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a b s t r a c t

We study the optimal structure for the group broadcast problemwhere the key tree model
is extensively used. The objective is usually to find an optimal key tree tominimize the cost
based on certain assumptions. Under the assumption that n members arrive in the initial
setup period and only member deletions are allowed after that period, previous works
show that when only considering the deletion cost, the optimal tree can be computed in
O(n2) time. In this paper, we first prove a semi-balance property for the optimal tree and
use it to reduce the running time from O(n2) to O(log log n)multiplications of O(log n)-bit
integers. Then we study the optimal tree structure when insertion cost is also considered.
We show that the optimal tree is such a tree where any internal node has degree at most
7 and children of nodes with degree not equal to 2 or 3 are all leaves. Based on this result
we give a dynamic programming algorithm with O(n2) time to compute the optimal tree.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many recent works have researched the group broadcast problem due to its cost effectiveness in the applications
requiring content security. The applications based on multicast can be divided into two types, one-to-many (e.g., television
broadcast and pay per view) andmany-to-many (e.g., teleconference, collaborativework and distributed interactive games).
All of them require content security which means only authorized users are allowed to access the data broadcasted.
Moreover, to deliver messages on insecure channels, we should guarantee confidentiality when users dynamically change
in the group with the help of cryptography. Two kinds of confidentiality are usually considered in the literature: future
confidentiality (to prevent users deleted from the group from accessing any future keys which will be used to encrypt data)
and past confidentiality (to prevent users newly added into the group from accessing any past keys used to encrypt data).
To satisfy these security requirements, the basic strategy is to update the group key whenever a user is deleted from or

added into the group. The group controller (GC) will maintain a key structure for the whole group. A recent survey on key
management for secure group communications can be found in [2]. However, since encryption is quite time consuming,
the critical problem is how to decrease the number of encryptions when group members dynamically change. The key tree
model proposed by Wong et al. [7] is widely used for the key management problem. In this model, it is assumed that a leaf
node represents a user and stores his individual key and an internal node stores a key shared by all leaf descendants of that
node. The above two assumptions imply that every user possesses all the keys along the path from the leaf node to the root.
Whenever a new user is added or deleted, the GC will update the keys along the path in a bottom–up fashion and notify the
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Fig. 1. An example key tree structure for a group with 5 members.

subset of nodeswho share the keys.Wong et al. [7] pointed out that the averagemeasured processing time increases linearly
with the logarithm of the group size. Soneyink et al. [5] proved any distribution scheme has a worst-case cost of Ω(log n)
either for adding or for deleting a user. They also proved that the updating cost of a key tree with n insertions followed by
n deletions is Θ(n log n). Feng et al. [9] studied the structure of the optimal tree when a deletion sequence is performed.
They showed that the optimal tree is a tree where any internal node has degree at most 5 and children of nodes with degree
not equal to 3 are all leaves. Based on this observation, they designed a dynamic programming algorithm of O(n2) time to
compute an optimal tree. Another scenario where rekeying is done only periodically instead of immediately is studied as a
batch rekeying strategy in [4]. This strategy is further investigated in [8,1,3] under the assumption that each user has a fixed
probability p of being replaced during the batch period.
We further investigate the scenario proposed in [9]. Firstly, we find a semi-balance property of the optimal tree when

only deletion cost is considered and use it to improve the time for computing the optimal tree from O(n2) to O(log log n)
multiplications of O(log n)-bit integers. Secondly, we study the optimal tree structure when insertion and deletion cost are
simultaneously taken into consideration. Suppose in the initial setup period, the group only accepts membership joins. At
the end of this period, a certain key tree is established bymulticasting certain encryptions to the users. After that period, the
group closes newmembership and only accepts membership revocations. Notice that the GC update keys only at the end of
the initial setup period and whenever a user leaves afterwards. This is different from the scenario of n insertions followed
by n deletions considered in [5] where each insertion triggers an update on the key tree. We show that when considering
both key tree establishment cost and deletion cost, the optimal tree is such a tree where any internal node has degree at
most 7 and children of nodes with degree not equal to 2 or 3 are all leaves.
The rest of this paper is organized as follows. In Section 2 we review the definition of the key tree model and introduce

some related results. In Section 3, we prove a semi-balance property of the optimal tree for n deletions and reduce the
computation time of the optimal tree from O(n2) to O(log log n) multiplications of O(log n)-bit integers. In Section 4 we
investigate amore general cost definitionwhere the cost of the key tree establishment is also included.We prove the degree
bound for the optimal tree in this scenario and propose an O(n2) dynamic programming algorithm to compute the optimal
tree. In Section 5,we further derive some balance property for the optimal key treewith establishment cost included. Finally,
we conclude our work in Section 6.

2. Preliminaries

In this section, we review the key tree model which is referred to in the literature either as key tree [7] or LKH (logical
key hierarchy) [6].
In the key treemodel, a group controller (GC) maintains the key structure for all the users. A groupmember holds a key if

and only if the key is stored in an ancestor of the member. When a user leaves, GC will update any key that is known by him
in a bottom–up fashion, and notify the remaining users who share that key. Take the structure shown in Fig. 1 as an example,
the user u1 holds keys (k1, k6, k8), and u2 holds keys (k2, k6, k8). When u1 leaves, keys k6 and k8 need to be updated. GC will
first encrypt the new k6 with k2 and multicast the message to the group. Notice that only u2 can decrypt the message. Then
GC encrypts the new k8 with k5, k7 and with the new k6 separately and multicast them to the group. Notice that all users
except u1 can obtain the new k8 by decrypting one of those messages. Hence, the GC needs 4 encryptions to maintain the
key tree structure when u1 leaves. Based on the updating rule, we introduce the definition of deletion cost.

Definition 1. In a key tree T withn leaves,we say a node v has degree dv if v has dv children.Wedenote the set of ancestors of
v as anc(v) (not including v itself) and define the ancestor weight of v aswv =

∑
u∈anc(v) du. The number of leaf descendants

of v is denoted as nv .

