 = 6i + 3.
When n ∈ (7 · 3i−1, 8 · 3i−1], we have OPT2(n) = 6i + 2 and nj = �n−j+1

6 � ∈
[	 7

6 · 3i−1
, 4
3 · 3i−1]. By function f(·), we have STi ≤ 3i− 2. Thus any two leaves

from the tree will incur a deletion cost at most 2 · (3i − 2) + 6 = 6i + 2.
When n ∈ (6 · 3i−1, 7 · 3i−1], we have OPT2(n) = 6i + 1. The balanced tree

with root degree 7 where nj = �n−j+1
7 � ∈ [	 6

7 · 3i−1
, 3i−1] can always achieve
the optimal cost. By function f(·), we have STi ≤ 3i − 3. Thus any two leaves
from the tree will incur a deletion cost at most 2 · (3i − 3) + 7 = 6i + 1.

Note that in some cases a balanced tree with degree 4 can also be an optimal
tree, but it is not necessary to consider this possibility because we do not need
to find all the possible structures of an optimal tree with n leaves.

Finally we have fixed the structure of the dominating branch and obtained the
optimal tree structure for the 2-deletion problem. We conjecture the general
result for the k-deletion problem in the next section.

6 Conclusion

In this paper, we study the optimal structure for the key tree problem. We
consider the scenario where two or more users are deleted from the key tree and
aim to find an optimal tree in this situation. We first prove a degree upper bound
(k+1)2−1 for the k-deletion problem. Then we focus on the 2-deletion problem
by firstly removing the possibility of root degree 2 and 3 to reduce the scope
for searching the optimal tree. Then, we investigate the capacity of the key tree.
Based on this, we prove that the optimal tree for the 2-deletion problem is a
balanced tree with certain root degree 5 ≤ d ≤ 7 where the number of leaves in
each subtree differs by at most 1 and each subtree is a 2-3 tree.

The capacity f(·) where k = 1 and g(·) where k = 2 stimulates us to conjecture
the general form of capacity Gk(R) which denotes the maximum number of leaves
that can be placed in a tree given the k-deletion cost R in the k-deletion problem.
Based on the form of f(·) and g(·), we conjecture the capacity Gk(R) to be of
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the form shown in Equation (1). Furthermore, if the conjecture is proved to be
correct, it is also possible to obtain the optimal structure in a similar way as in
the proof of Theorem 5.

Gk(R) =

⎧
⎨

⎩

(3k + α) · 3i−1 if R = 3k · i + α, α ∈ [0, k)
(4k + 2(α − k)) · 3i−1 if R = 3k · i + α, α ∈ [k, 2k)
(6k + 3(α − 2k)) · 3i−1 if R = 3k · i + α, α ∈ [2k, 3k)

(1)

One of the possible future work is therefore to investigate the capacity and
optimal structure for the general k-deletion problem. We believe that the concept
of capacity will also be very important to this problem.
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