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Abstract. Dynamic voltage scaling technique provides the capability
for processors to adjust the speed and control the energy consumption.
We study the pessimistic accelerate model where the acceleration rate
of the processor speed is at most K and jobs cannot be executed during
the speed transition period. The objective is to find a min-energy (op-
timal) schedule that finishes every job within its deadline. The job set
we study in this paper is aligned jobs where earlier released jobs have
earlier deadlines. We start by investigating a special case where all jobs
have common arrival time and design an O(n2) algorithm to compute the
optimal schedule based on some nice properties of the optimal schedule.
Then, we study the general aligned jobs and obtain an O(n2) algorithm
to compute the optimal schedule by using the algorithm for the common
arrival time case as a building block. Because our algorithm relies on the
computation of the optimal schedule in the ideal model (K = ∞), in
order to achieve O(n2) complexity, we improve the complexity of com-
puting the optimal schedule in the ideal model for aligned jobs from the
currently best known O(n2 log n) to O(n2).

1 Introduction

Energy-efficiency has become the first-class design constraint besides the tradi-
tional time and space requirements. Portable devices (like laptops and PDAs)
equipped with capacity limited batteries are popular in our daily life. Two facts
make the energy problem more important. First, the battery capacity is increas-
ing with a rate less than that of power consumption of the processors. Second,
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the accumulated heat due to energy consumption will reach a thermal wall and
challenge the designers of electronic devices. It is found that, in the CMOS pro-
cessors, the energy consumption can be saved by executing with a lower speed.
Approximately, the speed is a cubic root of the power, which is famous as cube-
root-rule. Dynamic voltage scaling (DVS) technique is widely adopted by modern
processor manufactures, e.g., Intel, AMD, and IBM. It allows the processor to
dynamically adjust its voltage/frequency to control the power consumption. The
first theoretical study was initialed decades ago [14], where the authors make the
standard generalization, a speed to power function P (s) = sα (α ≥ 1). Usually,
α is 2 or 3 according to the cube-root-rule of the processors. From then on, lots
of studies are triggered in this field. It is usually formulated as a dual objective
problem. That is, while conserving the energy, it also needs to satisfy some QoS
metric. When all jobs are required to be completed before deadline, the metric
is called deadline feasibility. There are also works trying to simultaneously mini-
mize the response time of the jobs, namely, flow. A schedule consists of the speed
scaling policy to determine what speed to run at time t and the job selection
policy to decide which job to run at that time.

If the processor can run at arbitrary speeds, then based on how fast the voltage
can be changed, there are two different models.

Ideal Model: It is assumed that the voltage/speed of the processor can be
changed to any other value without any extra/physical cost or delay. This model
provides an ideal fundamental benchmark and has been widely studied.

Accelerate Model: It is assumed that the voltage/speed change has some
delay. In practice, the processor’s acceleration capacity is limited. For example,
in the low power ARM microprocessor system (lpARM) [5], the clock frequency
transition takes approximately 25μs (1350 cycles) from 10MHz to 100MHz.
Within this scope, there are two variations. In the optimistic model, the pro-
cessor can execute jobs during the speed transition time, while in the pessimistic
model, the execution of jobs in the transition time is not allowed [15].

1.1 Related Works

In recent years, there are many works on the impact of DVS technology. It is
not practical to survey all of them, thus we just review the most related papers.

For the ideal model, Yao el. al. first studied the energy-efficient job scheduling
to achieve deadline feasibility in their seminal paper [14]. They proposed an
O(n3) time algorithm YDS to compute the optimal off-line schedule. Later on,
the running time is improved to O(n2 log n) in [12]. Another metric, the response
time/flow, was examined in [13] with bounded energy consumption. It is first
formulated as a linear single objective (energy+flow) optimization problem in
[1]. This was then specifically studied in [4],[9],[6],[2],[3] el. al. under different
assumptions. A good survey can be found in [8].

