
Context-Aware Query Suggestion by Mining Click-Through
and Session Data∗

Huanhuan Cao1 Daxin Jiang2 Jian Pei3 Qi He4

Zhen Liao5 Enhong Chen1 Hang Li2
1University of Science and Technology of China 2Microsoft Research Asia 3Simon Fraser University

4Nanyang Technological University 5Nankai University
1{caohuan, cheneh}@ustc.edu.cn 2{djiang, hangli}@microsoft.com 3jpei@cs.sfu.ca

4qihe@pmail.ntu.edu.sg 5liaozhen@mail.nankai.edu.cn

ABSTRACT
Query suggestion plays an important role in improving the
usability of search engines. Although some recently pro-
posed methods can make meaningful query suggestions by
mining query patterns from search logs, none of them are
context-aware – they do not take into account the immedi-
ately preceding queries as context in query suggestion. In
this paper, we propose a novel context-aware query sugges-
tion approach which is in two steps. In the offline model-
learning step, to address data sparseness, queries are sum-
marized into concepts by clustering a click-through bipar-
tite. Then, from session data a concept sequence suffix tree
is constructed as the query suggestion model. In the online
query suggestion step, a user’s search context is captured
by mapping the query sequence submitted by the user to a
sequence of concepts. By looking up the context in the con-
cept sequence suffix tree, our approach suggests queries to
the user in a context-aware manner. We test our approach
on a large-scale search log of a commercial search engine
containing 1.8 billion search queries, 2.6 billion clicks, and
840 million query sessions. The experimental results clearly
show that our approach outperforms two baseline methods
in both coverage and quality of suggestions.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Algorithms, Experimentation

Keywords
Query suggestion, click-through data, session data

∗The work was done when Huanhuan Cao, Qi He, and Zhen
Liao were interns at Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

1. INTRODUCTION
The effectiveness of information retrieval from the web

largely depends on whether users can issue queries to search
engines, which properly describe their information needs.
Writing queries is never easy, because usually queries are
short (one or two words on average) [19] and words are am-
biguous [5]. To make the problem even more complicated,
different search engines may respond differently to the same
query. Therefore, there is no “standard” or “optimal” way
to issue queries to search engines, and it is well recognized
that query formulation is a bottleneck issue in the usability
of search engines.

Recently, most commercial search engines such as Google,
Yahoo!, Live Search, Ask, and Baidu provide query sugges-
tions to improve usability. That is, by guessing a user’s
search intent, a search engine suggests queries which may
better reflect the user’s information need. A commonly used
query suggestion method [1, 3, 19] is to find similar queries
in search logs and use those queries as suggestions for each
other. Another approach [8, 10, 11] mines pairs of queries
which are adjacent or co-occur in the same query sessions.

Although the existing methods may suggest good queries
in some cases, none of them are context-aware – they do
not take into account the immediately preceding queries as
context in query suggestion.

Example 1 (Search intent and context). Suppose
a user raises a query “gladiator”. It is hard to determine the
user’s search intent, i.e., whether the user is interested in the
history of gladiator, famous gladiators, or the film “gladia-
tor”. Without looking at the context of search, the existing
methods often suggest many queries for various possible in-
tents, and thus may have a low accuracy in query suggestion.

If we find that the user submits a query “beautiful mind”
before “gladiator”, it is very likely that the user is inter-
ested in the film “gladiator”. Moreover, the user is probably
searching the films played by Russell Crowe. The query con-
text which consists of the recent queries issued by the user
can help to better understand the user’s search intent and
enable us to make more meaningful suggestions.

In this paper, we propose a novel context-aware query sug-
gestion approach by mining click-through data and session
data. We make the following contributions.

First, instead of mining patterns of individual queries which
may be sparse, we summarize queries into concepts. A con-
cept is a group of similar queries. Although mining concepts
of queries can be reduced to a clustering problem on a bi-
partite graph, the very large data size and the “curse of

875

dimensionality” pose great challenges. We may have mil-
lions of unique queries involving millions of unique URLs,
which may result in hundreds of thousands of concepts. To
tackle these challenges, we develop a novel, highly scalable
yet effective algorithm.

Second, there are often a huge number of patterns that
can be used for query suggestion. How to mine those pat-
terns and organize them properly for fast query suggestion
is far from trivial. We develop a novel structure of concept
sequence suffix tree to address this challenge.

Third, we empirically study a large-scale search log con-
taining 1.8 billion search queries, 2.6 billion clicks, and 840
million query sessions. We explore several interesting prop-
erties of the click-through bipartite and illustrate several
important statistics of the session data. The data set in this
study is several magnitudes larger than those reported in
previous work.

Last, we test our query suggestion approach on the search
log. The experimental results clearly show that our ap-
proach outperforms two baseline methods in both coverage
and quality of suggestions.

The rest of the paper is organized as follows. We first
present the framework of our approach in Section 2 and re-
view the related work in Section 3. The clustering algorithm
and the query suggestion method are described in Sections 4
and 5, respectively. We report an empirical study in Sec-
tion 6. The paper is concluded in Section 7.

2. FRAMEWORK
When a user submits a query q, our context-aware ap-

proach first captures the context of q which is represented
by a short sequence of queries issued by the same user im-
mediately before q. We then check the historical data and
find what queries many users often ask after q in the same
context. Those queries become the candidate suggestions.

There are two critical issues in the context-aware approach.
First, how should we model and capture contexts well? Users
may raise various queries to describe the same information
need. For example, to search for Microsoft Research Asia,
queries “Microsoft Research Asia”, “MSRA”, or “MS Re-
search Beijing”may be formulated. Using specific queries to
describe context directly cannot capture contexts concisely
and accurately.

