
Benefit based cache data placement and update
for mobile peer to peer networks

Fan Ye & Qing Li & Enhong Chen

Received: 31 August 2010 /Revised: 22 November 2010
Accepted: 23 November 2010 /Published online: 8 December 2010
Springer Science+Business Media, LLC 2010

Abstract Mobile Peer to Peer (MP2P) networks provide decentralization, self-
organization, scalability characters, but suffer from high latency and link break
problems. In this paper, we study the cache/replication placement and cache update
problems arising in such kind of networks. While researchers have proposed various
replication placement algorithms to place data across the network to address the
problem, it was proven as NP-hard. As a result, many heuristic algorithms have been
brought forward for solving the problem. In this article, we propose an effective and
low cost cache placement strategy combined with an update scheme which can be
easily implemented in a decentralized way. The contribution of this paper is the
adaptive and flexible cache placement and update algorithms designed for real MP2P
network usage. The combination of MP2P cache placement and update is the novelty of
this article. Extensive experiments are conducted to demonstrate the efficiency of the
cache placement and update scheme.

Keywords benefit based . mobile data cache . cache placement . cache update

World Wide Web (2011) 14:243–259
DOI 10.1007/s11280-010-0103-3

F. Ye : E. Chen
School of Computer Science and Technology, University of Science and Technology of China, Hefei,
China

E. Chen
e-mail: cheneh@ustc.edu.cn

F. Ye :Q. Li : E. Chen
Web Service, Joint Research Lab of Excellence, CityU-USTC Advanced Research Institute, Suzhou, China

Q. Li
e-mail: itqli@cityu.edu.hk

F. Ye (*) : Q. Li
Department of Computer Science, City University of Hong Kong, Hong Kong, China
e-mail: yfan@mail.ustc.edu.cn

1 Introduction

The recent years have witnessed a rapid development of mobile computing and wireless
communication technologies. Mobile Peer to Peer (MP2P) network is a very popular
kind of network composed of small computing devices with wireless interfaces; the
devices can be notepad or even embedded processors such as sensors. From the
physical layer’s aspect, a MP2P network can be regarded as an ad hoc network
supporting multi-hop routing. Every node can conduct package forwarding, package
cache and so on. Our research emphasis is different from those on conventional ad hoc
networks, as we are more concerned with such aspects as efficient data access, data
sharing which are more related to the application layer’s service provision. More
specifically, in this paper, we concentrate on the issues of optimally placing cache and
effective update support, aiming to demonstrate the relationship and mutual promotion
of these two techniques in a MP2P network.

There are two reasons to study optimal placement of caches in a MP2P network: Firstly,
a MP2P network is a multi-hop wireless network for sharing data among remote nodes, and
multi-hop access of information (e.g., multi-data items) typically occurs via multi-hop
routing; obviously, the overall cost of data access can be greatly reduced through caching
relevant data on the relay nodes. Secondly, a MP2P network is generally resource
constrained in terms of channel bandwidth and battery power of the nodes. Caching can
help reduce communication cost, resulting in possible bandwidth and battery energy
savings. This paper thus takes the stance of cooperative cache of multi-data items in a
MP2P network.

Let’s consider a popular application of multimedia data sharing as an example.
Suppose there are multiple multimedia files (each multimedia file is segmented when it
is too large) to be shared among a number of mobile nodes in a MP2P network, and
one node can only keep certain number of segments in it. Each node can, however,
access all the segments from the entire cache space in the network. The problem of how
and where to cache the segments in the network becomes a relevant and challenging
issue for efficient data sharing. In such a MP2P network, each mobile node can act as
both a server and client. When acting as a client, the mobile node wishes to access the
required items at a given frequency. When acting as a server, the mobile node carefully
chooses multimedia segments/file to cache in its limited memory so as to help minimize
the overall access cost. In contrast to the mobile proxy cache problem on base stations,
where proxy cache stations are statically linked together via optical fiber/copper wire
and have adequate space to cooperatively store huge amount of data, mobile devices in
a MP2P network can, however, only temporarily form an adaptive network to
cooperatively share a limited quantity of data. Heuristic strategies to select suitable
data items to cache at each mobile node are thus needed.