For the accelerate model, there are little theoretical studies to the best of our
knowledge, except that the single task problem was studied in [7],[15]. In [7], they
showed that the speed function which minimizes the energy is of some restricted
shapes even when considering a single task. They also gave some empirical
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studies based on several real-life applications. In [15], the authors studied both
the optimistic model and pessimistic model, but still for the single task problem.
They showed that to reduce the energy, the speed function should accelerate as
fast as possible from.

1.2 Main Contributions

In this paper, we study the pessimistic accelerate model to minimize the energy
consumption. The QoS metric is deadline feasibility. The input is an aligned job
set J with n jobs, where jobs with earlier arrival times have earlier deadlines. The
processor can execute a job with arbitrary speed but the absolute acceleration
rate is at most K, and the processor has no capability to execute jobs during the
transition of voltage. The objective is to find a min-energy schedule that finishes
all jobs before their deadlines.

We first consider a special case of aligned jobs where all the jobs arrive at
time 0. We call this kind of job set common arrival time instance. We prove that
the optimal schedule should accelerate as fast as possible and the speed curve is
non-increasing. Combining with other properties we observed, we construct an
O(n2) time algorithm to compute the optimal schedule.

Then we turn to the general aligned jobs to study the optimal schedule OPTK .
The algorithm for the common arrival time instance is adopted as an elementary
procedure to compute OPTK . Most of the properties for the common arrival time
instance can be extended to general aligned jobs. By comparing OPTK with the
optimal schedule OPT∞ in the ideal model, we first prove that the speed curves
of OPTK and OPT∞ match during some “peak”s. Then we show that the speed
curve of OPTK between adjacent “peak”s can be computed directly. The whole
computation takes O(n2) time since we improve the computation of OPT∞ for
aligned jobs to O(n2). Our work makes a further step in the theoretical study of
accelerate model and may shed some light on solving the problem for the general
job set.

The organization of this paper is as follows. We review the ideal model and the
pessimistic accelerate model in Section 2. In Section 3, we study the pessimistic
accelerate model and focus on a special but significant case where all jobs are
released at the beginning. We then turn to the general aligned jobs that have
arbitrary release time in Section 4. Finally we conclude the paper in Section 5.

2 Model and Notation

In this section, we review the ideal model proposed in [14] and the pessimistic
accelerate model.

The input job instance we consider in this paper is an aligned job set J =
{J1, J2, . . . , Jn} where each job Ji has an arrival time r(Ji), a deadline d(Ji)
(abbreviated as ri and di respectively), and the amount of workload C(Ji). The
arrival times and the deadlines follow the same order, i.e., r1 ≤ r2 ≤ . . . ≤ rn

and d1 ≤ d2 ≤ . . . ≤ dn.
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In the ideal model, the processor can change its speed to any value instanta-
neously without any delay. The power function is assumed to be P (s) = sα(α ≥
1). A schedule S needs to determine what speed and which job to execute at
time t. We use s(t, S) to denote the speed took by schedule S at time t and
write it as s(t) for short if the context is clear. We use job(t) to represent the
index of the job being executed at time t. Jobs are preemptive. The processor
has the capability to resume the formerly suspended jobs. We take the deadline
feasibility as the QoS metric, i.e., a job is available after its arrival time and
need to be completed before its deadline. A feasible schedule must satisfy the
timing constraint

∫ di

ri
s(t)δ(i, job(t))dt = C(Ji), where δ(i, j) = 1 if i = j and

δ(i, j) = 0 otherwise. The energy consumption is the power integrated over time:
E(S) =

∫
t P (s(t, S))dt. The objective is to minimize the total energy consump-

tion while satisfying the deadline feasibility.
In the pessimistic accelerate model, the processor cannot change the voltage

instantaneously. The acceleration rate is at most K, i.e., |s′(t)| ≤ K. More-
over, no job can be executed during the transition interval s′(t) �= 0 and there
is always some job being executed when s′(t) = 0 and s(t) > 0. The en-
ergy is the power integrated over the time where s′(t) = 0 and s(t) > 0. So
E =

∫
t|s′(t)=0,s(t)>0

P (s(t, S))dt. With such constraints, a feasible schedule is a
schedule where all jobs are completed before deadline and the speed function
satisfies |s′(t)| ≤ K. The optimal schedule is the one with the minimum energy
consumption among all feasible schedules.