Given a leaf vi in a key tree T , let viu1u2 . . . uk be the longest path in T where uj has only one child for 1 ≤ j ≤ k. We
define k as the exclusive length of vi. Notice that when the user vi is deleted from the group, we need not update any key on
the path viu1u2 . . . uk. Hence, we have the following deletion cost (defined in terms of the number of encryptions needed to
update the keys after deletions). If not specified otherwise, we abbreviatewvi and nvi aswi and ni respectively.

Definition 2. The deletion cost of vi iswi− k−1 where k is the exclusive length of vi, and we denote this deletion cost as ci.
Notice thatwhen nodes are deleted, different deletion ordersmay incur different deletion cost. In the tree shown in Fig. 1,

deletion sequence u1, u2, u3, u4, u5 has cost 4 + 2 + 3 + 1 + 0 = 10, while deletion sequence u1, u3, u2, u4, u5 has cost
4+ 4+ 2+ 1+ 0 = 11.
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In our work, we further investigate the scenario where a group only accepts membership joins during the initial setup
period. After that period, the only dynamic membership changes are deletions. This requires us to focus on the cost of a
sequence instead of a single leaf. We first cite the following definitions from [9].

Definition 3. In a key tree T with n leaf nodes, we define π = 〈v1, v2, . . . , vn〉 as the sequence of all nodes to be
deleted in T . Let 〈c1, c2, . . . , cn〉 be the resulting sequence of deletion cost when the deletion sequence was performed.
Let C(T , π) =

∑n
i=1 ci denote the deletion cost of the whole tree T under the deletion sequence π . The worst-case deletion

cost of the tree T is denoted as CT , deletion = maxπ C(T , π). We define the optimal tree Tn,opt as a tree (not necessarily unique)
which has the minimum worst-case deletion cost over any tree T containing n leaf nodes.

Definition 4. Let T be a tree with n leaves. Given a tree T ′ with r leaves, we call T ′ a skeleton of T if T can be obtained by
replacing r leaf nodes v1, v2, . . . , vr of T ′ with r trees T1, T2, . . . , Tr , where Ti has root vi for 1 ≤ i ≤ r .

Under this definition, they proved a recursive formula for the worst-case deletion cost CT , deletion. Let T ′ be a skeleton of
T as defined above. Given a deletion sequence π ′ for T ′ as well as a deletion sequence πi for each Ti (1 ≤ i ≤ r), they derive
a deletion sequence π for T as follows. In the first step, π deletes all leaves in subtree Ti in the order specified by πi, until
there is only 1 leaf left. In the second step, π deletes the only remaining leaf of each Ti in the order specified by π ′. They
denote the deletion sequence for T derived this way by π = 〈π1, . . . , πr , π ′〉.

Lemma 1 ([9]). The sequence π = 〈π1, π2, . . . , πr , π ′〉 is a worst-case deletion sequence for T if πi is a worst-case deletion
sequence for Ti and π ′ is a worst-case deletion sequence for T ′. The worst-case deletion cost for T is

CT , deletion = CT ′, deletion +
r∑
i=1

(CTi, deletion + (ni − 1)wi). (1)

In this formula, CT ′, deletion is the worst-case deletion cost for the skeleton T ′, and CTi, deletion is the worst-case deletion cost
for the subtree Ti. The values ni andwi are the abbreviations of nvi andwvi respectively.

3. Semi-balance property of key tree structure for n deletions

As [9] shows, to minimize the worst-case deletion cost when all n subscribers are deleted from the group one by one, an
optimal tree can be found among the trees satisfying the following two conditions: (1) every internal node has degree d 6 5
and (2) children of nodes with degree d 6= 3 are all leaves. According to this, they gave an algorithm to compute the optimal
tree in O(n2) time. In this section, we prove a semi-balance property of the optimal tree.
According to the result of [9], if a node v has at least one child being an internal node, it must have degree 3. We further

prove the following lemma.

Lemma 2. There is an optimal tree where the children of any degree 3 node are either all leaves or all internal nodes.

Proof. Suppose on the contrary in the optimal tree there exists an internal node vwith degree 3, which has an internal node
child v1 and a leaf child v0, then v1 has at most two leaf descendants. Otherwise, if v1 has n1 > 3 leaf descendants, we show
in the following that the cost of the tree can be decreased, which contradicts the optimality of the tree. Obviously, v1 can
only have degree 2 6 d1 6 5. Firstly, when d1 > 3, we can decrease the cost by moving a subtree T2 (rooted at v2) of v1
and combine it with the leaf child (v0) of v, as shown in Fig. 2. We use symbols T̂ to denote the tree after subtree T2 of v1 is
deleted from T , and T̃ to denote the tree after T2 is combined with v0. The cost reduced by deleting T2 is

CT , deletion − CT̂ , deletion = CT2,deletion + (n2 − 1)(d1 + w1)+ d1 − 1+ w1.

Herew1 is the ancestor weight of v1. Deleting any one of the (n2− 1) leaves in T2 needs extra cost d1+w1, and deleting the
last leaf in T2 needs extra cost d1 − 1+ w1. Similarly, we have the cost increased by adding T2 into T̃ (combining with v0).

CT̃ ,deletion − CT̂ , deletion = CT2,deletion + (n2 − 1)(2+ w0)+ 2− 1+ w0.

Here, w0 is v0’s ancestor weight. Since v1, v0 are v’s children, we have w1 = w0 and the deletion cost decreases by
(n2 − 1)(d1 − 2) + d1 − 2 > 1 from T to T̃ . On the other hand, when d1 = 2, children of v1 are all leaves because d1 6= 3,
i.e. v1 has at most two leaf descendants. Therefore, v has nv 6 5 leaf descendants, and in this case the optimal tree is such a
tree where all v’s children are leaves. �

As a result, if a node has at least one leaf child, its children are all leaves. Furthermore, to make our proof easy to read,
we will give this kind of node a new name in the following.