In this article, we present an effective and low cost cache placement and update
scheme for MP2P networks, which can be easily implemented in a distributed manner.
The rest of the paper organization is as follows. In Section 2 we review the relevant
work on data replication placement and cache placement. Section 3 formulates the cache
placement problem formally. In Section 4, a number of cache placement algorithms are
introduced. Section 5 discusses the relationship between, and necessity of supporting
cache placement and cache update in a single scheme. In Section 6, several simulation
studies are conducted to evaluate the efficiency of our proposed cache replacement and
update scheme. Finally, Section 7 concludes the paper with a few further research
directions.

244 World Wide Web (2011) 14:243–259

2 Related work

Cache placement in a MP2P network is similar to the well-known facility location problem
and k-median problem, and quite a few papers in the literature have tackled these two
problems. In this section, we review the existing work on addressing the more general
cache placement problem from two different aspects.

2.1 Single data item placement

2.1.1 In general graph

Placement of single data items in a general graph can be described by the facility location
problem and the k-median problem; the latter two problems have been widely studied in
graph theory. In the facility location problem, the total cost is the sum of the total access
cost and the setting up cost of a cache on a node, without the constraint of the number of
nodes being selected. In the k-median problem, at most k nodes can be selected as cache
nodes. Both problems are NP-hard [12] and many constant-factor approximation algorithms
have been proposed for these two problems [1, 4, 5, 8]. A detailed account of many
different kinds of topologies such as line, ring network to place cache has been given in [2].

2.1.2 In tree graph

Several papers have focused on devising effective algorithms for the location problem on a
tree topology. All these works consider single data item placement on a tree network
topology. In such a kind of topology, the problem can be solved in polynomial time. In
[14], optimal polynomial algorithms are developed based on dynamic programming for the
k-median problem in both undirected and directed trees. [7] devised a cost model involving
reads, writes and storage. In [17], a distributed placement algorithm for sensor networks to
reduce the total power consumption is developed.

2.1.3 Greedy placement algorithm for single data

The Reverse Greedy algorithm (RGREEDY) for the k-median problem is a typical single
data cache placement problem. It works as follows: the algorithm starts by placing facilities
on all nodes. At each step, it removes a facility to minimize the total distance to the
remaining facilities. It stops when k facilities remain. Our Global Benefit Based Cache
Placement is quite the same as such greedy method.

2.2 Multiple data items placement

Baev and Rajaraman [2] have studied the hardness of approximate solution for multiple
data placement in arbitrary network. It is shown that the data placement problem with
uniform length multiple data object is MAXSNP-hard, and they have come up with a 20.5-
approximation algorithm for the cache placement problem. Tang et al. [15] proposed a
benefit based cache placement algorithm and gave a distributed algorithm for the cache
placement in ad hoc networks. Petrank and Rawitz [13] also described the hardness of
multiple cache placement/update. Most of the current works on multiple cache data
placement focus on adaptive/distributed algorithm without many rigorous mathematic
analyses due to the hardness of the problem.

World Wide Web (2011) 14:243–259 245

2.3 Cache update

Meanwhile, cache update/replacement has also been widely studied with multi-data items.
Hara [6] gave three adaptive replica allocation methods based on access frequency from
mobile hosts to each data item and the status of the network connection. Another
cooperative cache algorithm named as Hybrid Cache was proposed for ad hoc networks
based on the notions of Cache Data and Cache Path [17]. Cache update for heterogeneous
nodes is investigated in [16]. Cache update with energy metric is studied in [9]. However,
few works have considered combining cache update and cache placement together. In this
article, we advocate to use the two methods as an integral scheme to conduct cache in a
MP2P network. There are also related problems including prediction, synchronization and
multi-server support that need to be considered [3, 10, 11].

3 Cache placement: problem formulation

3.1 MP2P network scenario

A typical scenario of aMP2P network is shown as Figure 1. In particular, we assume that there
are multiple nodes (mobile hosts) in the network N, and each mobile host, mi, has a unique
identifier, i.e., M={m1, m2,..., mNumClient}, where NumClient is the total number of mobile
devices in the network environment. Each mobile device is equipped with two wireless
network interface cards: one is dedicated to communicate with the center server (e.g. Mobile
Support Station), and the other one is devoted to communicate with the neighbor nodes to
form the MP2P network.