Let ts = mini ri, tf = maxi di. The workload executed in interval [a, b] by
schedule S is denoted as C[a,b](S). If a job J has I(J) = [r(J), d(J)] ⊆ [a, b], we
say J is embedded in interval [a, b]. For simplicity, when we say “the first” time
(or interval), we mean the earliest time (or interval) on the time axis in left-
to-right order. Using the similar definition as [11], we say tu is a tight deadline
(or tight arrival time respectively) in schedule S if tu is the deadline (or arrival
time respectively) of the job that is executed at [tu − Δt, tu] (or [tu, tu + Δt]
respectively) in S where Δt → 0. Due to space limit, we omit most of the proofs
in this version.

3 Optimal Schedules for Job Set with Common Arrival
Time

For the jobs that have common arrival time, we assume w.l.o.g they are available
at the beginning, namely ri = 0 for 1 ≤ i ≤ n.

Definition 1. In a feasible schedule S, we denote the maximal interval where the
jobs run at the same speed as a block. Note that there is an acceleration-interval
(the time used for acceleration) between adjacent blocks because changing the
speeds needs some time, during which no workload is executed.

In the following, we will give some properties of the optimal schedule which help
us design a polynomial algorithm to compute the optimal schedule.
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Lemma 1. There exists an optimal schedule, where the speed function is non-
increasing and will accelerate as fast as possible, i.e., either |s′(t)| = K or
|s′(t)| = 0; and the jobs are completed in EDF (Earliest Deadline First) order
with Ji executed in one speed and only in the lowest speed min

0≤t≤di,s′(t)=0
s(t).

Furthermore, the finishing time t̂ of each block (where limt→t̂− s′(t) = 0 ∧
limt→t̂+ s′(t) = −K) is a tight deadline.

Lemma 2. In the optimal schedule,
1) The first block is the interval (0, dt) which maximizes

∑
J∈Jt

C(J)

dt
where

Jt = {Jj |dj ≤ dt]} and t ∈ {1, . . . , n}, i.e. the maximum speed in the optimal

schedule is s1 = max
i

∑
J∈Ji

C(J)

di
.

2) Suppose block j has speed sj and finishes at Jtj ’s deadline, then the speed in

block j + 1 is sj+1 = max
t

sj−K(dt−dtj
)+

√
(K(dt−dtj

)−sj)2+4K
∑

t
i=tj+1 C(Ji)

2 where

t ∈ {tj + 1, . . . , n}.
Theorem 1. The optimal schedule can be computed by Algorithm 1 at O(n2).

Proof. Algorithm 1 is a direct implementation of Lemma 2. Steps 2-4 computes
the first block. The two loops in Steps 6-10 computes the remaining blocks. By
keeping the information of the summation on the computed jobs, the optimal
schedule can be computed in O(n2) time.

Algorithm 1. CRT schedule
1. t = 0;

2. s1 = max
i

∑ i
j=1 C(Jj)

di
;

3. t = arg max
i

s1 ;

4. Let the block with speed s1 be [0, dt];
5. m = 1;
while t < n do

6. sm+1 = max
t+1≤i≤n

sm−K(di−dt)+
√

(K(di−dt)−sm)2+4K
∑ i

j=t+1 C(Jj )

2
;

7. t′ = arg max
i

sm+1;

8. Let the block with speed sm+1 be [dt + (sm − sm+1)/K, dt′ ];
9. m = m + 1;
10. t = t′;

end while

4 Optimal Schedules for Aligned Jobs

In this section, we study the optimal schedule for general aligned jobs. Note that
jobs with common arrival time is a special case of aligned jobs. We first extend
some basic properties in Subsection 4.1. We will compute the optimal schedule
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for aligned jobs by adopting Algorithm 1 as a building block. We use OPTK to
denote the optimal schedule where K is the maximum acceleration rate.