Definition 5. Given a tree T with L levels, we define the pseudo-leaf nodes to be the nodes whose children are all leaves. In
addition, we use li to denote the level where the pseudo-leaf node ui is placed and si to denote the number of its children.

Obviously, in an optimal tree all pseudo-leaf nodes can only be placed on level 1 6 li 6 L − 1 and have 2 6 si 6 5
children.
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Fig. 2. A degree 3 node with at least one leaf child and one internal node child.

Fig. 3. Transformation of tree T where at least one pseudo-leaf node ui with si 6 4 children is on level li where 1 6 li 6 (L− 2).

Lemma 3. Given a tree T and a pseudo-leaf ui in T , if we remove one child of ui, the cost of the resulting tree T̄ decreases by
3li + si − 1.

Proof. The lemma can be proved by choosing all the nodes in T except the children of ui as the skeleton. By the definition
of CT , deletion, we have

CT , deletion = CT ′, deletion + wui(si − 1)+
si−1∑
1

j

CT̄ , deletion = CT ′, deletion + wui(si − 1− 1)+
si−2∑
1

j.

Notice that wui has the same value in T and T̄ because we are choosing the same structure as the skeletons. Since ui has li
ancestor nodes and each ancestor node of ui has 3 children, we have wui = 3li. Therefore, CT , deletion is larger than CT̄ , deletion
by 3li + si − 1. �

Lemma 4. In an optimal tree Tn,opt , if a pseudo-leaf node ui satisfies 1 6 li 6 L− 2 , then we have si = 5.
Proof. Suppose another pseudo-leaf node uj is on level lj = L − 1. We can get a better tree by moving a child of uj to be a
child of ui when si 6 4, as shown by Fig. 3. To make our proof consistent, we use symbols T̂ to denote the tree after a leaf of
uj is deleted from T , and T̃ to denote the tree after that leaf is added to be a child of ui. Since ui and uj are on levels li and lj
respectively and 2 6 sj 6 5, the deletion cost is decreased by 3lj+ sj− 1 from T to T̂ and increased by 3li+ si from T̂ to T̃ by
Lemma 3. Moreover, because lj − li > 1 and sj − si > −2, the deletion cost is decreased by at least 0 from T to T̃ . Therefore,
there is an optimal tree where any pseudo-leaf node ui with si 6 4 is on level L− 1. Hence, the lemma is proved. �

Lemma 5. In an optimal tree Tn,opt , for any two pseudo-leaf nodes ui and uj satisfying lj > li, we have lj − li ≤ 1, which means
the pseudo-leaf nodes should only be on level L− 1 or L− 2.

Proof. Suppose on the contrary there are two pseudo-leaf nodes ui and uj with lj − li > 2 in the optimal tree. According to
Lemma 4, we have si = 5. We prove that the cost decreases by at least 2 after moving a child of uj to ui. We use the symbols
T̂ and T̃ to denote the trees similarly as in the proof of Lemma 4. The deletion cost is decreased by 3lj+ sj−1 from tree T to T̂
and increased by 3li+ 5 from tree T̂ to T̃ . Notice that the structure of the subtree whose root is ui has changed (transformed
from root degree 5 to root degree 3) after adding the leaf, as Fig. 4 shows. Given lj − li > 2 and 2 6 sj 6 5, the deletion cost
is decreased by at least 2 from T to T̃ , which contradicts the optimality of T . Furthermore, we know that there is at least one
pseudo-leaf node on level L− 1 because nodes on level L are all leaves. Therefore, lj − li ≤ 1 implies that pseudo-leaf nodes
should only be on level L− 1 or L− 2. Hence, the lemma is proved. �

Lemma 6. If all pseudo-leaf nodes are on the same level, we have the property that any nodes ui, uj on level L − 1 satisfy the
inequality |ni − nj| 6 1 where ni and nj are the number of leaf descendants of ui and uj respectively.

Proof. Because ni = si for all pseudo-leaf nodes, we only need to prove |si − sj| 6 1 for any pseudo-leaf nodes ui and uj on
the same level. In this case, according to Lemma 5, all of them can only be on level L − 1. If si − sj > 2, we can get a better
tree by moving a child of ui to uj, because the cost decreased is a positive value, which is equal to si − 1 − sj > 1. For the
other case when sj − si > 2, we can get a better tree in a similar way. Hence, the lemma is proved. �
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Fig. 4. Transformation of tree T where there are two pseudo-leaf nodes ui and uj which were respectively on levels li and lj , and (lj − li) > 2.

Fig. 5. Exchange of subtrees whose root nodes have the same ancestor weight.

Lemma 7. If some of the pseudo-leaf nodes are on different levels, then we have the property that for any nodes ui, uj on the same
level (L− 2 or L− 1), the inequality |ni − nj| 6 1 holds.

Proof. When there are pseudo-leaf nodes on different levels, according to Lemma 5, the possible situation is that some of
them are on level L− 1 while others are on level L− 2. Moreover, pseudo-leaf nodes on level L− 2 can only have 5 children.
According to this property,we then prove that the pseudo-leaf nodes on level L−1 can only have sj = 2 children. Considering
the opposite situation where a pseudo-leaf node uj on level L− 1 has sj > 3, then there is an optimal tree by moving a child
of uj to a pseudo-leaf node uk on level L− 2. Again we use symbols T̂ and T̃ to denote the trees similarly as in the previous
proofs. Deletion cost is decreased by 3lj + sj − 1 from T to T̂ and increased by 3lk + 5 from T̂ to T̃ . Given lj − lk > 1 and
3 6 sj 6 5, deletion cost is decreased by at least 0 from T to T̃ . Furthermore, the structure of the subtree whose root is uk has
changed from one level tree to two levels (transformed from root degree 5 to degree 3) after adding the leaf. Therefore, if
there are some pseudo-leaf nodes on level L− 2, all pseudo-leaf nodes on level L− 1 can only have 2 children, which means
their ancestor on level L− 2 has 6 leaf descendants. Hence, the lemma is proved. �

Lemma 8. Given a tree T , for any subtrees Ti, Tj whose roots vi, vj have the same ancestor weightwi = wj, if we exchange these
two subtrees, the cost of the resulting tree does not change.