To tackle this problem, we propose summarizing individ-
ual queries into concepts, where a concept is a small set of
queries that are similar to each other. Using concepts to
describe contexts, we can address the sparseness of queries
and interpret users’ search intents more accurately. To mine
concepts from queries, we use the URLs clicked for queries
as the features of the queries. In other words, we mine con-
cepts by clustering queries in a click-through bipartite. In
Section 4, we will describe how to mine concepts of queries.

With the help of concepts, a context can be represented
by a short sequence of concepts about the queries asked by
the user in the session. The next issue is how to find the
queries that many users often ask in a particular context.

It is infeasible to search a huge search log online for a
given context. We propose a context mining method which
mines frequent contexts from historical sessions in search
log data. The contexts mined are organized into a concept
sequence suffix tree which can be searched quickly. The
mining process is conducted offline. When a user context is
presented, we look up the context in the concept sequence
suffix tree to find out the concepts to which the user’s next

Concept Sequence

Suffix Tree

qa

Suggestions: qb

qc

...

Query Sessions

ConceptsClick-Through

Bipartite

Search Logs

User Input: q1q2q3Offline

Part
Concept

Sequence

q11 q12

q21 q22 q23

q31 q32

... ...

C1

C2

...

Online

Part

Figure 1: The framework of our approach.

query most likely belongs, and suggest the most popular
queries in those concepts to the user. The details about
mining sessions, building concept sequence suffix tree, and
making query suggestions are discussed in Section 5.

Figure 1 shows the framework of our context-aware ap-
proach, which consists of two steps. The offline model-
learning step mines concepts from a click-through bipartite
constructed from search log data, and builds a concept se-
quence suffix tree from sessions in the data. The online query
suggestion step matches the current user’s concept sequence
against the concept sequence suffix tree, finds the concepts
that the user’s next query may belong to, and suggests the
most popular queries in the concepts.

3. RELATED WORK
A great challenge for search engines is to understand users’

search intents behind queries. Traditional approaches to
query understanding focus on exploiting information such
as users’ explicit feedbacks (e.g., [14]), implicit feedbacks
(e.g., [18]), user profiles (e.g., [4]), thesaurus (e.g., [13]), snip-
pets (e.g., [17]), and anchor texts (e.g., [12]).

Several recent studies use search logs to mine “wisdom of
the crowds”for query understanding. For example, Huang et
al. [10] mined search session data for query pairs frequently
co-occurring in the same sessions. The mined query pairs
were then used as suggestions for each other. Fonseca et
al. [8] and Jones et al. [11] extracted query pairs which are
often adjacent in the same sessions. The extracted adjacent
query pairs were utilized for query expansion [8] and query
substitution [11]. We call these methods session-based ap-
proaches.

Some other studies focus on mining similar queries from
a click-through bipartite constructed from search logs. The
basic assumption is that two queries are similar to each other
if they share a large number of clicked URLs. After the
clustering process, the queries within the same cluster are
used as suggestions for each other. We call these meth-
ods cluster-based approaches. For example, Beeferman et
al. [3] applied a hierarchical agglomerative method to ob-
tain similar queries in an iterative way. Wen et al. [19] com-
bined query content information and click-through informa-
tion and applied a density-based method, DBSCAN [7], to
cluster queries. These two approaches are effective to group
similar queries, however, both methods have high computa-
tional cost and cannot scale up to large data. Baeza-Yates et
al. [1] used the k-means algorithm to derive similar queries.
The k-means algorithm requires the user to specify the num-
ber of clusters, which is difficult for clustering search logs.

There are some other clustering methods such as BIRCH
[21] though they have not been adopted in query under-

876

User ID Time Stamp Event Type Event Value

User 1 20071205110843 QUERY KDD 08
User 2 20071205110843 CLICK www.aaa.com
User 1 20071205110845 CLICK www.kdd2008.com
...

Table 1: A search log as a stream of query and click
events.

standing. We find, however, those algorithms may not be
able to handle the following two challenges. First, many al-
gorithms cannot address the“curse of dimensionality”caused
by the large number of URLs in logs. Second, most algo-
rithms cannot support the dynamic update of clusters when
new logs are available.

The approach developed in this paper has three criti-
cal differences from previous ones. First, unlike the exist-
ing session-based methods which only focus on query pairs,
we consider variable-length contexts of queries, and pro-
vide context-aware suggestions. Second, different from the
cluster-based methods, we do not simply use queries in the
same cluster as candidate suggestions for each other. In-
stead, we suggest queries that a user may ask next in the
query context, which are more useful than queries simply
replaceable to the current query. Finally, instead of using
individual queries to capture users’ search intents, our sug-
gestion method summarizes queries into concepts.

4. MINING QUERY CONCEPTS
In this section, we summarize queries into concepts. We

first describe how to form a click-through bipartite from
search log data, and then present an efficient algorithm which
can mine from a very large bipartite.

4.1 Click-Through Bipartite
To group similar queries into a concept, we need to mea-

sure the similarity between queries. When a user raises a
query to a search engine, a set of URLs will be returned
as the answer. The URLs clicked by the user, called the
clicked URL set of the query, can be used to approximate
the information need described by the query. We can use
the clicked URL set of a query as the set of features of that
query. The information about queries and their clicked URL
sets is available in search log data.