In the ideal model, the acceleration rate is infinity K = ∞. We review the
Algorithm YDS in [14] to compute OPT∞. Let w(t1, t2) denote the workload
of the jobs that have release time at least t1 and have deadline at most t2,
i.e. w(t1, t2) =

∑
I(J)⊆[t1,t2]

C(J). Define the intensity Itt(t1, t2) of the time
interval [t1, t2] to be w(t1, t2)/(t2 − t1). The algorithm tries every possible pair
of arrival time and deadline to find an interval with largest intensity (called
critical interval), schedule the jobs embedded in the critical interval and then
repeatedly deal with the remaining jobs.

We first show that the optimal schedule for aligned jobs in the ideal model
can be computed in O(n2) time.

Theorem 2. The optimal schedule for aligned jobs in the ideal model can be
computed in O(n2) time.

Given a block blockp, we denote the corresponding interval as
[L(blockp), R(blockp)]. We define virtual canyon to be a block with length
0. Next, we derive some properties of OPTK .

4.1 Basic Properties

Among all the blocks, we define the block [ta, tb] where lim
t→ta

−
s′(t) = K ∧

lim
t→ta

+
s′(t) = 0 and lim

t→tb
−

s′(t) = 0 ∧ lim
t→tb

+
s′(t) = −K to be peak. Reversely, the

block where lim
t→ta

−
s′(t) = −K∧ lim

t→ta
+

s′(t) = 0 and lim
t→tb

−
s′(t) = 0∧ lim

t→tb
+

s′(t) =

K is called canyon.
We say t̂ is down-edge-time if lim

t→t̂−
s′(t) = 0∧ lim

t→t̂+
s′(t) = −K or lim

t→t̂−
s′(t) =

K ∧ lim
t→t̂+

s′(t) = 0. For example, both the start time and finish time of a peak

are down-edge-times.
We have the following lemma for OPTK .

Lemma 3. There is an optimal schedule, where the speed function will accelerate
as fast as possible, i.e., either |s′(t)| = K or s′(t) = 0, and every down-edge-time
is either a tight deadline or a tight arrival time; and jobs are executed in EDF
order; each job J is executed only in one block, and this block is the lowest one
in interval [r(J), d(J)].

4.2 O(n2) Time Algorithm to Compute OPTK

To find the optimal schedule, our method is to identify some special blocks
belonging to OPTK . After enough blocks are selected, the remaining interval of
OPTK can be easily computed. To be more specific, we compare OPTK with
schedule OPT∞, which is the optimal schedule for the special case K = ∞,
namely the ideal model. We observe that the block with the highest speed (we
call it global-peak) of OPTK can be computed first.
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Algorithm 2. Computing a Monotone-interval
Input: OPT∞, Schedule computed by YDS.
[a, b], computed peak (it can be the global-peak or local-peak)
sb, Starting speed at time b.
Output: S[b,t1], a monotone-interval starting from b and its corresponding schedule.
/* Let [tL, tR] be the current interval being handled. Let S be the the
computed schedule for current interval [tL, tR]. slast denotes the lowest
speed in the computed S. blockp+1 is the first un-handled block in OPT∞.*/
1. slast = sb; tL = tR = b; S[b,t1] = φ; S = φ; p = 0;¯̄t = b.
2. In OPT∞, index the blocks from the peak [a, b] as block0, block1, block2, . . . in the
left to right order.
while slast ≥ s(blockp+1) do

/*recover procedure*/
if S �= ∅ then

3. For jobs that are executed in the lowest block of S, recover their arrival
time/deadline to the original value.
4. Reset slast to be the speed of S in time¯̄t;

end if
5. Select blocki to be the block after tR in OPT∞ with i.e. s(blockp+1) > . . . >
s(blocki) and s(blocki) < s(blocki+1); if such a block does not exist, then let
i = p + 1; Reset tR = R(blocki).
6. Set p = i;
/*adjust procedure*/
for every job with I(J) ∩ [tL, tR] �= φ do

