
Towards Context-Aware Search by Learning A Very Large
Variable Length Hidden Markov Model from Search Logs

Huanhuan Cao1
∗

Daxin Jiang2 Jian Pei3 Enhong Chen1 Hang Li2
1University of Science and Technology of China 2Microsoft Research Asia 3Simon Fraser University

1{caohuan, cheneh}@ustc.edu.cn 2{djiang, hangli}@microsoft.com 3jpei@cs.sfu.ca

ABSTRACT
Capturing the context of a user’s query from the previous
queries and clicks in the same session may help understand
the user’s information need. A context-aware approach to
document re-ranking, query suggestion, and URL recom-
mendation may improve users’ search experience substan-
tially. In this paper, we propose a general approach to
context-aware search. To capture contexts of queries, we
learn a variable length Hidden Markov Model (vlHMM) from
search sessions extracted from log data. Although the math-
ematical model is intuitive, how to learn a large vlHMM
with millions of states from hundreds of millions of search
sessions poses a grand challenge. We develop a strategy
for parameter initialization in vlHMM learning which can
greatly reduce the number of parameters to be estimated in
practice. We also devise a method for distributed vlHMM
learning under the map-reduce model. We test our approach
on a real data set consisting of 1.8 billion queries, 2.6 billion
clicks, and 840 million search sessions, and evaluate the ef-
fectiveness of the vlHMM learned from the real data on three
search applications: document re-ranking, query suggestion,
and URL recommendation. The experimental results show
that our approach is both effective and efficient.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess

General Terms
Algorithms, Experimentation

Keywords
Context-aware search, variable length Hidden Markov Model

1. INTRODUCTION
Capturing the context of a user’s query from the previous

queries and clicks in the same session may help understand
the user’s information need. A context-aware approach to

∗The work was done when Huanhuan Cao was an intern at
Microsoft Research Asia.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

document re-ranking, query suggestion, and URL recom-
mendation may improve users’ search experience substan-
tially.

Example 1 (Motivation). Ada plans to buy a new
car. Thus, she wants to compare the models, price, avail-
ability, and deals of various brands. If Ada does not know
how to formulate an effective query to describe her infor-
mation need, she may issue a series of queries to search for
individual brands and models and browse many results one
by one. Actually, what Ada needs is some review web sites
such as www.autohome.com. This web site is returned as a
search result when a user raises a query such as “Ford new
cars” or “Toyota new cars”. However, since most search en-
gines treat a user query individually and rank the documents
based on the relevance to only the current query (e.g., “Ford
new cars”), the review web site is usually ranked lower than
the sites/pages dedicated to the brand in the query. Con-
sequently, it is not easy for Ada to notice the review web
site.

SID Search session

Ford ⇒ Toyota ⇒ GMC ⇒ Allstate
S1 ↓

www.autohome.com
Ford cars ⇒ Toyota cars ⇒ GMC cars ⇒ Allstate

S2 ↓
www.autohome.com

Ford cars⇒ Toyota cars⇒ Allstate
S3 ↓

www.allstate.com
GMC ⇒ GMC dealers

S4 ↓
www.gmc.com

Table 1: Four search sessions.

To understand why context-aware search may help, let us
consider the search log data shown in Table 1 which contains
four sessions. The ‘↓’ symbol indicates the user clicks a URL.

A pattern in the sessions is that in 50% of the sessions,
a user clicks on www. autohome. com after asking a series of
queries about different brands of cars. Using this pattern,
a search engine should promote URL www.autohome.com in
the ranked list of search results for Ada. Another pattern
that can be found in the sessions is that in 75% of the ses-
sions, after a series of queries about different brands of cars,
users will search for car insurance. Using this context infor-
mation, a search engine can provide the corresponding query
and URL suggestions to improve users’ search experience.

WWW 2009 MADRID! Track: Data Mining / Session: Learning

191

u1 ut-1 ut

q1 qt-1

s1 st-1 st

qt

nt-1 nt
O1...t-1

n1

: Probability dependence

: State transition

: Multiple clicks

Figure 1: Graphical structure of the vlHMM.

Modeling query contexts by mining search sessions is a
fundamental and challenging problem. Although some pro-
gress has been made by the previous studies [6, 15, 23],
most of them only consider correlations within query pairs.
Such a method cannot capture well the contexts exempli-
fied in Example 1 which are carried by a series of queries
and clicks. Moreover, each of the previous methods builds a
model only for a specific search application. To achieve gen-
eral context-aware search, we need a comprehensive model
which can be used simultaneously for multiple applications
such as document re-ranking, query suggestion, and URL
recommendation.

In this paper, we propose modeling query contexts by a
variable length Hidden Markov Model (vlHMM for short) for
context-aware search. As well recognized by many previous
studies such as [12], a user often raises multiple queries and
conducts multiple rounds of interaction with a search engine
for an information need. For instance, in Example 1, Ada
may decompose her general search task, comparing various
cars, into several specific sub-tasks, such as searching the
cars of Ford. In each sub-task, Ada may bear a particular
search intent in mind and formulate a query to describe the
intent. Moreover, Ada may selectively click on some related
URLs to browse. A Hidden Markov Model (HMM for short)
naturally describes the search process. We can model each
search intent as a state of the HMM, and consider the query
and clicked URLs as observations generated by the state.
The whole search process can be modeled as a sequence of
transitions between states as illustrated in Figure 1. It is
possible that a state transits to itself.

Let qt be the current query. The vlHMM can re-rank
the search results by the posterior probability distribution
P (st|qt, O1···t−1), where st is the current search intent hid-
den in the user mind and O1···t−1 is the context of qt, which is
captured by the past queries q1 . . . qt−1 as well as the clicks
of those queries. Moreover, the vlHMM can even predict
the user’s next search intent st+1 by P (st+1|qt, O1···t−1) and
generate query suggestions and URL recommendations ac-
cordingly.

The probability distributions of st and st+1 are inferred
from not only the current query, but also the whole context
observed so far. For instance, in Example 1, given the cur-
rent query “GMC” alone, the probability of Ada searching
for the homepage of GMC is likely to be higher than that of
searching for car review web sites. Therefore, the company
homepage is ranked higher than www.autohome.com and sug-
gestions such as “GMC dealers” are more likely to be served.
However, given the context O1···t−1 that Ada has input a se-

ries of car companies and clicked corresponding homepages,
the probability of searching for car review sites may signif-
icantly increase, while the probability of searching for the
GMC homepage may decrease. Consequently, the vlHMM
will boost the car review web sites, and provide suggestions
about car insurance instead of the specific car dealers.

Learning Hidden Markov Models and variants has been
well adopted in many applications. However, applying the
Hidden Markov Models in context-aware search is far from
trivial. Due to the extremely large search session data, it
is impractical to apply the existing algorithms. In a com-
mercial search engine, search logs may contain hundreds of
millions of training examples. For instance, in the data set
used in our experiments, there are 840 million search ses-
sions. Moreover, search logs may contain millions of unique
queries and URLs, e.g., 1.8 million unique queries and 8.3
million unique URLs in our experimental data, which makes
the number of model parameters extremely large.