A search log can be regarded as a sequence of query and
click events. Table 1 shows an example of a search log. From
the raw search log, we can construct a click-through bipartite
as follows. A query node is created for each unique query in
the log. Similarly, a URL node is created for each unique
URL in the log. An edge eij is created between query node
qi and URL node uj if uj is a clicked URL of qi. The weight
wij of edge eij is the total number of times when uj is a
click of qi aggregated over the whole log. Figure 2 shows an
example click-through bipartite.

The click-through bipartite can help us to find similar
queries. The basic idea is that if two queries share many
clicked URLs, they are similar to each other [1, 3, 19]. From
the click-through bipartite, we represent each query qi as
an L2-normalized vector, where each dimension corresponds
to one URL in the bipartite. To be specific, given a click-
through bipartite, let Q and U be the sets of query nodes and
URL nodes, respectively. The j-th element of the feature

10

1

2u

u3

u4

u5

URLs

q2

3

q4

u1

q

30

20

Queries

100

1000

120

40

q

Figure 2: An example of click-through bipartites.

vector of a query qi ∈ Q is

−→qi [j] =

{
norm(wij) if edge eij exists;
0 otherwise,

(1)

where uj ∈ U and norm(wij) =
wij√∑
∀eik

w2
ik

.

The distance between two queries qi and qj is measured
by the Euclidean distance between their normalized feature
vectors. That is,

distance(qi, qj) =

√ ∑
uk∈U

(−→qi [k]−−→qj [k])2. (2)

4.2 Clustering Method
There are several challenges in clustering queries effec-

tively and efficiently in a click-through bipartite. First, a
click-through bipartite from a search log can be huge. For
example, the data set in our experiments consists of more
than 151 million unique queries. Therefore, the clustering
algorithm must be efficient and scalable to handle large data
sets. Second, the number of clusters is unknown. The clus-
tering algorithm should be able to automatically determine
the number of clusters. Third, since each distinct URL is
treated as a dimension in a query vector, the data set is of ex-
tremely high dimensionality. For example, the data set used
in our experiments includes more than 114 million unique
URLs. Therefore, the clustering algorithm must tackle the
“curse of dimensionality”. Last, the search logs increase dy-
namically. Therefore, the clustering needs to be maintained
incrementally.

To the best of our knowledge, no existing methods can
address all the above challenges simultaneously. We develop
a new method as shown in Algorithm 1.

Algorithm 1 Clustering queries.

Input: the set of queries Q and the diameter threshold Dmax;
Output: the set of clusters Θ ;
Initialization: dim array[d] = φ for each dimension d;
1: for each query qi ∈ Q do
2: C-Set = φ;
3: for each non-zero dimension d of −→qi do
4: C-Set ∪= dim array[d];
5: C = argminC′∈C-Set distance(qi, C

′);
6: if diamter(C ∪ {qi}) ≤ Dmax then
7: C ∪= {qi}; update the centroid and diameter of C;
8: else C = new cluster({qi}); Θ ∪= C;
9: for each non-zero dimension d of −→qi do
10: if C /∈ dim array[d] then link C to dim array[d];
11: return Θ;

In our method, a cluster C is a set of queries. The normal-

ized centroid of the cluster is −→c = norm(
∑

qi∈C
−→qi

|C|), where

877

|C| is the number of queries in C. The distance between a
query q and a cluster C is given by

distance(q, C) =

√ ∑
uk∈U

(−→q [k]−−→c [k])2, (3)

We adopt the diameter measure in [21] to evaluate the com-
pactness of a cluster, i.e.,

D =

√∑|C|
i=1

∑|C|
j=1(

−→qi −−→qj)2

|C|(|C| − 1)
. (4)

We use a diameter parameter Dmax to control the gran-
ularity of clusters: every cluster has a diameter at most
Dmax.

Our method only needs one scan of the queries. We create
a set of clusters as we scan the queries. For each query q,
we first find the closest cluster C to q among the clusters
obtained so far, and then test the diameter of C ∪ {q}. If
the diameter is not larger than Dmax, q is assigned to C and
C is updated to C∪{q}. Otherwise, a new cluster containing
only q is created.

The potential major cost in our method is from finding the
closest cluster for each query since the number of clusters can
be very large. One may suggest to build a tree structure such
as the CF-Tree in BIRCH [21]. Unfortunately, as shown in
previous studies (e.g., [9]), the CF-Tree structure may not
handle high dimensionality well: when the dimensionality
increases, BIRCH tends to compress the whole data set into
a single data item.

How can we overcome the “curse of dimensionality” and
find the closest cluster fast? We observe that the queries in
the click-through bipartite are very sparse. For example, in
our experimental data, a query is connected with an average
number of 8.2 URLs. Moreover, each URL is also involved in
only a few queries. In our experiments, the average degree
of URL nodes is only 1.8. Therefore, for a query q, the
average size of Qq, the set of queries which share at least
one URL with q, is only 8.2 · (1.8 − 1) = 6.56. Intuitively,
for any cluster C, if C ∩ Qq = φ, C cannot be close to q

since the distance of any member of C to q is
√

2, which
is the farthest distance calculated according to Equation 2
(please note that the feature vectors of queries have been
normalized). In other words, to find out the closest cluster
to q, we only need to check the clusters which contain at
least one query in Qq. Since each query belongs to only one
cluster in our method, the average number of clusters to be
checked is not larger than 6.56.

Based on the above idea, we use a dimension array data
structure (Figure 3) to facilitate the clustering procedure.
Each entry of the array corresponds to one dimension di

and links to a set of clusters Θi, where each cluster C ∈ Θi

contains at least one member query qj such that −→qj [i] 6= 0.
As an example, for a query q, suppose the non-zero dimen-
sions of −→q are d3, d6, and d9. To find the closest cluster to
q, we only need to union the cluster sets Θ3, Θ6, and Θ9,
which are linked by the 3rd, the 6th, and the 9th entries of
the dimension array, respectively. The closest cluster to q
must be in the union.