Proof. The lemma can be proved by choosing all the nodes in T except subtrees Ti, Tj as the skeleton, as shown in Fig. 5. For
any leaf u in subtrees Ti, suppose that its deletion cost in T equals x + wi where x denotes the cost when u is deleted from
Ti. After the whole subtree Ti is moved from vi to vj, the cost of deleting u equals x + wj, which equals x + wi. Hence, the
cost to delete all leaves in Ti does not change when we exchange subtrees Ti and Tj. Similar results hold for Tj. The lemma is
then proved. �

Notice that when all pseudo-leaf nodes are on level L−1, the nodes vi, vj on level k (1 6 k 6 L−1) have ancestor weight
wi = wj = 3k. Therefore, the total deletion cost will not change when we exchange the subtrees with root nodes on the
same level L− 1. For the other case when some pseudo-leaf nodes are on level L− 2 and others are on level L− 1, the nodes
vi, vj on level 1 6 k 6 L− 2 also have ancestor weightwi = wj = 3k. According to this observation, for any two nodes vi, vj
on the upper level, we next prove that inequality |ni − nj| 6 1 also holds by exchanging the subtrees.

Lemma 9. There is an optimal tree Tn,opt where for any node vi, vj on the same level 1 6 li = lj 6 (L−2), the relation |ni−nj| 6 1
holds.

Proof. According to Lemmas 6 and 7 we have the induction foundation that nodes on level L− 1 or L− 2 satisfy the semi-
balance property. Suppose that for nodes on level k, the semi-balance property also holds. Then, level k has 3k nodes and
every node has t = b n

3k
c or t + 1 = b n

3k
c + 1 leaf descendants. If there arem1 nodes with t leaf descendants andm2 nodes

with t+1 leaf descendants, we havem2 = (nmod 3k) andm1 = 3k−m2. In the following, we prove that nodes on level k−1
also satisfy the semi-balance property by regrouping the subtrees with roots on level k. According to Lemma 8, exchange of
the subtrees with roots on the same level will not change the total deletion cost. According to this, we prove the induction
in three cases 0 6 m2 < 1

2m1,
1
2m1 6 m2 < 2m1 and 2m1 6 m2. First, when 0 6 m2 <

1
2m1, there are m2 subtrees which

have t + 1 leaves. For each of these subtrees, we combine it with two subtrees which have t leaves. Hence, there are m2
subtrees on level k−1 which have 3t+1 leaves. Furthermore, for the remainingm1−2m2 subtrees which all have t leaves,
we simply combine every three of them. As a result, there are (m1−2m2)/3 = 3k−1−m2 subtrees on level k−1which have
3t leaves andm2 subtrees which have 3t + 1 leaves. The semi-balance property holds for this case. Similarly, we can prove
semi-balance also holds when 12m1 6 m2 < 2m1 or 2m1 6 m2. By induction, the theorem holds for any level l (l ≤ L− 2) of
the optimal tree. �
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Based on these lemmas, we get the following theorem:
Theorem 1. When the number of leaves n > 6, there is an optimal tree Tn,opt where the sizes of its three subtrees differ by at
most 1.
The correctness of the theorem is evident with the support of Lemmas 6, 7 and 9. Theorem 1 in fact implies that we can

get an optimal tree by distributing the leaves into subtrees in a semi-balanced way until every pseudo-leaf node ui satisfies
2 6 si 6 5. This can be interpreted as the following optimal tree construction rule:
(1) When n 6 5, the optimal tree is a one level tree with all leaves on the same level.
(2)When n > 6, the optimal tree is a treewith root degree 3.We distribute n leaves into its three subtrees in a semi-balanced
way with d n3e, d

n−1
3 e, d

n−2
3 e leaves respectively.

(3) For each subtree, recursively construct its optimal structure according to (1) and (2).
The rule above implies that the worst-case deletion cost Tn,max (abbreviated as T (n)) can be computed along with the

constructing process. For k = 1, we have

T (n) = T
(⌈n
3

⌉)
+ T

(⌈
n− 1
3

⌉)
+ T

(⌈
n− 2
3

⌉)
+ 3n− 6.

For k = 2, we have

T
(⌈n
3

⌉)
= T

(⌈
d
n
3e

3

⌉)
+ T

(⌈
d
n
3e − 1
3

⌉)
+ T

(⌈
d
n
3e − 2
3

⌉)
+ 3d

n
3
e − 6

= T
(⌈
d
n
3e

3

⌉)
+ T

(⌈
d
n−3
3 e

3

⌉)
+ T

(⌈
d
n−6
3 e

3

⌉)
+ 3

⌈n
3

⌉
− 6

= T
(⌈n
9

⌉)
+ T

(⌈
n− 3
9

⌉)
+ T

(⌈
n− 6
9

⌉)
+ 3

⌈n
3

⌉
− 6.

The last equality holds because d d
n
a e

b e = d
n
abewhere a, b are positive integers. Then T (n) can be computed as

T (n) = T
(⌈n
9

⌉)
+ T

(⌈
n− 1
9

⌉)
+ · · · + T

(⌈
n− 8
9

⌉)
+ 3n− 3 · 6+ 3n− 6.

In general, for k = dlog3 ne − 1 or k = dlog3 ne − 2, we have

T (n) = T
(⌈ n
3k

⌉)
+ T

(⌈
n− 1
3k

⌉)
+ · · · + T

(⌈
n− 3k + 1
3k

⌉)
+ 3n · k− 6

k−1∑
i=0

3i.