To tackle the problem, in this paper, we develop a strategy
for parameter initialization in vlHMM learning which can
greatly reduce the number of parameters to be estimated in
practice. We also devise a method for distributed vlHMM
learning under the map-reduce model [9]. Once the vlHMM
is trained offline, it can be used online to support context-
aware search in various applications such as document re-
ranking, query suggestion, and URL recommendation.

We make the following contributions in this paper. First,
we propose a novel model to support context-aware search.
To the best of our knowledge, this is the first approach
towards comprehensive context modeling for context-aware
search. Second, we develop efficient algorithms and strate-
gies for learning a very large vlHMM from huge log data.
Finally, we test our approach on a real log data set con-
taining 1.8 billion queries, 2.6 billion clicks, and 840 million
search sessions. We examine the effectiveness of the trained
vlHMM on three search applications: document re-ranking,
query suggestion, and URL recommendation, as well as the
efficiency of our training algorithms. The experimental re-
sults clearly show our approach is effective and efficient.

The rest of the paper is organized as follows. Section 2
briefly reviews the related work. In Section 3, we introduce
the vlHMM model for search logs. The training methods
of very large vlHMM and the applications in context-aware
search are presented in Sections 4 and 5, respectively. In
Section 6, we report the experimental results. The paper is
concluded in Section 7.

2. RELATED WORK
Traditional approaches to query understanding often rely

on explicit, implicit, or pseudo relevance feedback (e.g., [14,
18, 20]) or user profiles (e.g., [7, 19]). In terms of modeling
contexts of queries, Bai et al. [3] constructed a language
model using the context both around and within a query.
Although these techniques are helpful to understand users’
search intent, they do not use search log data and do not
provide query or URL suggestions.

Some recent studies mined users’ search or browsing logs
and used wisdom of the crowds to improve users’ search
experience. For example, White et al. [23] proposed min-
ing popularly visited web sites from browsing logs and rec-
ommending to a user the web sites frequently visited by
other users with similar information needs. Huang et al. [13]
mined query pairs frequently co-occurring in search sessions,

WWW 2009 MADRID! Track: Data Mining / Session: Learning

192

and used the queries in those pairs as suggestions for each
other. Fonseca et al. [12] and Jones et al. [15] extracted ad-
jacent queries in sessions for query expansion and query sub-
stitution, respectively. Beeferman et al. [5], Wenet al. [22],
and Baeza-Yates et al. [1] applied various clustering algo-
rithms to find similar queries from click-through data and
used them as candidates in query suggestion. Those studies
can be regarded as initiatives to model partial contexts of
queries using simple mechanisms. However, query contexts
are not comprehensively modeled due to the limitation of the
mechanisms which often consider only query pairs instead of
a sequence of queries.

In [6], the authors proposed a context-aware and concept-
based method CACB for query suggestion. CACB consid-
ers the user’s previous queries in the same session as the
context for query suggestion. Moreover, to make query sug-
gestion robust, CACB summarizes similar queries into con-
cepts, where each concept corresponds to a search intent.

The vlHMM approach developed in this paper is fun-
damentally different from CACB in three aspects. First,
CACB constrains that each query represents only one search
intent (concept). This limits the applicability of CACB since
a query in practice (e.g., “java”) may be used by different
users for different search intents. By contrast, in the vlHMM
approach, a query may be associated with multiple search
intents with a probability distribution, which makes it more
general and powerful than CACB.

Second, CACB only considers the previous queries in the
same session as the context of a query. In the vlHMM
approach, we consider both previous queries and previous
clicks in the same session as the context. Therefore, vlHMM
exploits more information available and thus can capture
contexts of queries more accurately.

Finally, CACB is only able to provide query suggestions;
it cannot handle other search applications such as docu-
ment re-ranking and URL recommendation. By contrast,
the vlHMM approach is a general model which can be used
to support context-aware search in various applications si-
multaneously.

HMMs have been widely used in various domains such
as speech recognition [17] and bioinformatics [11]. In [21],
Wang et al. developed the notion of vlHMMs and applied
a vlHMM to mine four kinds of interesting patterns from
3D motion capture data. We use a vlHMM to model query
contexts in this paper. Our approach is critically different
from [21]: our vlHMM automatically adapts to users’ search
sessions instead of learning an optimized set of contexts.

The training of HMMs has also been well studied in the lit-
erature. The classical learning algorithm is the Baum-Welch
algorithm [4], which is essentially an EM algorithm [10].
However, the existing methods cannot be scaled up to huge
log data because of their high computational complexity.
Recently, parallel and distributed training of very large ma-
chine learning models has attracted much interest. For ex-
ample, Chu et al. [8] applied the map-reduce programming
model [9] to a variety of learning algorithms. However, how
to train a very large HMM from huge log data remains a
challenging open problem.

3. VLHMM MODEL
We choose a Hidden Markov Model rather a Markov Chain

to model query contexts because search intents are not ob-
servable. Different users may raise different queries to de-

scribe the same search intent. For example, to search for
Microsoft Research Asia, queries “Microsoft Research Asia”,
“MSRA”or“MS Research Beijing”may be formulated. More-
over, even two users raise exactly the same query, they may
choose different URLs to browse. If we model individual
queries and URLs directly as states in a Markov Chain, we
not only increase the number of states and thus the com-
plexity of the model, but also lose the semantic relationship
among the queries and the URLs clicked by the same search
intent. To achieve better modeling, we assume that queries
and clicks are generated by some hidden states where each
hidden state corresponds to one search intent.

There are different types of HMMs. The first order HMMs
(1-HMMs) have been widely used in various applications
such as speech recognition [17] and bioinformatics [11]. For
context-aware search, we choose higher order HMMs. This is
because the 1-HMM assumes the probability distribution of
the state st is independent of the previous states s1, . . . , st−2,
given the immediately previous state st−1. In search pro-
cesses, this assumption usually does not hold. For example,
given that a user searched for Ford cars at time point t− 1,
the probability that the user searches for GMC cars at the
current time point t still depends on the states s1 . . . st−2.
As an intuitive instance, that probability will be smaller
if the user searched for GMC cars at any time point before
t−1. Therefore we consider higher order HMMs rather than
1-HMMs. In particular, we consider the vlHMM instead of
the fixed-length HMM because the vlHMM is more flexible
to adapt to variable lengths of user interactions in different
search sessions.

Given a set of hidden states {s1, . . . , sNs}, a set of queries
{q1, . . . , qNq}, a set of URLs {u1, . . . , uNu}, and the maximal
length Tmax of state sequences, a vlHMM is a probability
model defined as follows.

• The transition probability distribution ∆ = {P (si|Sj)},
where Sj is a state sequence of length Tj < Tmax,
P (si|Sj) is the probability that a user transits to state
si given the previous states sj,1sj,2, . . . , sj,Tj , and sj,t(1
≤ t ≤ Tj) is the t-th state in sequence Sj .

• The initial state distribution Ψ = {P (si)}, where P (si)
is the probability that state si occurs as the first ele-
ment of a state sequence.

• The emission probability distribution for each state
sequence Λ = {P (q, U |Sj)}, where q is a query, U
is a set of URLs, Sj is a state sequence of length
Tj ≤ Tmax, and P (q, U |Sj) is the joint probability that
a user raises the query q and clicks the set of URLs U
from state sj,Tj after the user’s (Tj − 1) steps of tran-
sitions from state sj,1 to sj,Tj .