Since the click-through bipartite is sparse, one might won-
der whether it is possible to derive clusters by finding the
connected components from the bipartite. To be specific,
two queries qs and qt are connected if there exists a query-
URL path qs-u1-q1-u2-. . .-qt where a pair of adjacent query
and URL in the path are connected by an edge. A clus-

...

d3 d6 d9

Query q

d1 d3... d6 d9...

C1

Non-zero

dimensions of q

Dimension

Array

CNC... ...Clusters

Figure 3: The data structure for clustering.

ter of queries can be defined as a maximal set of connected
queries. An advantage of this method is that it does not
need a specified parameter Dmax. However, in our experi-
ments, we find that the bipartite is highly connected though
sparse. In other words, almost all queries, no matter similar
or not, are included in a single connected component. More-
over, the path between dissimilar queries cannot be broken
by simply removing a few “hubs” of query or URL nodes as
shown in Figure 6. Thus, clusters cannot be derived from
connected components straightforwardly.

Although Algorithm 1 is efficient, the computation cost
can still be very large. Can we prune the queries and URLs
without degrading the quality of clusters? We observe that
edges with low weights are likely to be formed due to users’
random clicks, and should be removed to reduce noise. To
be specific, let eij be the edge connecting query qi and uj ,
and wij be the weight of eij . Moreover, let wi be the sum
of the weights of all the edges where qi is one endpoint, i.e.,
wi =

∑
j wij . We can prune an edge eij if the absolute

weight wij ≤ τabs or the relative weight
wij

wi
≤ τrel, where

τabs and τrel are user specified thresholds. After pruning
low-weight edges, we can further remove the query and the
URL nodes whose degrees become zero. In our experiments,
we set τabs = 5 and τrel = 0.1. After the pruning process,
the algorithm can run efficiently on a PC of 2 GB main
memory for the experimental data.

5. CONDUCTING QUERY SUGGESTIONS
In this section, we first introduce how to derive session

data from a search log. We then develop a novel structure,
concept sequence suffix tree, to organize the patterns mined
from session data. Finally, we present the query suggestion
method based on the patterns mined.

5.1 Query Sessions
As explained in Section 2, the context of a user query

consists of the immediately preceding queries issued by the
same user. To learn a context-aware query suggestion model,
we need to collect query contexts from user query sessions.

We construct session data in three steps. First, we extract
each individual user’s behavior data from the whole search
log as a separate stream of query/click events. Second, we
segment each user’s stream into sessions based on a widely-
used rule [20]: two consecutive events (either query or click)
are segmented into two sessions if the time interval between
them exceeds 30 minutes. Finally, we discard the click events
and only keep the sequence of queries in each session.

Query sessions can be used as training data for query
suggestion. For example, Table 2 shows some real sessions
as well as the relationship between the queries in the ses-

878

Query Relation Session

Spelling correction MSN messnger ⇒ MSN messenger
Peer queries SMTP ⇒ POP3
Acronym BAMC ⇒

Brooke Army Medical Center
Generalization Washington mutual home loans ⇒

home loans
Specialization Nokia N73 ⇒ Nokia N73 themes ⇒

free themes Nokia N73

Table 2: Examples of sessions and relationship be-
tween queries in sessions.

sions. We can see that a user may refine the queries or
explore related information about his or her search intent
in a session. As an example, from the last session in Ta-
ble 2, we can derive three training examples, i.e., “Nokia
N73 themes” is a candidate suggestion for “Nokia N73”, and
“free themes Nokia N73” is a candidate suggestion for both
single query“Nokia N73 themes”and query sequence “Nokia
N73 ⇒ Nokia N73 themes”.

5.2 Concept Sequence Suffix Tree
Queries in the same session are often related. However,

since users may formulate different queries to describe the
same search intent, mining patterns of individual queries
may miss interesting patterns. To address this problem, we
map each session qs = q1q2 · · · ql in the training data into
a sequence of concepts cs = c1c2 · · · cl, where a concept ci

is represented by a cluster Ci derived in Section 4.2 and
a query qi is mapped to ci if qi ∈ Ci. If two consecutive
queries belong to the same concept, we record the concept
only once in the sequence.

How can we mine patterns from concept sequences? A
straightforward method can first mine all frequent sequences
from session data. For each frequent sequence cs = c1 . . . cl,
we can use cl as a candidate concept for cs′ = c1 . . . cl−1. We
then can build a ranked list of candidate concepts c for cs′

based on their occurrences following cs′ in the same sessions;
the more occurrences c has, the higher c is ranked. For each
candidate concept c, we can choose from the corresponding
cluster C the member query which has the largest number
of clicks as the representative of c. In practice, we only need
to keep the representative queries of the top K (e.g., K = 5)
candidate concepts. These representative queries are called
the candidate suggestions for sequence cs′ and can be used
for query suggestion when cs′ is observed online.