In fact, there are n mod 3k nodes which have d n
3k
e leaf descendants and 3k − (n mod 3k) nodes which have d n

3k
e − 1 leaf

descendants. Notice that when 2 6 d n
3k
e 6 5 these nodes are pseudo-leaf nodes, while the optimal structure when d n

3k
e = 6

is the tree where root degree is 3 and each child has 2 leaves. Hence, we have the following theorem.
Theorem 2. The worst-case deletion cost T (n) of the optimal tree Tn,opt can be computed with O(log log n) multiplications of
O(log n)-bit integers according to the equation below.

Tn,max = (nmod 3k) · T
(⌈ n
3k

⌉)
+ (3k − nmod 3k) · T

(⌈ n
3k

⌉
− 1

)
+ 3n · k− 3k+1 + 3

where k =
{
dlog3 ne − 1 if 2 6 b n

3dlog3 ne−1
c 6 5,

dlog3 ne − 2 if 2 6 b n
3dlog3 ne−2

c 6 5.

For basic cases 2 6 n 6 5, we have C(2) = 1, C(3) = 3, C(4) = 6, C(5) = 10. Since the fastest method to do O(n)-bit
integer multiplication has a complexity O(n log n2O(log

∗ n)) [10], we need at most O(log n log2 log n2O(log
∗ n)) time to compute

the value of 3O(log n), and hence the optimal tree structure, which is better than the dynamic programming algorithm with
O(n2) time. Furthermore, to construct the optimal tree, we can distribute the users into subtrees in a semi-balanced way.

4. Optimal tree structures for n insertions followed by n deletions

In this section, we investigate a more general setting where the cost of the initial group setup is also considered. In this
new setting, the optimal tree we computed in the previous section is probably no longer optimal. We aim to study the
optimal tree structure to minimize the cost for the initial setup followed by n deletions.
Lemma 10. The number of encryptions needed to build the initial tree equals N − 1 where N is the number of nodes in the tree.
Proof. The tree is built after all the members arrive; we distribute the keys to the users securely in the bottom–up fashion
with respect to the tree. Therefore, every key except the key stored in the root will be used once as an encryption key in the
whole process, which amounts to N − 1 encryptions in total. The lemma is then proved. �
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Fig. 6. Transformation of tree T where root v has degree 2m.

To represent the total cost of insertion and deletion in one formula, we modify the cost of skeleton a bit as follows.

Definition 6. Suppose the skeleton T ′ has t non-root nodes, the worst-case cost for T ′ is CT ′,max = CT ′, deletion + t .

In fact, CT ′, deletion is the worst-case cost when only deletion is considered, and t is the number of messages encrypted by
the keys stored in the t non-root nodes when establishing the initial key tree.

Lemma 11. If the skeleton T ′ of T has r leaves, the worst-case cost for T is CT ,max = CT ′,max +
∑r
i=1(CTi,max + (ni − 1)wi).

Proof. When only considering the situation where a deleting sequence is performed, we have the conclusion below, which
was already proved in [9].

CT , deletion = CT ′, deletion +
r∑
i=1

(CTi, deletion + (ni − 1)wi).

When we take the insertion cost into consideration, the cost will be CT , deletion + N − 1 in total where N denotes the total
number of nodes in the tree. Because the number of non-root nodes in the tree is N − 1, we can compute the insertion cost
each time we compute the deletion cost, which means we should distribute the cost caused by insertion into the deleting
process. According to the new definition of the skeleton cost CT ,max, each non-root node in the tree T exactly contributes an
extra cost of 1 compared to CT , deletion, no matter how the skeletons are chosen recursively. The lemma is then proved. �

Definition 7. In a tree T where the skeleton T ′ has r subtrees, the ancestor weight vector is denoted as (w1, w2, . . . , wr)
wherewi is non-increasing when i increases.

The proof of the following lemma is similar as in [9].

Lemma 12. There is an optimal tree whose leaf descendant vector (n1, n2, . . . , nr) is non-decreasing.

Proof. Because the ancestor weight vector is non-increasing, the subtree cost is minimizedwhen the leaf descendant vector
is non-decreasing. �

In the following lemmas, we first prove that the degree of internal nodes cannot exceed 7 and then remove other
impossible node degree combinations. Since the possible tree structures with degree d 6 7 are still too many to be
enumerated, we restrict the possible structures gradually using mathematical methods.

Lemma 13. There is an optimal tree Tn,opt where every internal node v has degree at most 7.

Proof. Suppose an optimal tree T has root degree d = 2m. We can transform the tree to T̃ as Fig. 6 shows.

CT ,max = CT ′,max +
2m∑
i=1

(CTi,max + (ni − 1)wi)

=

2m−1∑
i=0

i+ 2m+
2m∑
i=1

CTi,max + 2m(n− 2m)

CT̃ ,max = 1+ 2
m+1∑
i=3

i+ 2+ 2m+
2m∑
i=1

CTi,max + (m+ 2)(n− 2m).

Because 2m(n− 2m) > (m+ 2)(n− 2m) form > 2, we have

∆ = CT ,max − CT̃ ,max >
2m−1∑
i=0

i−

(
2
m+1∑
i=3

i+ 1+ 2

)
= m2 − 4m+ 1.

Hence, we have∆ > 0 whenm > 4. In the case where the root has odd degree d = 2m+ 1 we can get similar results. By
transforming the root from degree 2m+1 to 2 as Fig. 7 shows, the cost decreases at least by∆ = m2−3m−1. The condition
m > 4 also ensures∆ > 0. Therefore, the tree after several times of transformation is still optimal but has no internal nodes
with degree greater than 7. �
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Fig. 7. Transformation of tree T where root v has degree 2m+ 1.

Fig. 8. Transformation of tree T where root v has degree 7 and at least one child of v is an internal node.

Fig. 9. Transformation of tree T when root v has degree 6 and at least one child of v is an internal node.

Lemma 14. There is an optimal tree Tn,opt where every internal node v has degree at most 7 and children of nodes with degree 7
are all leaves.