To keep the model simple, given a user is currently at state
sj,Tj , we assume the emission probability is independent of
the user’s previous search states sj,1 . . . sj,Tj−1, i.e., P (q, U |Sj)
≡ P (q, U |sj,Tj). Moreover, we assume that query q and
URLs U are conditionally independent given the state sj,Tj ,
i.e., P (q, U |sj,Tj) ≡ P (q|sj,Tj)

∏
u∈U P (u|sj,Tj). Under the

above two assumptions, the emission probability distribu-
tion Λ becomes (Λq, Λu) ≡ ({P (q|si)}, {P (u|si)}).

The task of training a vlHMM model is to learn the pa-
rameters Θ = (Ψ, ∆, Λq, Λu) from search logs. A search
log is basically a sequence of queries and click events. We
can extract and sort each user’s events and then derive ses-
sions based on a widely-used method [23]: two consecutive

WWW 2009 MADRID! Track: Data Mining / Session: Learning

193

events (either queries or clicks) are segmented into two ses-
sions if the time interval between them exceeds 30 minutes.
The sessions formed as such are then used as training exam-
ples. Let X = {O1, . . . , ON} be the set of training sessions,
where a session On (1 ≤ n ≤ N) of length Tn is a sequence
of pairs 〈(qn,1, Un,1) . . . (qn,Tn , Un,Tn)〉, where qn,t and Un,t

(1 ≤ t ≤ Tn) are the t-th query and the set of clicked URLs
among the query results, respectively. Moreover, we use
un,t,k to denote the k-th URL (1 ≤ k ≤ |Un,t|) in Un,t.

We use the maximum likelihood method to estimate pa-
rameters Θ. We want to find Θ∗ such that

Θ∗ = arg max
Θ

ln P (X|Θ) = arg max
Θ

∑
n

ln P (On|Θ) (1)

Let Y = {S1 . . . , SM} be the set of all possible state se-
quences, sm,t be the t-th state in Sm ∈ Y (1 ≤ m ≤ M), and
St−1

m be the subsequence sm,1, . . . , sm,t−1 of Sm. Then, the
likelihood can be written as ln P (On|Θ) = ln

∑
m P (On, Sm|Θ),

and the joint distribution can be written as

P (On, Sm|Θ) = P (On|Sm, Θ)P (Sm|Θ)

=

(
Tn∏
t=1

P (qn,t|sm,t)
∏

k

P (un,t,k|sm,t)

)

×
(

P (sm,1)

Tn∏
t=2

P (sm,t|St−1
m)

)
. (2)

Since optimizing the likelihood function in an analytic
way may not be possible, we employ an iterative approach
and apply the Expectation Maximization algorithm (EM for
short) [10].

At the E-Step, we have

Q(Θ, Θ(i−1)) = E
[
ln P (X ,Y|Θ)|X , Θ(i−1)

]

=
∑
n,m

P (Sm|On, Θ(i−1)) ln P (On, Sm|Θ)], (3)

where Θ(i−1) is the set of parameter values estimated in the
last round of iteration. P (Sm|On, Θ(i−1)) can be written as

P (Sm|On, Θ(i−1)) =
P (On, Sm|Θ(i−1))

P (On|Θ(i−1))
. (4)

Substituting Equation 2 in Equation 4, and then substitut-
ing Equations 2 and 4 in Equation 3, we get

Q(Θ, Θ(i−1))∝
∑
n,m

Tn∏

t=1

P (i−1)(qn,t|sm,t)
∏

k

P (i−1)(un,t,k|sm,t)

×

P (i−1)(sm,1)

Tn∏

t=2

P (i−1)(sm,t|St−1
m)

×

Tn∑

t=1

ln P (qn,t|sm,t)

+

Tn∑

t=1

∑

k

ln P (un,t,k|sm,t) + ln P (sm,1) +

Tn∑

t=2

ln P (sm,t|St−1
m)

 .

At the M-Step, we maximize Q(Θ, Θ(i−1)) iteratively us-
ing the following formula until the iteration converges.

P (si) =

∑
n,m P (Sm|On, Θ(i−1))δ(sm,1 = si)∑

n,m P (Sm|On, Θ(i−1))
(5)

P (q|si) =

∑
n,m P (Sm|On, Θ(i−1))

∑
t δ(sm,t = si ∧ q = qn,t)∑

n,m P (Sm|On, Θ(i−1))
∑

t δ(sm,t = si)

(6)

P (u|si) =

∑
n,m P (Sm|On, Θ(i−1))

∑
t δ(sm,t = si ∧ u ∈ Un,t)∑

n,m P (Sm|On, Θ(i−1))
∑

t δ(sm,t = si)

(7)

P (si|Sj) =

∑
n,m P (Sm|On, Θ(i−1))δ(∃t St−1

m = Sj ∧ sm,t = si)∑
n,m P (Sm|On, Θ(i−1))δ(∃t St−1

m = Sj)

(8)

In the above equations, δ(p) is a boolean function indicating
whether predicate p is true (= 1) or false (= 0).

4. TRAINING A VERY LARGE VLHMM
Although the EM algorithm has been widely used to train

HMMs, there are still several challenges to apply it on huge
search log data.

First, the EM algorithm needs a user-specified number of
hidden states. However, in our problem, the hidden states
correspond to users’ search intents, whose number is un-
known. To address this challenge, we apply the mining tech-
niques developed in [6] as a prior process to the parameter
learning process. To be specific, we construct a click-through
bipartite and derive a collection of query clusters as in [6].
For each cluster Q of queries, we find all URLs U such that
each URL u ∈ U is connected to at least one query q ∈ Q
in the click-through bipartite. A duple of query and URL
cluster (Q, U) is considered to correspond to a hidden state.
The total number of hidden states is determined by the to-
tal number of clusters. For example, Table 2 shows a state
which is mined from a real data set.

Queries P 0(q|s) P (q|s)
city of bothell 0.52 0.43
bothell wa 0.20 0.27
bothell washington 0.14 0.19
city of bothell washington 0.07 0.05
city of bothell wa 0.06 0.05
city bothell washington 0.01 0.01

URLs P 0(u|s) P (u|s)
ci.bothell.wa.us 0.21 0.15
bothellwashington.com 0.17 0.14
ci.bothell.wa.us/dept/pd/pdindex.html 0.15 0.15
beckwithconsult.com/bothellcityhall.html 0.14 0.17
explorebothell.com 0.14 0.19
allgetaways.com/city-guide.asp 0.09 0.11
nwmaps.net/bothell 0.05 0.08
ihsadvantage.com/h/hotels/bothell/wa/us 0.02 0.01
wecandoitall.com 0.01 0.00
dianasflowers.com 0.01 0.00
mrsc.org/Contracts/B67-SEWER.pdf 0.01 0.00

Table 2: An example of a hidden state and the emis-
sion probabilities before and after the training.

Second, search logs may contain hundreds of millions of
training sessions. It is impractical to learn a vlHMM from
such a huge training data set using a single machine. To
address this challenge, we deploy the learning task on a dis-
tributed system under the map-reduce programming model [9].