The major cost in the above method is from computing
the frequent sequences. Traditional sequential pattern min-
ing algorithms such as GSP [16] and PrefixSpan [15] can be
very expensive, since the number of concepts (items) and
the number of sessions (sequences) are both very large. We
tackle this challenge with a new strategy based on the fol-
lowing observations. First, since the concepts co-occurring
in the same sessions are often correlated in semantics, the
actual number of concept sequences in session data is far less
than the number of possible combinations of concepts. Sec-
ond, given the concept sequence cs = c1 . . . cl of a session,
since we are interested in extracting the patterns for query
suggestion, we only need to consider the subsequences with
lengths from 2 to l. To be specific, a subsequence of the con-
cept sequence cs is a sequence c1+i, . . . , cm+i, where i ≥ 0
and m+ i ≤ l. Therefore, the number of subsequences to be

considered for cs is only l·(l−1)
2

. Finally, the average num-

{}

C2C1 C3C1 C1C5 C2C5 C7C5

C1 C2 C5C4C3

C4C1 C1C3 C6C3

C2C3C1 C4C3C1 C9C2C5

Figure 4: A concept sequence suffix tree.

Algorithm 2 Building the concept sequence suffix tree.

Input: the set of frequent concept sequences CS and the number
K of candidates;
Output: the suffix concept tree T ;
Initialization: T .root=∅;
1: for each frequent concept sequence cs = c1 . . . cl do
2: cn = findNode(c1 . . . cl−1, T);
3: minc = argminc∈cn.candlistc.freq;
4: if (cs.freq > minc.freq) or (|cn.candlist| < K) then
5: add cl into cn.candlist; cl.freq= cs.freq;
6: if |cn.candlist| > K then remove minc from cn.candlist;
7: return T ;

Method: findNode(cs = c1 . . . cl, T);

1: if |cs| = 0 then return T .root;
2: cs′ = c2 . . . cl; pn = findNode(cs′, T); cn = pn.childlist[c1];
3: if cn == null then
4: cn = new node (cs); cn.candlist=φ; pn.childlist[c1]= cn;
5: return cn;

ber of concepts in a session is usually small. Based on these
observations, we do not enumerate the combinations of con-
cepts, instead, we enumerate the subsequences of sessions.

Technically, we implement the mining of frequent concept
sequences with a distributed system under the map-reduce
programming model [6]. In the map operation, each ma-
chine (called a process node) receives a subset of concept
sequences as input. For the concept sequence cs of a ses-
sion, the process node outputs a key-value pair (cs′, 1) to a
bucket for each subsequence cs′ with a length greater than
1. In the reduce operation, the process nodes aggregate the
counts for cs′ from all the buckets and output a key-value
pair (cs′, freq) where freq is the frequency of cs′. A con-
cept sequence cs′ is pruned if its frequency is smaller than
a threshold.

Once we get the frequent concept sequences, we organize
them into a concept sequence suffix tree (Figure 4). Formally,
a (proper) suffix of a concept sequence cs = c1 . . . cl is an
empty sequence or a sequence cs′ = cl−m+1 . . . cl, where
m ≤ l (m < l). In a concept sequence suffix tree, each node
corresponds to a frequent concept sequence cs. Given two
nodes csi and csj , csi is the parent node of csj if csi is the
longest proper suffix of csj . Except the root node which
corresponds to the empty sequence, each node on the tree is
associated with a list of candidate suggestions.

Algorithm 2 describes the process of building a concept
sequence suffix tree. Basically, the algorithm starts from
the root node and scans the set of frequent concept se-
quences once. For each frequent sequence cs = c1 . . . cl,
the algorithm first finds the node cn corresponding to cs′ =
c1 . . . cl−1. If cn does not exist, the algorithm creates a new
node for cs′ recursively. Finally, the algorithm updates the
list of candidate concepts of cs if cl is among the top K
candidates observed so far.

879

Algorithm 3 Query suggestion.

Input: the concept sequence suffix tree T and user input query
sequence qs;
Output: the ranked list of suggested queries S-Set;
Initialization: curN= T .root; S-Set = φ;

1: map qs into cs;
2: curC = the last concept in cs;
3: while true do
4: chN = curN ’s child node whose first concept is curC;
5: if (chN ==null) then break;
6: curN = chN ; curC = the previous concept of curC in cs;
7: if (curC ==null) then break;
8: if curN != T .root then
9: S-Set = curN ’s candidate suggestions;
10: return S-Set;

In Algorithm 2, the major cost for each sequence is from
the recursive function findNode, which looks up the node cn
corresponding to c1 . . . cl−1. Clearly, the recursion executes
at l − 1 levels. At each level, the potential costly operation
is the access of the child node cn from the parent node pn
(the last statement in line 2 of Method findNode). We use a
heap structure to support the dynamic insertion and access
of the child nodes. In practice, only the root node has a
large number of children, which cannot exceed the number
of concepts NC ; while the number of children of other nodes
is usually small. Therefore, the recursion takes O(log NC)
time and the whole algorithm takes O(Ncs · log NC) time,
where Ncs is the number of frequent concept sequences.

5.3 Online Query Suggestion
Suppose the system receives a sequence of user input queries

q1 · · · ql. Similar to the procedure of building training ex-
amples, the query sequence is also mapped into a concept
sequence. However, unlike the queries in the training ex-
amples, an online input query qi may be new and may not
belong to any concept derived from the training data. More-
over, when qi is a new query, no click-through information
is available. In this case, the mapping process stops and the
concept sequence corresponding to qi+1 · · · ql is returned.

After the mapping procedure, we start from the last con-
cept in the sequence and search the concept sequence suffix
tree from the root node. The process is shown in Algo-
rithm 3. We maintain two pointers: curC is the current
concept in the sequence and curN is the current node on
the suffix tree. We check whether the current node curN
has a child node chN whose first concept is the same as
curC. If so, we move to the previous concept (if exists) of
curC and visit the child node chN of curN . If no previous
concept exists, or no child node chN of curN matches curC,
the search process stops, and the candidate suggestions of
the current node curN are used for query suggestion. A
special case is that curN is the root node when the search
process stops. This means no match for the last concept
in the concept sequence is found on the suffix tree. In this
case, the system cannot provide suggested queries according
to the current user input.