Proof. In an optimal tree T that satisfies Lemma 13, suppose it has an internal node v with degree 7 which has at least one
child being an internal node. In this case, the ancestorweight vector of v’s childrenwill be (w1, w2, . . . , w7) = (7, 7, . . . , 7).
We perform the transformation as Fig. 8 shows. The ancestor vector after the transformation will be (6, 6, 6, 6, 5, 5, 5). The
skeleton costs of T and T̃ are respectively 21 + 7 and 20 + 9, increased by 1 after the transformation. When given a non-
decreasing leaf descendant vector (n1, n2, . . . , n7), it is obvious that the cost of the subtrees decreases by at least 2 since
(n7 − 1)(7 − 5) > 2. Hence, we get ∆ > −1 + 2 = 1, which means that in an optimal tree all of the internal nodes with
degree 7 are pseudo-leaf nodes. �

Lemma 15. There is an optimal tree Tn,opt where every internal node v has degree at most 7 and children of nodes with degree 7
and 6 are all leaves.

Proof. In an optimal tree T with n leaves that satisfies Lemma 14, suppose it has an internal node v with degree 6
which has at least one child being an internal node. We have n > 5 + 2 = 7. Then the ancestor vector of v’s children
will be (w1, w2, . . . , w6) = (6, 6, . . . , 6). We perform the transformation as Fig. 9 shows. The ancestor vector after the
transformation will be (5, 5, 5, 5, 5, 5). The skeleton costs of T and T̃ are respectively 15+6 and 15+8, increased by 2 after
the transformation. When given a non-decreasing leaf descendant vector (n1, n2, . . . , n6), it is obvious that the subtree cost
decreases by∆ = −2+ 6(n− 6)− 5(n− 6) = n− 8. If n = 7 then it can be transformed into a one level tree to be optimal.
If n > 8, we have ∆ = n − 8 > 0 according to the transformation, which means that in an optimal tree all of the internal
nodes with degrees 6 and 7 are pseudo-leaf nodes. �

Lemma 16. There is an optimal tree Tn,opt where every internal node v has degree at most 7 and children of nodes with degree
7, 6 and 5 are all leaves.

Proof. Given an optimal tree T with n leaves that satisfies Lemma 15, suppose the root v has degree 5.We prove this lemma
by considering two cases.
Case 1. At least one child of v is a leaf.
Without loss of generality, we assume that the numbers of leaf descendants of the other four subtrees satisfy na > nb >

nc > nd > 1. We move the leaf to the subtree Ta which has na > 2 leaf descendants andm subtrees, as Fig. 10 shows.

CT ,max = 10+ 5+ CTa,max + CTb,max + CTc ,max + CTd,max + 5(na + nb + nc + nd − 4)
CT̃ ,max = 6+ 4+ CT̃a,max + CTb,max + CTc ,max + CTd,max + 4(na + 1+ nb + nc + nd − 4)
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Fig. 10. Transformation of tree T where root v has degree 5 and at least one child of v is a leaf.

Fig. 11. Transformation of tree T where root v has degree 5 and at least four children of v are leaves.

Fig. 12. Transformation of tree T where root v has degree 5 and all children of v are internal nodes.

Fig. 13. Two cases of optimal tree T with n = 10 leaves: One with cost 37+ 12, and the other with cost 36+ 13.

CTa,max =
m−1∑
i=1

i+m+
m∑
i=1

CTi,max +m(na −m)

CT̃a,max =
m∑
i=1

i+m+ 1+
m∑
i=1

CTi,max + (m+ 1)(na −m)

∆ = nb + nc + nd − 4.

If nb + nc + nd > 4, we get∆ > 0. Otherwise if nb + nc + nd = 3, which implies nb = nc = nd = 1, we prove that it also
can be changed into a better tree with root degree less than 5 when n > 7, as shown by Fig. 11.

CT ,max = 10+ 5+ CTa,max + 5(na − 1)
CT̃ ,max = 13+ 6+ CTa,max + 2(na − 1)

∆ = 3na − 7.

If n > 7, we have na > 3 which ensures∆ > 2. Therefore, the lemma holds in this case.
Case 2. All children of v are internal nodes.
Similarly, we assume na > nb > nc > nd > ne > 2, which implies n > 10. By transforming it into a tree with root degree

d = 3 < 5 as Fig. 12 shows, we can also reduce the cost.

CT ,max = 10+ 5+ CTa,max + CTb,max + CTc ,max + CTd,max + CTe,max + 5(na + nb + nc + nd + ne − 5)
CT̃ ,max = 11+ 7+ CTb,max + CTc ,max + CTd,max + CTe,max + 5(nb + nc + nd + ne − 4)+ CTa,max + 3(na − 1)

∆ = 2na − 5.

When n > 11, we have na > 3 which implies∆ > 1. When n = 10, we can also get an optimal tree with root degree less
than 5. In fact, there are two optimal trees when n = 10, both with cost 49, as Fig. 13 shows. Since in both cases, the tree T
with root degree 5 can be transformed into a better tree with smaller root degree, we have proved the lemma. �
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Fig. 14. Transformation of tree T where root v has degree 4 and at least one child of v is a leaf.

Fig. 15. Transformation of tree T where root v has degree 4 and at least three children of v are leaves.

Lemma 17. There is an optimal tree Tn,opt where every internal node v has degree at most 7 and children of nodes with degree
not equal to 2 or 3 are all leaves.

Proof. Given an optimal tree T that satisfies Lemma 16, suppose on the contrary the root v has degree 4 and at least one
child of v is an internal node. We prove this lemma by considering two cases.
Case 1. At least one child of root v is a leaf.
Without loss of generality, we assume that the number of leaf descendants of the other three subtrees Ta, Tb, Tc satisfy

na > nb > nc > 1 and na > 2. We move the leaf to the subtree Ta as Fig. 14 shows.