WWW 2009 MADRID! Track: Data Mining / Session: Learning

194

We will describe the map stage and the reduce stage in Sec-
tion 4.1.

Last, although the distributed computation partitions the
training data into multiple machines, each machine still needs
to hold the values of all parameters to conduct local estima-
tion. Since the log data usually contains millions of unique
queries and URLs, the space of parameters is extremely
large. For example, the real data set used in our experi-
ments leads to more than 1030 parameters. Clearly, the EM
algorithm in its original form cannot finish in practical time
for even one round of iteration. To address this challenge,
we develop a special initialization strategy based on the clus-
ters mined from the click-through bipartite. We will show in
Section 4.2 that, in practice, our initialization strategy re-
duces the number of parameters to be re-estimated in each
round of iteration to a much smaller number. Moreover,
theoretically the number has an upper bound.

4.1 Distributed Learning of Parameters
Map-Reduce is a programming model for distributed pro-

cessing of large data sets [9]. In the map stage, each machine
(called a process node) receives a subset of data as input and
produces a set of intermediate key/value pairs. In the re-
duce stage, each process node merges all intermediate values
associated with the same intermediate key and outputs the
final computation results.

In our learning process, we first partition the training
data into subsets and distribute each subset to a process
node. In the map stage, each process node scans the as-
signed subset of training data once. For each training ses-
sion On, the process node infers the posterior probability
pn,m = P (Sm|On, Θ(i−1)) by Equation 4 for each possible
state sequence Sm and emits the key/value pairs as shown
in Table 3.

Key Value

si V aluen,1 =
∑

m pn,mδ(sm,1 = si)
V aluen,2 =

∑
m pn,m

(si, qj) V aluen,1 =
∑

m pn,m
∑

t δ(sm,t = si ∧ qj = qn,t)
V aluen,2 =

∑
m pn,m

∑
t δ(sm,t = si)

(si, uj) V aluen,1 =
∑

m pn,m
∑

t δ(sm,t = si ∧ uj ∈ Un,t)
V aluen,2 =

∑
m pn,m

∑
t δ(sm,t = si)

(si, Sj) V aluen,1 =
∑

m pn,mδ(∃t St−1
m = Sj ∧ sm,t = si)

V aluen,2 =
∑

m pn,mδ(∃t St−1
m = Sj)

Table 3: The key/value pairs emitted at the map
stage.

In the reduce stage, each process node collects all values
for an intermediate key. For example, suppose the interme-
diate key si is assigned to process node nk. Then nk receives
a list of values {(V aluei,1, V aluei,2)} (1 ≤ i ≤ N) and de-

rives P (si) by
∑

i V aluei,1∑
i V aluei,2

. The other parameters, P (q|si),

P (u|si), and P (si|Sj) are computed in a similar way.

4.2 Assigning Initial Values
In the vlHMM model, we have four sets of parameters, the

initial state probabilities {P (si)}, the query emission proba-
bilities {P (q|si)}, the URL emission probabilities {P (u|si)},
and the transition probabilities {P (si|Sj)}. Suppose the
number of states is Ns, the number of unique queries is
Nq, the number of unique URLs is Nu, and the maximal
length of a training session is Tmax. Then, |{P (si)}| = Ns,

|{P (q|si)}| = Ns ·Nq, |{P (u|si)}| = Ns ·Nu, |{P (si|Sj)}| =∑Tmax
t=2 N t

s , and the total number of parameters is N =

Ns ·(1+Nq+Nu+
∑Tmax

t=2 N t−1
s). Since a search log may con-

tain millions of unique queries and URLs, and there may be
millions of states derived from the click-through bipartite, it
is impractical to estimate all parameters straightforwardly.
Can we reduce the number of parameters that need to be re-
estimated in each round of iteration?

Our idea is to take the advantage on the semantic correla-
tion among queries, URLs, and search intents. For example,
a user is unlikely to raise the query “Harry Potter” to search
for the official web site of Beijing Olympic 2008. Similarly,
a user who raises query “Beijing Olympic 2008” is unlikely
to click on the URL http://harrypotter.warnerbros.com.
This observation suggests that, although we have a huge
space of possible parameters, the optimal solution is sparse
– the values of most emission and transition probabilities
are zero.

To reflect the inherent relationship among queries, URLs,
and search intents, we can assign the initial parameter values
based on the correspondence between a cluster Ci = (Qi, Ui)
and a state si. As illustrated in Table 2, the queries Qi and
the URLs Ui of a cluster Ci are semantically correlated and
jointly reflect the search intent represented by state si. As
a possible method, we may assign a nonzero probability to
P (q|si) and P (u|si), respectively if q ∈ Ci and u ∈ Ci.
However, such assignments make the model deterministic
since each query can belong to only one cluster.

Alternatively, we can conduct random walks on the click-
through bipartite. P (q|si) (P (u|si)) can be initialized as the
average probability of the random walks that start from q
(u) and stop at the queries (URLs) belonging to cluster Ci.
However, as indicated in [6], the click-through bipartite is
highly connected – there may exist paths between two com-
pletely unrelated queries or URLs. Consequently, random
walks may assign undesirable large emission probabilities to
queries and URLs generated by an irrelevant search intent.

We design an initialization strategy to balance the above
two approaches. We apply random walks up to a restricted
number of steps. Such an initialization allows a query (as
well as a URL) to represent multiple search intents, and at
the same time avoids the problem of assigning undesirable
large emission probabilities.

We limit random walks within two steps. First, we ex-
pand each cluster Ci = (Qi, Ui) into C′i = (Q′i, U

′
i) where Q′i

is a set of queries such that each query q′ ∈ Q′i is connected
to at least one URL u ∈ Ui in the click-through bipartite,
and U ′i is a set of URLs such that each URL u′ ∈ U ′i is
connected to at least one query q′ ∈ Q′i. Then, we as-

sign P 0(q|si) =

∑
u′∈U′

i
Count(q,u′)

∑
q′∈Q′

i

∑
u′∈U′

i
Count(q′,u′) and P 0(u|si) =

∑
q′∈Q′

i
Count(q′,u)

∑
q′∈Q′

i

∑
u′∈U′

i
Count(q′,u′) , where Count(·, ·) is the number

of times that a URL is clicked as an answer to a query in
the search log.

The initial emission probabilities have the following nice
property.

Lemma 1. The query emission probability at the i-th round
of iteration P i(q|si) = 0 if the initial value P 0(q|si) = 0.

Proof. The denominator in Equation 6 is a constant.
Thus, we only need to consider the numerator. For any

WWW 2009 MADRID! Track: Data Mining / Session: Learning

195

pair of On and Sm, if On does not contain query q, the
enumerator is zero since

∑
t δ(sm,t = si ∧ qn,t = q) = 0.

Suppose On contains query q. Without loss of generality,
suppose q appears in On only at step t1, i.e., qn,t1 = q. If
sm,t1 6= si, then the enumerator is zero since

∑
t δ(sm,t =

si ∧ qn,t = q) = δ(sm,t1 = si ∧ qn,t1 = q) = 0.