7. Adjust r(J) to be max{r(J), tL};
8. Adjust d(J) to be min{d(J), tR};
9. Backup the original value of r(J) and d(J);

end for
/*handle interval [tL, tR] in OPT∞*/
10. Call Algorithm 1 to compute a schedule S for jobs involved in Step 9 ac-
cording to common arrival time tL with starting speed slast.
11. If the blocki found in Step 6 has speed 0, then we make S accelerate with rate
−K after the last time with positive speed and insert a virtual canyon at time tR.
12. Reset slast to be the lowest positive speed in the computed S.
if slast < s(blockp+1) then

13. S[b,t1] = S[b,t1] ∪ S; Return S[b,t1].
else

14. Let ¯̄t be the finish time of the second lowest (including the virtual canyon
inserted in Step 11) block in S.
15. S[b,t1] = S[b,t1]∪ (S restricted in interval [tL ,̄̄ t]).
16. Reset tL =¯̄t.

end if
end while

Lemma 4. OPTK executes the same as OPT∞ in the first critical interval.

After we have fixed the first block (global-peak) of OPTK , a natural question
is whether we can apply the same proof of Lemma 4 to select other blocks. For
example, in the remaining interval of OPT∞, does the block with maximum
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Algorithm 3. Computing the Optimal Schedule between Two Adjacent Peaks
Input:
[a1, b1], [a2, b2], the two adjacent peaks found in Algorithm 4.
S[b1,t1], S[t2,a2], the two schedules computed by Algorithm 2. Choose one of the in-
tersection point as t̄.
Output: schedule of OPTK in interval [b1, a2].
1. For each down-edge-time p on s(t, S[b1,t1]) in [b1, t̄) or on s(t, S[t2,a2]) in (t̄, a2], let
the point with the same speed on the other curve be p′. If there are more than one
such point, let p′ be the one minimizing |pp′|; if there are no such point, we do not
consider line segment originating from p.
2. Sort all the segments pp′ by increasing order of their speed (denoted by Speed(p))
into p1p

′
1, p2p

′
2, . . . , pmp′

m (Duplicate segments are treated as one). The end points
are relabeled so that pi is always on s(t, S[b1,t1]) and p′

i is always on s(t, S[t2,a2]).
3. Find augment segment for each segment pip

′
i as follows. If pi and p′

i are both
down-edge-time, then the augment segment is pip

′
i itself; if pi is a down-edge-time

and p′
i is not, then the augment segment is pip

′ where p′ is the closest down-edge-
time on s(t, S[t2,a2]) with respect to p′

i; the remaining case is similarly defined. We
use qiq

′
i to represent the augment segment of pip

′
i.

for i = 1 to m do
4. Let C =

∑
I(J)∩[qi,q′i] �=∅ C(J).

if ( C
|pip′

i|
< Speed(pi)) then

5. Let S[t̂1,t̂2] be the schedule that executes all jobs with I(J)∩ [pi, p
′
i] �= φ with

speed s in interval [t̂1, t̂2].(The parameters can be calculated as t̂1 = pi+T ; t̂2 =

p′
i −T ; s = Speed(pi)− 2KT ; T =

Speed(pi)+K|pip′
i|−

√
(Speed(pi)−K|pip′

i
|)2+4KC

4K
)

6. break;
end if

end for
7. The optimal schedule in interval [b1, a2] is (S[b1,t̂1] restricted to [b1, t̂1])∪S[t̂1,t̂2] ∪
(S[t2,a2] restricted to [t̂2, a2]).

intensity have the same schedule as that of OPTK? Although this is not true,
we will show that some other blocks in OPT∞ can be proved to be the same as
OPTK . The key observation is that by appropriately dividing the whole interval
into two sub-intervals, the block with the maximum intensity inside one of the
sub-intervals in OPT∞ can be proved to be the same as OPTK . Our partition
of intervals is based on a monotone-interval defined below.

Definition 2. Given a schedule, we define the sub-interval where the speed
function/curve is strictly non-increasing or non-decreasing to be a monotone-
interval.