CT ,max = 6+ 4+ CTa,max + CTb,max + CTc ,max + 4(na + nb + nc − 3)
CT̃ ,max = 3+ 3+ CT̃a,max + CTb,max + CTc ,max + 3(na + nb + nc + 1− 3)

CTa,max =
m−1∑
i=1

i+m+
m∑
i=1

CTi,max +m(na −m)

CT̃a,max =
m∑
i=1

i+m+ 1+
m∑
i=1

CTi,max + (m+ 1)(na −m)

∆ = nb + nc − 3 > 0.

If nb+ nc > 3, we get∆ > 0. Otherwise we have nb+ nc = 2 which implies nb = nc = 1. In this situation, we prove that
it can also be changed into a better tree with root degree less than 5 when n > 6, as shown by Fig. 15.

CT ,max = 10+ CTa,max + 4(na − 1)
CT̃ ,max = 13+ CTa,max + 2(na − 1)

∆ = 2na − 5 > 0.

When n > 6, we have na > 3 which implies∆ > 1. Therefore, the lemma holds in this case.
Case 2. All the children of the root v are internal nodes.
We can assume that na > nb > nc > nd > 2 without loss of generality. By transforming T as shown in Fig. 16, we can also

reduce the cost.

CT ,max = 6+ 4+ CTa,max + CTb,max + CTc ,max + CTd,max + 4(n− 4)
CT̃ ,max = 7+ 5+ CTa,max + CTb,max + CTc ,max + CTd,max + 5(nc + nd − 2)+ 3(na + nb − 2)

∆ = −2+ na + nb − nc − nd > −2.

If ∆ > 0, the lemma is proved, otherwise we consider two subcases ∆ = −1 and ∆ = −2. It is obvious that when
∆ = −1, the leaf descendant vector (na, nb, nc, nd = n′) is either (n′ + 1, n′, n′, n′) or (n′ + 1, n′ + 1, n′ + 1, n′), while the
leaf descendant vector is (n′, n′, n′, n′)when∆ = −2.
Then, we take a second transformation. Notice that optimal trees with the same number of leaves can have the same

structures. We prove in the following that by suitably moving a leaf from Ti to Tj (ni = nj), the value of∆will decrease by 1.
In the first subcase where∆ = −1, (na, nb, nc, nd) = (n′+ 1, n′, n′, n′), we move a leaf node u of Tc to its corresponding

position in Tb. By Lemma 3, deleting u from Tc decreases the cost by 5+ x− 1, and adding u to Tb increases the cost by 3+ x,
where x denotes the ancestor weight of u in Tb. As a whole, the total tree cost is reduced by (4 + x) − (3 + x) = 1. This
means we get∆ = −1+ 1 = 0 by this two-step transformation.
In the second subcase where∆ = −1, (na, nb, nc, nd) = (n′ + 1, n′ + 1, n′ + 1, n′), we can also get∆ = −1+ 1 = 0 by

moving a leaf node on Tc to Tb. Similarly, in the case where∆ = −2, (n′, n′, n′, n′), we can also get∆ = −2+ 1+ 1 = 0 by
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Fig. 16. Transformation of tree T where root v has degree 4 and all children of v are internal nodes.

moving a leaf node from Tc to Tb and moving another leaf node from Td to Ta. In all the subcases, we can get a tree with less
or equal cost.
Since in all the cases, the tree T with root degree 4 can be transformed into a better tree with a smaller root degree, the

lemma is finally proved. �

Based on this lemma, we have the following theorem:

Theorem 3. Algorithm 1 can compute an optimal tree in O(n2) time.

Proof. In Algorithm 1, we use Ri to denote the minimum cost of trees with i leaves and root degree restricted to be 3, Di to
denote the minimum cost of trees with i leaves and root degree restricted to be 2, and Ci to denote the minimum cost of
all the trees with i leaves. For n 6 7, the first three lines initialize the first 7 values for R, D and C . For n > 8, according to
Lemma 17, the optimal tree has root degree 2 or 3. For degree 2, the bestworst-case costDi can be computed by enumerating
all possible combinations of its two branches. To be specific, Di has two branches respectively with k1 and k2 leaves. Since
it needs extra cost 2(k1− 1+ k2− 1) to delete these two branches because deleting each leaf will incur extra cost 2 on the
skeleton, we have Di = Ck1 + Ck2 + 2i− 3. For root degree 3, suppose the smallest subtree has k1 leaf descendants, and the
remaining structure with k2 leaves is treated as a tree with root degree 2 and cost Dk2. It needs an extra cost of 3(k1− 1) for
the branch with k1 leaves and (k2 − 2) for the remaining structure when they are deleted from a larger tree with i leaves.
By further considering the difference in the skeleton cost, the worst-case cost when the root degree is 3 can be computed
as Ri = Ck1 + 3(k1 − 1) + Dk2 + (k2 − 2) + 3. The inner loop enumerates all possible combinations of these two parts.
Furthermore, the minimum cost Ci is the smaller one of Di and Ri. Finally, the running time is O(n2) because there are two
nested loops in this algorithm. The optimal tree structure can be obtained through keeping the branching information in
the algorithm. �

Algorithm 1 Sequence_OPT
1. R1 = 1; R2 = 3; R3 = 6; R4 = 10; R5 = 15;R6 = 21; R7 = 28;
2. D1 = 1; D2 = 3; D3 = 8; D4 = 13; D5 = 18; D6 = 23;D7 = 29;
4. C1 = 1; C2 = 3; C3 = 6; C4 = 10; C5 = 15;C6 = 21; C7 = 28;
5. for i = 8 to n
6. Di = i2; Ri = i2; Ci = i2;
7. for k1 = 1 to i/2
8. k2 = i− k1;
9. if Di > Ck1 + Ck2 + 2 · i− 1 then
10. Di = Ck1 + Ck2 + 2 · i− 1;
11. if Ri > Ck1 + Dk2 + i+ 2 · k1− 2 then
12. Ri = Ck1 + Dk2 + i+ 2 · k1− 2;
13. end for
14. Ci = min(Di, Ri);
15.end for

5. Discussion

One open problem is whether there is a certain semi-balance property for the optimal tree when the initial setup cost is
also considered. We roughly discuss this issue in this section by proving two lemmas.