Last, if sm,t1 = si and qn,t1 = q, P (On|Sm, Θ(i−1)) =

P (i−1)(q|si)·
(∏

t6=t1
P (i−1)(qn,t|sm,t)

)
·
(∏

t P (i−1)(Un,t|sm,t)
)
.

Therefore, if P (i−1)(q|si)) = 0, P (On|Sm, Θ(i−1)) = 0, and

thus P (Sm|On, Θ(i−1)) = 0 (Equation 4).

In summary, for any On and Sm, if P (i−1)(q|si) = 0,

P (Sm|On, Θ(i−1)) · ∑
t δ(sm,t = si ∧ qn,t = q) = 0 and

P i(q|si) = 0. By induction, we have P i(q|si) = 0 if P 0(q|si) =
0.

Similarly, we can show the following.

Lemma 2. The URL emission probability at the i-th round
of iteration P i(u|si) = 0 if the initial value P 0(u|si) = 0.

Based on Lemmas 1 and 2, for each training session On,
we can construct a set of candidate state sequences Γn which
are likely to generate On. To be specific, let qn,t and {un,t,k}
be the t-th query and the t-th set of clicked URLs in On,
respectively, and Candn,t be the set of states s such that
(P 0(qn,t|s) 6= 0) ∧ (∀kP 0(un,t,k|s) 6= 0). From Equations 2

and 4 and Lemmas 1 and 2, we have P (Sm|On, Θ(i−1)) = 0
for any Sm if sm,t 6∈ Candn,t. Therefore, the set of candidate
state sequences Γn for On can be constructed by joining
Candn,1, . . . , Candn,Tn . It is easy to see that for any Sm 6∈
Γn, P (Sm|On, Θ(i−1)) = 0. In other words, for each training
session On, only the state sequences in Γn are possible to
contribute to the update of parameters in Equations 5-8.

After constructing candidate state sequences, we assign
the values to P 0(si) and P 0(si|Sj) as follows. First, we
compute the whole bag of candidate state sequences Γ+ =
Γ1 + . . . + ΓN , where ‘+’ denotes the bag union operation,
and N is the total number of training sessions. We then as-

sign P 0(si) = Count(si)

|Γ+| and P 0(si|Sj) =
Count(Sj◦si)

Count(Sj)
, where

Count(si), Count(Sj), Count(Sj◦si) are the numbers of the
sequences in Γ+ that start with state si, subsequence Sj , and
the concatenations of Sj and si, respectively.

The above initialization limits the number of active pa-
rameters (i.e., the parameters updated in one iteration of
the training process) to an upper bound C as indicated in
the following theorem.

Theorem 1. Given training sessions X = {O1 . . . ON}
and the initial values assigned to parameters as described
in this section, the number of parameters updated in one
iteration of the training of a vlHMM is at most

C = Ns · (1 + Nsq + Nsu) + |Γ| · (T − 1),

where Ns is the number of states, Nsq and Nsu are the aver-
age sizes of {P 0(q|si)| P 0(q|si) 6= 0} and {P 0(u|si)| P 0(u|si)
6= 0} over all states si, respectively, Γ is the set of unique
state sequences in Γ+, and T is the average length of the
state sequences in Γ.

Proof. Let Ψ̃i, ∆̃i, Λ̃i
q and Λ̃i

u be the sets of active initial
state probabilities, transition probabilities, query and URL
emission probabilities in the i-th iteration, respectively. Us-

ing Lemmas 1 and 2, we immediately have |Λ̃i
q| ≤ Ns · Nsq

and |Λ̃i
u| ≤ Ns ·Nsu. Moreover, from the construction of Γ,

we can see that, in any iteration of the training process, any
state sequences Sm 6∈ Γ cannot contribute to the update of

P (si) and P (si|Sj). Therefore, |Ψ̃i| ≤ |{P 0(si)| P 0(si) 6=
0}| ≤ Ns and |∆̃i| ≤ |Γ| · (T − 1).

In practice, the upper bound C given by Theorem 1 is
often much smaller than the size of the whole parameter
space N = Ns · (1 + Nq + Nu +

∑Tmax
t=2 N t−1

s). For example,

in our experimental data, Nsq = 4.5 ¿ Nq = 1.8 × 106,
Nsu = 47.8 ¿ Nu = 8.3×106, and |Γ|·(T−1) = 1.4×106 ¿
Ns ·

∑Tmax
t=2 N t−1

s = 4.29× 1030.
Our initialization strategy also enables an efficient train-

ing process. According to Equations 5-8, the complexity of
the training algorithm is O(k ·N · |Γn|), where k is the num-
ber of iterations, N is the number of training sessions, and
Γn is the average number of candidate state sequences for a
training session. In practice, Γn is usually small, e.g., 4.7 in
our experiments. Although N is a very large number (840
million in our experiments), we can distribute the training
sessions on multiple machines as discussed in Section 4.1.
Our empirical study shows that the training process con-
verges fast. In our experiments, k is around 10.

5. MODEL APPLICATION
In this section, we discuss how to apply the learned vlHMM

to various search applications including document re-ranking,
query suggestion and URL recommendation.

Suppose the system receives a sequence O of user events,
where O consists of a sequence of queries q1, . . . , qt, and for
each query qi (1 ≤ i < t), the user click on a set of URLs Ui.
We first construct the set of candidate state sequences ΓO as
described in Section 4.2 and infer the posterior probability
P (Sm|O, Θ) for each state sequence Sm ∈ ΓO, where Θ is
the set of model parameters learned offline. We can derive
the probability distribution of the user’s current state st by

P (st|O, Θ) =
∑

Sm∈Γo
P (Sm|O,Θ)·δ(sm,t=st)∑

Sm∈Γo
P (Sm|O,Θ)

, where δ(sm,t =

st) indicates whether st is the last state of Sm (=1) or not
(=0).

One strength of the vlHMM is that it provides a system-
atic approach to not only inferring the user’s current state st,
but also predicting the user’s next state st+1. Specifically,
we have P (st+1|O, Θ) =

∑
Sm∈Γo

P (st+1|Sm) · P (Sm|O, Θ),

where P (st+1|Sm) is the transition probability learned of-
fline. To keep our presentation simple, we omit the param-
eter Θ in the remaining part of this section.

Once the posterior probability distributions of P (st|O)
and P (st+1|O) have been inferred, we can conduct the fol-
lowing context-aware actions.

Document re-ranking. Let St = {st| P (st|O) 6= 0} and
U be a ranked list of URLs returned by a search engine as
the answers to query qt. We compute the posterior probabil-
ity P (u|O) for each URL u ∈ U by

∑
st∈S P (u|st) ·P (st|O).

Then, we re-rank the URLs in the posterior probability de-
scending order.

Query suggestion. Let St+1 = {st+1| P (st+1|O) 6= 0}
and Qt+1 = {q| st+1 ∈ St+1, P (q|st+1) 6= 0}. For each query
q ∈ Qt+1, we compute the posterior probability P (q|O) =∑

st+1∈St+1
P (q|st+1) · P (st+1|O), and suggest the top Kq

queries with the highest probabilities, where Kq is a user-
specified parameter.