Since the speed in OPTK outside the global-peak [a, b] is at most Itt(a, b), there
exists a monotone-interval immediately after time b (non-increasing curve) and
symmetrically before time a (non-decreasing curve). At time b and a, the speeds
are respectively sb = Itt(a, b) and sa = Itt(a, b).

In the following, we will study a schedule S[b,t1] (only specifying speeds
in interval [b, t1]) with monotone-interval [b, t1] (non-increasing speed with
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Algorithm 4. Computing the Optimal Schedule for Aligned Jobs
Input: Aligned job set J
Output: OPTK

1. Compute OPT∞.
2. Let the maximum intensity block in OPT∞ be the global-peak in OPTK .
3. Index the global-peak as an un-handled peak.
while there is a peak [L,R] un-handled do

4. Let OPTK execute jobs the same way as OPT∞ in [L, R].
5. Call Algorithm 2 to compute the monotone-interval starting from R (and also
symmetrically a monotone-interval ending at L).
6. If there are local-peaks in OPT∞ in the un-handled interval on either side of
the monotone-intervals, then index the local-peaks as un-handled peaks.

end while
7. Compute the OPTK for all the intervals between adjacent peaks found in the
previous while loop using Algorithm 3.

s(b, S[b,t1]) = s(b, OPT∞)). Suppose that t1 is the first (earliest) intersection
of the two curves s(t, S[b,t1]) and s(t, OPT∞) with lim

t→t+1

s(t, OPT∞) > 0. We will

compare the speed curve of OPTK with that of S[b,t1].

Definition 3. In interval [b, t1], we say t is a separation-time of OPTK w.r.t
S[b,t1] if their speed curves totally overlap in interval [b, t] and separate at t+Δt
where Δt → 0.

We can show that the schedule S[b,t1] with non-increasing speed output by Algo-
rithm 2 has the following property: let [a2, b2] be the maximum intensity block in
OPT∞ among the remaining interval [t1, tf ], then OPTK has the same schedule
as OPT∞ in interval [a2, b2]. Furthermore, Algorithm 2 runs in O(n2).

Among the un-handled interval (e.g. [t1, tf ]), we define local-peak to be the
peak which has the local maximal intensity in OPT∞. The following lemma
shows that the schedules OPTK and OPT∞ are the same in local-peaks.

Lemma 5. The schedule of local-peaks in OPTK is the same as OPT∞.

Note that there is a monotone-interval respectively before and after the com-
puted global-peak or local-peak. We can repeatedly call Algorithm 2 (a symmet-
ric version of Algorithm 2 can be used to compute a monotone-interval before a
“peak”) until no such peak exists in the un-handled intervals. Then the schedule
of the remaining intervals (all intervals between the adjacent peaks computed in
Algorithm 4) can be uniquely computed as shown in Lemma 6.

Lemma 6. The schedule of OPTK in intervals between two (local-)peaks found
by Algorithm 4 can be computed by Algorithm 3. Notice that in this algorithm,
“down-edge-time” means the corresponding point on the speed curve at the down-
edge-time.

Theorem 3. Algorithm 4 computes OPTK for aligned jobs in O(n2) time.
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5 Conclusion

In this paper, we study the energy-efficient dynamic voltage scaling problem and
mainly focus on the pessimistic accelerate model and aligned jobs. All jobs are
required to be completed before deadlines and the objective is to minimize the
energy. We start by examining the properties for the special case where jobs are
released at the same time. We show that the optimal schedule can be computed in
O(n2). Based on this result, we study the general aligned jobs. The algorithm for
jobs with common arrival time is adopted as an elementary procedure to compute
the optimal schedule for general aligned jobs. By repeatedly computing heuristic
schedules that is non-increasing, we fix some peaks of the optimal schedule first.
This makes the optimal schedule in the remaining interval easier to compute.
The complexity of the algorithm is O(n2) since we improve the computation of
the optimal schedule for aligned jobs in the ideal model to O(n2).
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