The mapping of a query sequence qs into a concept se-
quence cs (line 1) takes O(|qs|) time. The aim of the while
loop (lines 3-8) is to find the node which matches the suffix
of cs as much as possible. As explained in Section 5.2, the
cost of this operation is O(log NC). In fact, when generating
suggested queries online, we do not need to maintain the dy-
namic heap structure as during the building process of the
tree. Instead, we can serialize the children of the root node

Original Graph Pruned Graph
Query Nodes 151,869,102 1,835,270
URL Nodes 114,882,486 8,309,988

Edges 631,590,146 15,043,517
Query Occurrences 1,812,563,301 926,442,156

Clicks 2,554,683,191 1,321,589,933

Table 3: The size of the click-through bipartite be-
fore and after pruning.

into a static array structure. In this case, the search cost
can be reduced to O(1). To sum up, the time for our query
suggestion process is O(|qs|), which meets the requirement
of online process well.

6. EXPERIMENTS
We extract a large-scale search log from a commercial

search engine as the training data for query suggestion. To
facilitate the interpretation of the experimental results, we
only focus on the Web searches in English from the US mar-
ket. The log contains 1,812,563,301 search queries, 2,554,683,191
clicks, and 840,356,624 query sessions, which involve 151,869,102
unique queries and 114,882,486 unique URLs.

6.1 Clustering the Click-Through Bipartite
We build a click-through bipartite to derive concepts. As

described in Section 4.2, we set τabs = 5 and τrel = 0.1
to prune low-weight edges. Table 3 shows the sizes of the
click-through bipartite before and after the pruning process.

It has been shown in previous work (e.g., [2]) that the
occurrences of queries and the clicks of URLs exhibit power-
law distributions. However, the properties of the click-through
bipartite have not been well explored.

Figure 5(a) shows the distribution of the edge weights
(please note the x- and y-axes in Figure 5 are in log scale).
The distribution follows power law. Therefore, although the
pruning process removes 76% edges and 96% nodes, there
are still 51.1% of the query occurrences and 51.7% of the
URL clicks remained in the pruned data.

Figure 5(b) shows the number of query nodes versus the
degree of nodes. The curve can be divided into three in-
tervals. In the first interval (degree ranging from 1 to 10),
the number of queries drops sharply from about 300, 000 to
80, 000. This interval consists of the major part (73.8%)
of the queries. In other words, most queries are associated
with a small number of URLs. The second interval (degree
spanning from 11 to 200) approximates a power-law distribu-
tion. There are about 26.2% queries falling in this interval.
This means a small part of the queries are associated with
a moderate number of URLs. The last interval (degree be-
tween 201 and 600) includes only 22 queries. It would be
interesting to further study how such a degree distribution
is formed, though it is beyond the scope of this paper. The
average degree of query nodes is 8.2.

Figure 5(c) shows the number of URL nodes versus the
degree of nodes. The curve fits a power-law distribution
well. The average degree of URL nodes is 1.8. The curves
in Figure 5(b) and (c) illustrate why the clustering algorithm
in Section 4.2 is efficient: since the average degrees of query
and URL nodes are both low, the average number of clusters
to be checked for each query is small.

We then explore the connectivity of the click-through bi-
partite. First, we find the connected components in the

880

100 102 104 106 108100

102

104

106

Edge weight

N
um

be
r o

f e
dg

es

distribution
power law : a * x−1.85

100 101 102 103100

102

104

106

Degree of query nodes

N
um

be
r o

f q
ue

ry
 n

od
es

distribution
power law: a * x−3.70

100 101 102 103100

102

104

106

108

Degree of URL nodes

N
um

be
r o

f U
R

L
no

de
s

distribution
power law: a * x−2.61

(a) (b) (c)

Figure 5: The distributions of (a) edge weights, (b) query node degrees, and (c) URL node degrees.

100 102 104 106 108100

102

104

106

Component size

N
um

be
r o

f c
om

po
ne

nt
s

distribution
power law: a * x−3.74

maximal component

0 20 40 60 80 100
0

20

40

60

80

100

Ratio of removed query nodes(%)

R
el

at
iv

e
si

ze
 o

f m
ax

 c
om

po
ne

nt
(%

)

0 20 40 60 80 100
0

20

40

60

80

100

Ratio of removed URL nodes(%)

R
el

at
iv

e
si

ze
 o

f m
ax

 c
om

po
ne

nt
(%

)

(a) (b) (c)

Figure 6: (a) The distribution of component sizes, (b) the relative size of the largest component after removing
top degree query nodes, and (c) the relative size of the largest component after removing top degree URL
nodes.

bipartite and plot the number of connected components ver-
sus the number of queries in the components (Figure 6(a)).
The bipartite consists of a single large connected component
(about 88.6% of all queries) and many small connected com-
ponents (with size from 1 to 20). We further test whether
the large connected component can be broken by removing
a few “hubs”, i.e., nodes with high degrees. To do this, we
keep removing the top 1%, 2%, . . ., 99% query nodes with
the largest degrees and measuring the percentage of the size
of the largest component over the total number of remain-
ing query nodes. Figure 6(b) shows the effect of removing
top degree query nodes. We can see the percentage of the
queries held by the largest component gradually drops when
more top degree query nodes are removed. However, even
when half of the query nodes are removed, the largest com-
ponent still holds about one third of the remaining query
nodes. This suggests that the click-through bipartite is
highly-connected, and the cluster structure cannot be ob-
tained by simply removing a few “hubs”. Figure 6(c) shows
the effect of removing the top degree URL nodes. Removing
the top degree URL nodes can break the largest connected
component faster than removing the top degree query nodes.
However, removing the URL nodes loses the correlation be-
tween queries since the URLs are considered as the features
of queries.