WWW 2009 MADRID! Track: Data Mining / Session: Learning

196

URL recommendation. Let Ut+1 = {u| st+1 ∈ St+1,
P (u|st+1) 6= 0}. For each URL u ∈ Ut+1, we compute
the posterior probability P (u|O) =

∑
st+1∈St+1

P (u|st+1) ·
P (st+1|O), and recommend the top Ku URLs with the high-
est probabilities, where Ku is a user-specified parameter.

There are two issues in the online application of the vlHMM.
First, users may raise new queries and click URLs which do
not appear in the training data. In the i-th (1 ≤ i < t) round
of interaction, if either the query or at least one URL has
been seen by the vlHMM in the training data, the vlHMM
can simply ignore the unknown queries or URLs, and still
make the inference and prediction based on the remaining
observations; otherwise, the vlHMM just skips this round. If
the current query qt is unknown to the vlHMM, the vlHMM
takes no action.

Second, the online application of our vlHMM may have
a strong requirement on efficiency. Given a user input se-
quence O, the major cost in applying the vlHMM depends
on the sizes of the candidate sets ΓO, St, St+1, Qt+1, and
Ut+1. In our experiments, the average numbers of ΓO, St,
and St+1 are all less than 10 and the average numbers of
Qt+1 and Ut+1 are both less than 100. Moreover, the av-
erage runtime of applying the vlHMM to one user input
sequence is only 0.1 millisecond.

In cases where the sizes of candidate sets are very large or
the session is extremely long, we can approximate the opti-
mal solution by discarding the candidates with low proba-
bilities or truncating the session. Since we only re-rank the
top URLs returned by a search engine and suggest the top
queries and URLs generated by the vlHMM, such approxi-
mations will not lose much accuracy.

6. EXPERIMENTAL RESULTS
In this section, we report the results from a systematic em-

pirical study using a large search log from a major commer-
cial search engine. We examine the efficiency of our vlHMM
training method and the effectiveness of using the learned
vlHMM in context-aware document re-ranking, query sug-
gestion, and URL recommendation.

6.1 Data Set and Preparation
We use a large search log from a major commercial search

engine to train a vlHMM. We only focus on the Web searches
in English from the US market. The log data set contains
1.8 billion queries, 2.6 billion clicks, and 840 million sessions.
The data set involves 151 million unique queries and 114
million unique URLs.

From the raw search log, we first extract user sessions as
described in Section 3. Since we want to train a vlHMM to
model the common search behavior of the crowds, infrequent
sessions should be removed. However, we find that user
sessions, especially long sessions, are extremely sparse. If
we aggregate directly on the search sequences which include
both queries and clicks, most of the sessions will be pruned.
Therefore, instead of counting the frequencies of search se-
quences, we count the frequencies of query sequences. To
be specific, we remove a user session 〈(q1, U1), . . . , (qT , UT)〉
only if the frequency of the query sequence (q1, . . . , qT) is less
than a threshold min sup. In our experiments, min sup is
set to 5. Consequently, 48% of the sessions in the log data
set are pruned.

We examine the distribution of the lengths of the surviv-
ing sessions and find it follows the power law. Moreover,

Raw search log Training data
Num. of unique queries 151,869,102 1,835,270
Num. of unique URLs 114,882,486 8,309,988
Num. of query occurrences 1,812,563,301 926,442,156
Num. of clicks 2,554,683,191 1,321,589,933
Num. of sessions 840,356,624 437,245,177

Table 4: The data statistics before and after the
pre-processing.

10
0

10
2

10
4

10
1

10
310

0

10
2

10
4

10
6

10
1

10
3

10
5

Number of queries

N
um

be
r

of
 s

ta
te

s

distribution

power law: a * x−1.98

10
0

10
2

10
3

10
4

10
1

10
510

0

10
5

10
1

10
2

10
3

10
4

Number of URLs

N
um

be
r

of
 s

ta
te

s

distribution

power law: a * x−1.44

(a) (b)

Figure 2: The number of states with respect to the
number of nonzero initial (a) query and (b) URL
emission probabilities.

more than 50% of the sessions contain at least two rounds
of interaction. These observations are consistent with those
in previous studies (e.g., [13]). We manually inspect some
sessions with lengths longer than 5, and find many of them
contain meaningless query sequences. We suspect that those
sessions were generated by bots. To reduce those noise ses-
sions, we further remove the sessions longer than 5. There
are 22, 919 such sessions, about 0.005% of the whole data
set.

Table 4 shows the statistics of the data set before and
after the pre-processing. Although 98.8% unique queries
and 92.8% unique URLs are removed by the pre-processing,
the resulting data set still keeps 51.1% of the original query
occurrences, 51.7% of the original URL clicks, and 52% of
the original user sessions. As shown in many previous works
(e.g., [2]), this is because the query occurrences and URL
clicks in search logs follow the power law distribution.

6.2 Efficiency of Training the vlHMM
To determine the number of states and assign initial pa-

rameter values, we apply the clustering algorithm in [6] and
derive 1,346,146 clusters of queries. We thus have 1,346,146
states in the vlHMM, and then initialize the parameter val-
ues as described in Section 4.2. As an example, Table 2
shows the initial emission probability distribution of state
s753. For all queries q and URLs u not in the table, P 0(q|s753)
and P 0(u|s753) are set to 0.

Figures 2(a) and 2(b) show the distributions of the num-
ber of states with respect to the number of nonzero initial
query and URL emission probabilities, respectively. Both
approximately follow the power law distribution. Let Nsq

and Nsu be the average numbers of nonzero parameters
P 0(q|s) and P 0(u|s) in all states, respectively. In our ex-
periments, Nsq = 4.5 and Nsu = 47.8. It means that on
average, different users formulate 4.5 queries and click 47.8
URLs for a common search intent.

We further compute the set of candidate state sequences

WWW 2009 MADRID! Track: Data Mining / Session: Learning

197

Actual number Upper bound Whole space
#P (si) 1,146,346 1,346,146 1,346,146
#P (q|si) 3,513,441 6,057,657 2.47× 1012

#P (u|si) 56,624,285 64,345,778 1.12× 1013

#P (si|Sj) 1,275,708 1,399,498 4.29× 1030

Table 5: Comparison of the actual number, the up-
per bound, and the whole space of the parameters.

0 2 4 6 8 10 12
−3.22

−3.2

−3.18

−3.16

−3.14

−3.12

−3.1

−3.08

−3.06
x 10

8

Iteration

Q
(Θ

, Θ
i−

1)

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

Iteration

A
vg

. u
pd

at
e

of
 a

ll
pa

ra
m

s

(a) (b)

Figure 3: The (a) value of Q(Θ, Θ(i−1)) and (b) aver-
age difference of all parameters in one iteration.

Γ given the initialization of P 0(q|s) and P 0(u|s). For the
437, 245, 177 training sessions, there are only 2, 621, 854 unique
candidate state sequences, since users with similar search in-
tents often have similar search sequences, and thus can be
modeled by the same state sequence. This verifies the power
of a vlHMM as a compact statistical model to summarize the
huge search logs.