3.2 Cache placement scenario

The scenario of a special placement on a mobile network is shown in Figure 2. The network is
composed by 6 nodes and the total number of cached data placed is 6. Data block Di stand for

M2
M5

M1

M3

MSS

M4

M6

Service Area of the System

Transmission Range of an MH

Wireless Communication

Figure 1 Typical MP2P network
environment.

246 World Wide Web (2011) 14:243–259

data blocks which are cached on mobile nodes, and Mj stands for the mobile nodes in the
distributed MP2P network. Every node has a maximum cache space is 3 data blocks. In this
placement scenario, the total cache space is 3 times of the total requested data, for efficiency
purpose, we can see every data block can be found in the cache (from D1 to D6)

3.3 Problem formulation

We suppose ∑ to be a collection of multimedia segments (assuming each multimedia file is
divided into several segments) for all the nodes to cache. For each pair of nodes i and j, let
cost(i,j) denote the cost of transmitting a unit-length message between these two nodes. We
assume that the cost function defines a metric space (that is, it is nonnegative, symmetric and
satisfies the triangle inequality). Each node i, which may act as both a client and a server, has
capacity csize(i) of space available for storing some parts of the multimedia files in ∑. The
mobile nodes in the network N may periodically issue access requests for the multimedia
files, the rate of which is given by the demand function d. For each node i and file segment f,
d(i,f) represents the frequency of node i accessing f in a special period of time.

A placement P is a function N→2∑ that yields, for each node, the set of multimedia
segments to be stored in that node. For a placement to be valid, the sum of the lengths of
the multimedia segments stored at any node must not exceed the capacity of the node.

For each node i and multimedia segment f, the demand-weighted cost of accessing f equals to
d(i,f)*c(i,j)*length(f), where j is the node nearest to i which has a copy of f, length(f) is the
length of the multimedia segment f, and c(i,j) is defined as the total time delay between nodes i
and j for transmitting a unit data. Then, the total cost of a placement can be given by the sum,
taken over all the nodes and all the data, of d(i,f)*c(i,j)*length(f) in a special time range. Then
the multimedia data placement problem can be expressed as an integer program problem below:

min
P
f

P
i
d i; fð Þc i; jð Þlengthðf Þy f

j xij

s:t:
P
j
xij � 1 8i

P
f
y f
j lengthðf Þ � uj

xij 2 0; 1f g; y f
j 2 0; 1f g

lengthðf Þ > 0

ð1Þ

Figure 2 Cache placement
scenario.

World Wide Web (2011) 14:243–259 247

Here xij indicates if the request of f by client i is mapped to a cache node j; the sum of xij
indicates that at least a cache node j will be able to satisfy the request from node i. The sum of
variable yfj tests if all the file segments f stored in client j have reached to the limit of j’s
capacity uj.

4 Placement algorithms

4.1 Global benefit based cache placement (GBCP)

Motivated by [2], we first present the Global Benefit based Cache Placement (GBCP) as an
alternative solution. The GBCP algorithm is given below. The relevant parameters used
include: Γ, which denotes the set of nodes that have been selected for cache placement, and
τ(G,Γ) representing the total access cost. Then the benefit β(Aij, Γ) is defined as follows:

b Aij;Γ
� � ¼ t G;Γð Þ � t G;Γ [Aij

� � ð2Þ
where Aij indicates that cache j is placed in node i. The detailed placement process is given
as follows:

Algorithm GLOBAL-BENEFIT-BASED MULTIDATA-CACHE-PLACEMENT

Input: Network G=(V,E), nonnegative edge costs c, nodes data demands h: V , where is the

collection of multimedia file segments (i.e., for each node i in V, the function h puts Ui data

files into the cache space of node i, where Ui denotes the capacity of node i).

Output:

1 ;

2 while (there are still nodes with empty cache)

3 let ijA
 be the variable which leads to the maximum benefit

(,)ijA
,

;ijA

4 put the data block j into node i s cache

Algorithm
(,)ijA

-CALCULATION

1 for a multimedia segment j put in the cache of node i

2 for each data request, let HN be the total Hop Count to transmit a required multimedia file,

RN be the total Request Number, and the cost of each data request be: 1

HN

i
i

w
, where iw

is

each hop s delay

3 calculate the total access cost as: 1 1

(,) ;
RN HN

ij i
j

G A w

4 calculate benefit
(,)ijA

according to formula (2)

i

248 World Wide Web (2011) 14:243–259

4.2 Random placement (RAND)

As a baseline case, the random placement (RAND) strategy places the multimedia segments
to cache randomly, and only ensures that each node does not contain the same data
segments already in it.