We apply the clustering algorithm on the pruned click-
through bipartite with Dmax = 1 and obtain 218,673 clus-
ters with size ≥ 2. These clusters cover 707,797 queries while
the remaining queries form singleton clusters.

6.2 Building the Concept Sequence Suffix Tree
After clustering queries, we extract session data to build

the concept sequence suffix tree as our query suggestion
model. Figure 7 shows the distribution of session lengths.
We can see that it is prevalent that users submit more than
one query for a search intent. That means in many cases,
the context information is available for query suggestion.

100 101

104

106

108

Session length

N
um

be
r o

f s
es

si
on

s

distribution
power law: a * x−7.36

session length = 1

Figure 7: The distribution of session lengths.

Level Num of Nodes Level Num of Nodes

1 360,963 3 14,857
2 90,539 4 2,790

Table 4: The number of nodes on the concept se-
quence suffix tree at different levels.

We then construct the concept sequence suffix tree as de-
scribed in Section 5.2. Each frequent concept sequence has
to occur more than 5 times in the session data. Table 4
shows the number of nodes at each level of the tree. Note
we prune the nodes containing more than 4 concepts (349
nodes pruned in total), since we find those long patterns
are not meaningful and are likely to be derived from query
sequences issued by robots.

6.3 Evaluation of Query Suggestions
We compare the coverage and quality of the query sugges-

tions generated by our approach, called the context-aware
concept-based approach or CACB for short, with the follow-
ing two baselines.

Adjacency. Given a sequence of queries q1 . . . qi, this

881

Adjacency N−Gram CACB10

20

30

40

50

60
C

ov
er

ag
e(

%
)

Adjacency N−Gram CACB10

20

30

40

50

60

C
ov

er
ag

e(
%

)

(a) (b)

Figure 8: The coverage of the three methods on (a)
Test-0 and (b) Test-1.

Adjacency N−Gram CACB0.7

0.8

0.9

1

Q
ua

lit
y

Adjacency N−Gram CACB0.7

0.8

0.9

1

Q
ua

lit
y

(a) (b)

Figure 9: The quality of the three methods on (a)
Test-0 and (b) Test-1.

method ranks all queries by their frequencies immediately
following qi in the training sessions and outputs top queries
as suggestions.

N-Gram. Given a sequence of queries qs = q1 . . . qi, this
method ranks all queries by their frequencies of immediately
following qs in training sessions and outputs top queries as
suggestions.

We extract 2,000 test cases from query sessions other than
those serve as training data. To better illustrate the effect of
contexts for query suggestion, we form two test sets: Test-
0 contains 1,000 randomly selected single-query cases while
Test-1 contains 1,000 randomly selected multi-query cases.

The coverage of a query suggestion method is measured
by the number of test cases for which the method is able
to provide suggestions over the total number of test cases.
Figures 8(a) and (b) show the coverage of the three meth-
ods on Test-0 and Test-1, respectively. The CACB method
has a higher coverage than the other two methods on both
test sets, and the N-Gram method has the lowest cover-
age. Given a test case qs = q1 . . . qi, the N-Gram method
is able to provide suggestions only if there exists a session
qs1 = q1 . . . qiqi+1 . . . ql in the training data. The Adjacency
method is more relaxed; it provides suggestions if there ex-
ists a session qs2 = . . . qiqi+1 . . . ql in the training data.
Clearly, qs1 is a special case of qs2. The CACB method
is the most relaxed. If no session such as qs2 exists in the
training data, then the Adjacency method cannot provide
suggestions. However, as long as there exists any sequence
qs′2 = . . . q′iqi+1 . . . ql in the training data such that qi and
q′i belong to the same concept, the CACB method can still
provide suggestions.

Another trend in Figures 8(a) and (b) is that for each
method, the coverage drops on Test-1, where the test cases
contain various lengths of context. The reason is that the
longer the context is (the more queries a user submits), the
more likely a session ends. Therefore, the training data avail-
able for test cases with context are not as sufficient as those
for test cases without context. In particular, the coverage of
the N-Gram method drops drastically on Test-1, while the
other two methods are relatively robust because the N-Gram
method depends more on training examples.

We then evaluate the quality of suggestions generated by
our approach and the two baselines. For each test case, we
mix the suggested queries ranked up to top 5 by individual
methods into a single set. We then ask human judges to
label for each suggested query whether it is meaningful or
not. To reduce the bias of judges, we asked 10 judges with
or without computer science background. Each suggested
query is labeled by at least three judges.

If one suggested query provided by a method is judged
as meaningful, that method gets one point; otherwise, it
gets zero point. Moreover, if two suggested queries provided
by a method are both labeled as meaningful, but they are
near-duplicate to each other, then the method gets only one
point. The overall score of a method for a particular query is
the total points it gets divided by the number of suggested
queries it generates. If a method does not generate any
suggested query for a test case, we skip that case for the
method. The average score of a method over a test set is
then the total score of that method divided by the number of
cases counted for that method. Figures 9(a) and (b) show
the average scores of the three methods over the two test
sets, respectively.