Table 5 compares the size of the whole parameter space,
the actual number of parameters estimated in the training
process, and the upper bound given by Theorem 1. Clearly,
the actual number of estimated parameters is dramatically
smaller than the size of the whole parameter space and the
upper bound is tight. In particular, the actual number of
estimated transition parameters is smaller than the size of
the parameter space by a factor of 1024. There are two rea-
sons for this factor. First, as mentioned in Section 6.1, the
session length follows the power law distribution and a large
part of sessions are short – of length 1 or 2. Second, queries
and clicked URLs in the same sessions are semantically re-
lated. Thus, the actual number of state sequences appeared
in logs is dramatically smaller than that of all possible com-
binations.

Figures 3(a) and 3(b) show the value of the object function

Q(Θ, Θ(i−1)) and the average difference of all parameters
in one iteration, respectively. Clearly, the training process
converges fast under our initialization method.

Last, we test the runtime and scalability of the training
algorithm. Since we run the training algorithm on a dis-
tributed system shared by multiple users, it is hard to mea-
sure the exact runtime of the training process. Thus, we
simulate a process node in the distributed system by a stand-
alone server using an Intel Core 2 2.0 GHZ ×2 CPU, 4 GB
main memory, and test the runtime and the scalability on
sampled subsets of the whole training data of different sizes.
For each size, we randomly sample a subset 10 times and re-
port the average result on the random samples in Figures 4.
By using our initialization method, the training algorithm
is efficient and scales up well.

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

Training data(%)

R
un

 ti
m

e(
s)

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7x 10
7

Training data(%)

N
um

be
r

of
 p

ar
am

et
er

s

(a) (b)

Figure 4: The (a) runtime and (b) number of pa-
rameters of the training process on different sizes of
sampled data.

6.3 Effectiveness of vlHMMs
To evaluate the effectiveness of the trained vlHMM, we

extract 100, 000 sessions as the test data set from a separate
search log other than the one used as the training data set.
We use each session 〈(q1, U1), . . . , (qT , UT)〉 in the test set
to test the vlHMM. First, the vlHMM performs re-ranking,
suggestion, and recommendation, for query q1. Second, U1

is sent to the vlHMM as the URLs clicked by a user for q1,
and query q2 is sent to the vlHMM as the next query. The
vlHMM then performs re-ranking, suggestion, and recom-
mendation for q2 based on the context introduced by q1 and
U1. Generally, a session of length T is treated as a sequence
of T test cases where each case corresponds to a query.

We call a test case is covered by the vlHMM if the query
can be recognized and the model can perform the corre-
sponding re-ranking, suggestion, and recommendation. The
coverage of the vlHMM is 58.3%. The uncovered queries are
tail queries which either do not appear in the raw training
log or have been removed in the pre-processing due to a very
low frequency.

To better examine the effectiveness of context informa-
tion, we further divide the test cases into two subsets: Test0
contains the cases of the first queries in the sessions, that
is, no context is available; and Test1 contains the others. In
Test1, the contexts of 25.5% of the covered cases can be rec-
ognized by the vlHMM. This indicates that, in many cases
when context is available, the vlHMM is able to exploit such
information.

In our implementation of the vlHMM, we use a set of
queries Q and a set of URLs U to represent each state.
Since the queries and URLs are very sparse in the log data,
the coverage of the vlHMM and the percentage of recog-
nized contexts are not high. In fact, we can simply expand
the vlHMM learned from log data by building a language
model [16] for each state based on the document text of the
URLs in U . In this way, the ability of the vlHMM to general-
ize to unknown queries and URLs will be greatly enhanced,
and the coverage as well as the percentage of recognized
contexts will be improved substantially.

6.3.1 Document Re-ranking
We evaluate the quality of document re-ranking using the

trained vlHMM on the top-10 results from a commercial
search engine. We randomly select 500 re-ranked pairs of
documents from the covered test cases in Test0 and 500 pairs
from the cases in Test1 where the context can be recognized

WWW 2009 MADRID! Track: Data Mining / Session: Learning

198

Context Test query Re-ranked document pairs

1

online games

Disney channel

↑ Games Disney Channel

↓ http://tv.disney.go.com/disneychannel/games/index.html

http://games.yahoo.com ↓ Disney Channel

http://www.miniclip.com http://www.disney.go.com/disneychannel

2

ask.com

Ask Jeeves

↑ Ask Jeeves: Wikipeadia Free encyclopeida

↓ http://en.wikipedia.org/wiki/Ask Jeeves#International

http://www.ask.com ↓ Ask.com Search Engine, Better Web Search

http://www.ask.com

Table 6: Examples of re-ranked documents pairs by the vlHMM.

by the model. For each test case, we present the test query
to 3 judges and ask them to compare the relevance of the
document pair. For cases from Test1, the judges are also
presented with the past queries and clicked URLs of the
test query. For a pair of documents A and B, there are
three labels: A is more relevant than B, A is less relevant
than B, and unsure.

Improved Degraded
0

5

10

15

20

25

30

35

40

45

50

P
er

ce
nt

ag
e(

%
)

Baseline1
vlHMM

Improved Degraded
0

5

10

15

20

25

30

35

40

45

50

P
er

ce
nt

ag
e(

%
)

Baseline1
vlHMM

(a) (b)

Figure 5: The effectiveness of re-ranking by the
vlHMM and Bbaseline1 on (a) Test0 and (b) Test1.

The existing re-ranking methods either do not consider
the click-through information (e.g., [24]) or combine click-
through information with other features such as document
text (e.g., [25]). It is not meaningful to make a direct com-
parison between our method and those existing methods.
We use a baseline (denoted by Baseline1) which purely re-
lies on click-through data, i.e., to re-rank documents A and
B if the order of their click numbers with respect to the test
query is reversed with their original order. One difference
between Baseline1 and the vlHMM is that the former does
not consider the context of the test query.

Figures 5(a) and 5(b) compare the quality of re-ranking
performed by vlHMM and Baseline1. In the figures, the“Im-
proved”category counts the cases where re-ranking improves
the ordering of the documents, while “Degraded” counts the
opposite cases. The unsure cases are not counted. The
vlHMM has a comparable performance with Baseline1 for
cases in Test0 where context information is not available
(Figure 5(a)). However, in Test1, while the baseline achieves
a similar performance as in Test0, the vlHMM shows a sub-
stantial gain (Figure 5(b)). This clearly indicates that the
vlHMM is effective to model the context information and
thus understands users’ search intents better.

Table 6 shows two examples of re-ranked document pairs
by the vlHMM. In the first example, when a user raises query
“Disney channel”, the search engine ranks the homepage of

Disney Channel higher than its game site. The vlHMM is
able to consider the context that the user actually searches
online games before this query, and accordingly boosts the
game site on top of the homepage.

In the second example, the user inputs query“Ask Jeeves”.
Unsurprisingly, www.ask.com is ranked higher than the wiki-
pedia page about the company. However, the vlHMM no-
tices that the user input query “ask.com” and clicked www.

ask.com before query “Ask Jeeves”. This context provides
the hint that the user may not be interested in the search
service provided by www.ask.com but instead be interested in
the background information of the company. Consequently,
the vlHMM boosts the wikipedia page.