4.3 Distributed cache placement scheme

In addition to the Global Benefit base Cache Placement (GBCP) scheme using the global
information, we further introduce a Local Benefit based Cache Placement (LBCP)
scheme for “benefit calculation” that only uses the placement information of the nearby
neighbors in the MP2P network, along with a Clustering Based Cache Placement (CBCP)
scheme.

4.3.1 Local benefit based cache placement (LBCP)

LBCP can be viewed as the distributed version for implementing GBCP. Different from
GBCP, we calculate the benefit not through global nodes, but only with t hop
neighbors’ information. The parameter t is calculated based on the neighbor nodes in the
network. By flooding a message to t hop neighbors, the (local) benefit of accessing the
cached data is calculated by just involving these neighbors, as shown in formula (3)
below:

conflict ¼
Xnum

i¼1

r»
1

hopi
ð3Þ

Then, the benefit can simply be calculated as:

benefit ¼ 1=conflict ð4Þ

The parameter num in formula (3) is the number of the nodes which contain the same data
as the current node, and hopi is the minimum hop count between nodes i and the current
node; r is a coefficient, and 1/hop means that if two nodes have a larger hop count, the
conflict of their cached data (i.e., with identical data files) is smaller. The process is
described as below:

Algorithm LOCAL-BENEFIT-BASED MULTIDATA-CACHE-PLACEMENT

Input: Network G=(V,E), nonnegative edge costs c, nodes data demands h: V , where is the

collection of file segments.

Output: a placement

1for each node who has empty space for placement

2 while (there are still nodes with empty cache)

3 send message to its neighbor to exchange the data information in other nodes,

and the nodes should no more than t hop

4 use formula (3) and (4) to place cache data

Algorithm LOCAL-BENEFIT-BASED MULTIDATA-CACHE-PLACEMENT

Input: Network G=(V,E), nonnegative edge costs c, nodes data demands h: V , where is the

collection of file segments.

Output: a placement

1for each node who has empty space for placement

2 while (there are still nodes with empty cache)

3 send message to its neighbor to exchange the data information in other nodes,

and the nodes should no more than t hop

4 use formula (3) and (4) to place cache data

World Wide Web (2011) 14:243–259 249

4.3.2 Cluster based cache placement (CBCP)

Another distributed cache placement approach is based on nodes clustering. The clustering
strategy is described as follows: each node first declares itself as a Cluster Head (CH). Each
node i broadcasts to the list of nodes that it can hear, that is, the set of nodes that are within
the communication range of node i. If a node k hears from a node j with a lower ID1 than
itself, node k sends to j a message requesting j to join. If j has already resigned from being a
CH itself, j returns a rejection; otherwise j returns a confirmation. When k receives the
confirmation and accepts j to be a member, j resigns itself from being a CH in its original
cluster. If the cluster with node k as the CH has already reached the maximum size, all
future requests for joining this cluster are automatically rejected.

When the above process is completed, the entire network is divided into a number of
clusters. Every node belongs to a cluster, and it is either a CH or directly connected to a
CH. The next step is for every cluster to broadcast its size to all the neighboring nodes. If a
node k receives a message from a cluster C′ which has a larger size than the cluster C
currently containing node k, then k joins the new cluster C′. (This assumes that the larger
cluster C′ has not reached its maximum size yet.) Node k then sends notifications to both
the new and old clusters to update its new membership status. The notifications first go to
the CHs, and are then propagated to the relevant clusters. This process can be repeated as
needed, depending on what the maximum cluster diameter is in this case. Each node keeps
track of the ID of its CH, the time the node has been a member of its current cluster, as well
as the number of nodes in the cluster. A CH also keeps track of the time for each node when
the latter has become a member of that cluster.