Figure 9(a) shows that, in case of no context information,
the suggestions generated by the Adjacency method and the
N-Gram method have the same quality, since the N-Gram
method reduces to the Adjacency method in this case. The
CACB method shows clear improvement in suggestion qual-
ity. This is because the CACB method considers the sugges-
tions at the concept level and recommends queries belonging
to related but not exactly the same concept with that of the
current query (see the first two examples in Table 5).

Figure 9(b) shows that, in cases when context queries are
available, the CACB method and the N-Gram method are
better than the Adjacency method. This is because the first
two methods are context-aware and understand users’ search
intents better. Moreover, the CACB method provides even
better suggestions than the N-Gram method (see the last
two examples in Table 5). This is because the CACB method
considers users’ search intents at the concept level instead
of the detailed query level.

6.4 Robustness and Scalability of Algorithms
We test the robustness and the scalability of our algo-

rithms. We first compare the suggestions generated under
various values of parameter Dmax. To be specific, given a
test case, let S1 and S2 be the suggestions generated under
two parameter values. We define the similarity between S1

and S2 by |S1∩S2|
|S1∪S2| . Figure 10(a)shows the average similar-

ity between the suggestions generated under default value
Dmax = 1 and those under various values. The cluster-
ing results do not change much under different parameter
settings. Figures 10(b) and (c) show the scalability of the
algorithms of clustering queries (Algorithm 1) and building
the concept sequence suffix tree (Algorithm 2). We run the
algorithms on 10%, 20%, . . ., 100% of the entire data to il-
lustrate the trend of scalability. Both algorithms are almost
linear to the input size.

882

Methods
Test Case Adjacency N-Gram CACB
www.at&t.com at&t at&t att wireless

www.att.com www.att.com at&t online billing
cingular cingular cingular
www.cingular.com www.cingular.com verizon

msn news cnn news cnn news cnn news
fox news fox news fox news
cnn cnn abc news
msn msn cbs news

bbc news
www.chevrolet.com gmc acadia <null> ford
⇒www.gmc.com www.chevy.com toyota

www.chevrolet.com nissan
gmc envoy pontiac
gmc cars

circuit city circuit city walmart walmart
⇒best buy walmart target target

target sears sears
best buy stores office depot radio shack
sears staples

Table 5: Examples of query suggestions provided by the three methods.

0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

Dmax

Si
m

ila
rit

y

20 40 60 80 100
0

50

100

150

200

Percentage of full data(%)

Ru
nt

im
e(

s)

20 40 60 80 100
0

200

400

600

800

Percentage of full data(%)

Ru
nt

im
e(

m
s)

(a) (b) (c)

Figure 10: (a) The robustness of the clustering algorithm to parameter Dmax, (b) the scalability of the
algorithm for clustering the click-through bipartite (Algorithm 1), and (c) the scalability of the algorithm for
building the concept sequence suffix tree (Algorithm 2).

7. CONCLUSION
In this paper, we proposed a novel approach to query sug-

gestion using click-through and session data. Unlike pre-
vious methods, our approach considers not only the cur-
rent query but also the recent queries in the same session to
provide more meaningful suggestions. Moreover, we group
similar queries into concepts and provide suggestions based
on the concepts. The experimental results on a large-scale
data containing billions of queries and URLs clearly show
our approach outperforms two baselines in both coverage
and quality.

8. REFERENCES
[1] Baeza-Yates, R.A., et al. Query recommendation using

query logs in search engines. In EDBT’04.
[2] Baeza-Yates, R.A., et al. Extracting semantic relations

from query logs. In KDD’07.
[3] Beeferman, D., et al. Agglomerative clustering of a search

engine query log. In KDD’00.
[4] Chirita, P.A., et al. Personalized query expansion for the

web. In SIGIR’07.
[5] Cui, H., et al. Probabilistic query expansion using query

logs. In WWW’02.
[6] Dean, J., et al. MapReduce: simplified data processing on

large clusters. In OSDI’04.
[7] Ester, M., et al. A density-based algorithm for discovering

clusters in large spatial databases with noise. In KDD’96.
[8] Fonseca, B.M., et al. Concept-based interactive query

expansion. In CIKM’05.

[9] Hinneburg A., et al. Optimal grid-clustering: towards
breaking the curse of dimensionality in high-dimensional
clustering. In VLDB’99.

[10] Huang, C., et al. Relevant term suggestion in interactive
web search based on contextual information in query
session logs. Journal of the American Society for
Information Science and Technology, 54(7):638–649, 2003.

[11] Jones, R. R., et al. Generating query substitutions. In
WWW’06.

[12] Kraft, R., et al. Mining anchor text for query refinement. In
WWW’04.

[13] Liu, S., et al. An effective approach to document retrieval
via utilizing wordnet and recognizing phrases. In SIGIR’04.

[14] Magennis, M., et al. The potential and actual effectiveness
of interactive query expansion. In SIGIR’97.

[15] Pei, J., et al. PrefixSpan: mining sequential patterns
efficiently by prefix-projected pattern growth. In ICDE’01.

[16] Srikant, R., et al. Mining sequential patterns:
Generalizations and performance improvements. In
EDBT’96.

[17] Sahami, M., et al. A web-based kernel function for
measuring the similarity of short text snippets. In
WWW’06.

[18] Terra, E., et al. Scoring missing terms in information
retrieval tasks. In CIKM’04.

[19] Wen, J., et al. Clustering user queries of a search engine. In
WWW’01.

[20] White, R.W., et al. Studying the use of popular
destinations to enhance web search interaction. In
SIGIR’07.

[21] Zhang, T., et al. BIRCH: an efficient data clustering
method for very large databases. In SIGMOD’96.

883