6.3.2 URL Recommendation and Query Suggestion
We evaluate the performance of the vlHMM on URL rec-

ommendation using the “leave-one-out” method. Specifi-
cally, for each extracted session O = 〈(q1, U1), . . . , (qT , UT)〉,
we use qT−1 as the test query and consider UT , the set of
URLs really clicked by the user, as the ground truth. The
performance is then measured by precision and recall. Sup-
pose the vlHMM model recommends a set of URLs R, the

precision is |R∩UT |
|R| and the recall is |R∩UT |

|UT | .

Since there has been little work on URL recommendation
using search logs, we use a baseline (denoted by Baseline2)
which borrows the idea from [23] where browsing logs rather
than search logs are used. Given a test query q, Baseline2
counts in the training data the frequency of a URL occurring
in the interactions following the round of q, and recommends
the top K URLs with the highest co-occurring frequencies.
Baseline2 does not consider the context of q.

Figures 6(a) and 6(b) compare the precision of the vlHMM
and Baseline2 with respect to the number of recommenda-
tions K in Test0 and Test1, respectively, while Figures 6(c)
and 6(d) compare the recall. In both methods and in both
test sets, the precision drops and the recall increases when K
increases. Although the vlHMM and Baseline2 have compa-
rable precision and recall in Test0, the vlHMM outperforms
the baseline substantially in Test1, where the context infor-
mation is available.

Table 7 shows an example of URL recommendation when
the user inputs query “Walmart”. Without considering the
context, Baseline2 recommends the homepage of Sears as the
first choice. Although this recommendation is meaningful,
if we consider the user searched “circuit city” before, the
URL www.bestbuy.com recommended by the vlHMM looks
a better choice.

Last, we follow the evaluation method described in [6]
to compare the quality of query suggestions generated by

WWW 2009 MADRID! Track: Data Mining / Session: Learning

199

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6
A

ve
ra

ge
 p

re
ci

so
n

K

Baseline2
vlHMM

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 p
re

ci
so

n

K

Baseline2
vlHMM

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 r
ec

al
l

K

Baseline2
vlHMM

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 r
ec

al
l

K

Baseline2
vlHMM

(a) Precision on Test 0 (b) Precision on Test1 (c) Recall on Test0 (d) Recall on Test1

Figure 6: The precision and recall of the URLs recommended by the vlHMM and Baseline2.

Context: circuit city → http://www.circuitcity.com

Test query: Walmart

URL recommendation

vlHMM Baseline2

http://www.bestbuy.com http://www.sears.com

Table 7: An example of URL recommendation.

vlHMM and CACB [6]. Since both methods consider the
context information, we find the qualities of query sugges-
tions by the two methods are comparable. We also compare
the percentage of recognized contexts by the two methods.
Among the covered test cases in Test1, the CACB can only
recognize the contexts of 16.5% cases, while the vlHMM im-
proves the coverage by 55%. The reason is that the vlHMM
considers both queries and clicked URLs in the context, and
is able to recognize the context when either the queries or
clicked URL are seen in the training data. Moreover, as
mentioned before, the coverage and the percentage of recog-
nized contexts of vlHMM can be readily improved via the
URLs in the states, while the expansion for CACB is not
straightforward since CACB only considers queries.

In summary, the extensive empirical study using a large
real data set from a major commercial search engine clearly
verifies that our vlHMM method is effective in context-aware
search, and is efficient in model learning.

7. CONCLUSIONS
In this paper, we propose a general approach to context-

aware search by learning a vlHMM from search sessions ex-
tracted from log data. We tackle the challenges of learn-
ing a large vlHMM with millions of states from hundreds of
millions of search sessions by developing a strategy for pa-
rameter initialization which can greatly reduce the number
of parameters to be estimated in practice. We also devise
a method for distributed vlHMM learning under the map-
reduce model. The experimental results on a large real data
set clearly show that our context-aware approach is both
effective and efficient.

8. REFERENCES
[1] Baeza-Yates, R.A., et al. Query recommendation using

query logs in search engines. In EDBT 2004 Workshop on
Clustering Information over the Web, pages 588–596, 2004.

[2] Baeza-Yates,R.A., et al. Extracting semantic relations from
query logs. In KDD’07, pages 76–85, 2007.

[3] Bai, J., et al. Using query contexts in information retrieval.
In SIGIR’07, pages 15–22, 2007.

[4] Baum, L.E., et al. A maximization technique occurring in
the statistical analysis of probabilistic functions of markov
chains. Ann. Math. Statist., 41(1):164–171, 1970.

[5] Beeferman, D., et al. Agglomerative clustering of a search
engine query log. In KDD’00, pages 407–416, 2000.

[6] Cao, H., et al. Context-aware query suggestion by mining
click-through and session data. In KDD’08, pages 875–883,
2008.

[7] Chirita, P.A., et al. Personalized query expansion for the
web. In SIGIR’07, pages 7–14, 2007.

[8] Chu, C.T., et al. Map-reduce for machine learning on
multicore. In NIPS, pages 281–288, 2006.

[9] Dean, J., et al. MapReduce: simplified data processing on
large clusters. In OSDI’04, pages 137–150, 2004.

[10] Dempster, A.P., et al. Maximal Likelihood from Incomplete
Data Via the EM Algorithm. Journal of the Royal
Statistical Society, Ser B(39):1–38, 1977.

[11] Durbin, R., et al. Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University
Press, 1998.

[12] Fonseca, B.M., et al. Concept-based interactive query
expansion. In CIKM’05, pages 696–703, 2005.

[13] Huang, C., et al. Relevant term suggestion in interactive
web search based on contextual information in query
session logs. Journal of the American Society for
Information Science and Technology, 54(7):638–649, 2003.

[14] Joachims, T., et al. Optimizing search engines using
clickthrough data. In KDD’02, pages 133–142, 2002.

[15] Jones, R., et al. Generating query substitutions. In
WWW’06, pages 387–396, 2006.

[16] Liu, X., et al. Cluster-based retrieval using language
models. In SIGIR’04, pages 186–193, 2004.

[17] Rabiner, L.R. A tutorial on hidden Markov models and
selected applications inspeech recognition. Proceedings of
the IEEE, 77(2):257–286, 1989.

[18] Rocchio, J. Relevance feedback information retrieval.
Prentice-Hall Inc., 1971.

[19] Sugiyama, K., et al. Adaptive web search based on user
profile constructed without any effort from users. In
WWW’04, pages 675–684, 2004.

[20] Tao, T. and Zhai, C. A two-stage mixture model for pseudo
feedback. In SIGIR’04, pages 486–487, 2004.

[21] Wang, Y., et al. Mining complex time-series data by
learning Markovian models. In ICDM’06, pages 1136–1140,
2006.

[22] Wen, J., et al. Clustering user queries of a search engine. In
WWW’01, pages 162–168, 2001.

[23] White, R.W., et al. Studying the use of popular
destinations to enhance web search interaction. In
SIGIR’07, pages 159–166, 2007.

[24] Xu, J., et al. AdaRank: A boosting algorithm for
information retrieval. In SIGIR’07, pages 391–398, 2007.

[25] Zhao, M., et al. Adapting document ranking to users
preferences using click-through Data. In AIRS’06, pages
26–42, 2006.

WWW 2009 MADRID! Track: Data Mining / Session: Learning

200