Lemma 18. In the optimal tree, if an internal node v (not a pseudo-leaf node) has degree 2, then its child is either a pseudo-leaf
node or an internal node with degree 3.

Proof. Firstly, it is easy to remove thepossibility of a leaf directly attached tov (Please refer to the transformation in Fig. 17(c)
and take v2 as a leaf.) We then prove the lemma by showing the correctness of the following two rules:
(1) if neither of its two children is a pseudo-leaf node, then both of these two children have degree 3;
(2) if only one of the two children is a pseudo-leaf node, then the other one has degree 3.
We suppose that v1, v2 are the two children of root v. For rule (1), v1, v2 can have degree 2 or 3 according to Lemma 17.

We will then remove the possibility that dv1 = 2, dv2 = 2 and dv1 = 2, dv2 = 3 by doing transformations on the tree. In the
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Fig. 17. Three transformations for the tree T .

first case, the four subtrees are transformed as shown in Fig. 17(a). W.l.o.g, we assume that n1 ≥ n2, n3 ≥ n4. Note that the
two trees have skeleton costs 7+ 6 and 7+ 5 respectively. The cost for T is CT ,max =

∑4
i=1 CTi,max + 13+

∑4
i=1 4(ni − 1),

while the cost for T̃ is CT̃ ,max =
∑4
i=1 CTi,max + 12 + 3(n1 + n3 − 2) + 5(n2 + n4 − 2). Thus the transformation

decreases the cost by ∆ = n1 − n2 + n3 − n4 + 1 > 0. In this way, we remove the possibility of dv1 = 2, dv2 = 2.
For the second case, we transform it as shown in Fig. 17(b) where w.l.o.g we assume n4 ≥ n5. The cost for T and T̃
are respectively CT ,max =

∑5
i=1 CTi,max + 11 + 7 + 5(n1 + n2 + n3 − 3) + 4(n4 + n5 − 2) and CT̃ ,max =∑5

i=1 CTi,max + 11 + 7 + 5(n1 + n2 + n3 + n5 − 4) + 3(n4 − 1). The cost is decreased by ∆ = n4 − n5 ≥ 0. By
transforming the violating degree 2 nodes in the top–down order, we can also exclude the possibility of the second case in
the optimal tree.
For rule (2), suppose that the pseudo-leaf node v2 has degree d and on the contrary v1 has two subtrees, we transform it

as shown in Fig. 17(c). The cost for T and T̃ are respectively CT ,max = CT1,max + CT2,max +
∑d−1
i=1 (i + 2) + 4 + d + 4 +

4(n1 + n2 − 2) and CT̃ ,max = CT1,max + CT2,max +
∑d−1
i=1 (i + 3) + 3 + d + 3 + 3(n1 + n2 − 2). Let the number of leaf

descendants of v be nv . If nv ≥ 14 , the cost is decreased by∆ = n1 + n2 − d + 1 = nv − d− d + 1 > 0 because d ≤ 7, a
contradiction. If 7 < nv < 14, by enumeration, we can guarantee that there is always a better structure where the degree
of v is 3. If nv ≤ 7, then node v is a pseudo-leaf node itself. Therefore, the lemma is true. �
By Lemma 18, we note that roughly at least half of the ancestors of the pseudo-leaf node have degree 3 instead of 2. This

leads us to study the maximum difference of positions of the leaves in the optimal tree. The following lemma shows that
the leaves in the optimal tree will not differ too much in the levels.
Lemma 19. In the optimal tree, all the leaves can only be on levels in [d 56 Le − 1, L].
Proof. In the optimal tree, consider two leaves vi, vj whose parents ui, uj are respectively on the levels li and lj = L − 1,
where L is the height of the tree (there must be one leaf on the level L). Suppose that si(sj) is the number of children of ui(uj),
then 2 ≤ si, sj ≤ 7 according to Lemma 13. Furthermore, ui’s ancestor has degree at most 3 and thus any leaf child of ui has
deletion cost at most 3li + 7 after an extra child is added to ui. Lemma 18 implies that at least half of uj’s ancestors have
degree 3. Thus any leaf child of uj has deletion cost at least 3 · b

lj
2 c+2(lj−b

lj
2 c)+1. Then bymoving one leaf child of uj to ui

(similarly to the proof in Lemma5), the cost decreases by∆ ≥ 2lj+b
lj
2 c−3li−6. Thuswe have 2(L−1)+b

(L−1)
2 c−3li−6 ≤ 0,

because of the optimality of the original tree. Therefore, all leaves can only be on levels [d 56 Le − 1, L]. �

6. Conclusion

While many works focus on fixing the cost bound under some multicast protocol, we try to find the optimal structure
to minimize the cost. We investigate the scenario where the members all arrive in the initial setup time and then leave
one by one. This can be applied in teleconferencing or applications where the member list can be fixed beforehand. Feng
et al. [9] found the optimal tree structure when only deletion cost is considered. We prove a semi-balance property of the
optimal key tree based on their work. We show that the members can be distributed in a semi-balance way in the optimal
tree. Using this propertywe improve the running time fromO(n2) toO(log log n)multiplications ofO(log n)-bit integers.We
then focus on the optimal tree structure when insertion cost for the initial period is simultaneously considered. We obtain
a recursive formula and use it to eliminate the impossible degrees in the optimal tree. Based on this observation, we give
an algorithm to compute the optimal tree with O(n2) time. Finally, we derive some balance structure for the optimal tree in
this scenario.
One possible direction of future work is to investigate a more balanced structure for the optimal tree when insertion cost

of the initial setup period is considered together with the deletion cost.
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