It is possible for a cluster to grow too large. Consider a situation when a cluster is just
below the maximally allowed size, and several nodes want to join simultaneously.
Eventually, the CH will be notified of all the new nodes. When the size of the cluster
exceeds the maximally allowed size, then one or more nodes need to leave the cluster. Note
that a node can leave a cluster either due to such a situation, or because it is (physically)
moving away from the cluster (e.g., more than d hops away from its CH). When a node j
leaves a cluster, it tries to find another (new) cluster to join. That new cluster must not have
reached the maximally allowed size, and the node j cannot be more than d hops away from
the CH of the cluster. If several such clusters are found, node j joins the largest one. If no
such cluster is found, node j forms a cluster containing j as the single member, with the CH
being itself. After all the nodes have been attached to some clusters, the cache placement is
then conducted based on the conflict function defined in formula (3).

4.3.3 Approximate ratio analysis

We now conduct some analysis on the approximate ratios of the cache placement schemes
introduced above. Assuming the access cost of the best placement is Co, we have the following
lemmas. For the sake of easier analysis, we suppose the delay of each hop is the same.

Lemma 1 If a placement algorithm can ensure every node to get the needed data from no more
then d hops in the network, then the cost of this placement algorithm is no more than dCo

Proof When every node can get the needed data from its local cache, the cost is 0. When
the data is in a neighbor’s cache, each node should be able to get the data with at least the

1 Each ID is a random number generated with the current time as the “seed” for each node.

250 World Wide Web (2011) 14:243–259

minimum 1 hop. As each data access cost of the placement algorithm is at most d hops, the
total cost is thus no more than dCo.

Assertion 1 Suppose the maximum hops for each node to obtain all the segments via the
placement algorithmGBCP is g, and the cost of GBCP is denoted as Cg,, then we have Cg≤gC0.

Proof When a segment is not in the local cache, to obtain the segment with the optimal
placement incurs at least 1 hop, However, the maximum hops for any node to obtain a
cached file with GBCP is at most g hops. Based on Lemma 1, the assertion holds. Actually,
the above assertion is rough, as GBCP will make all the segments to be “evenly” placed on
each node. As a result, the maximum hop count g will be small.

Assertion 2 If we use m hops neighbors for conflict calculation where m is the maximum
number of hops for any of the nodes to obtain any of the required data files, then the access
cost of algorithm LBCP is no more than mCo.

Proof If there are data segments which have not been added to the sub-graph composed by
the m hop neighbors, then we claim that each placement generated by LBCP will involve a
new segment. Otherwise, suppose a segment/file already existing in cache is added again,
the benefit will then be smaller, which conflicts with our placement rule. So the segment/
file can not be added. As a result, after LBCP is invoked, every node can get its needed data
with no more than m hops, and thus this assertion holds based on Lemma 1.

Assertion 3 If every cluster can contain all the segments, then algorithm CBCP can have a
placement with its access cost being no more than kCo, where k is the maximum diameter
which is the maximum distance (denoted as minimum path) of any pair of nodes in the
graph corresponding to the largest cluster.

Proof As each cluster generated by the CBCP scheme contains all the segments, and the
maximum distance of the largest cluster is k, then every node can get the required data with no
more than k hops. When the data segment is not in the local cache, the optimal placement still
needs at least 1 hop to obtain the required data; if the data segment is obtained from local
cache, it is counted as of 0 hop. Based on Lemma 1, this assertion holds.

5 Cache update

In the set up stage of a MP2P network when caches are first time placed or when the MP2P
network is relatively static, the Global Benefit base Cache Placement (GBCP) algorithm can be
used for cache placement if a central server exists; otherwise, the Local Benefit based Cache
Placement (LBCP) scheme can be used. As the nodes in aMP2P network can be quite dynamic,
the initial placement may be non-optimal subsequently, hence cache update/replacement is
required. In this section, we present two types of cache update schemes for this purpose.

5.1 Global cache update

The first scheme assumes that there exists a central server. When a multimedia segment/file
can not be found from the MP2P network as per a new data request, the server chooses a

World Wide Web (2011) 14:243–259 251

node p with a globally minimum benefit block for possible cache update. In particular, the
new segment/file is placed on p’s cache by replacing an old segment/file there. In other
words, this scheme uses the global information from the server to update an individual
node’s cache.

5.2 Local cache update

While the global cache update scheme is simple to devise, it assumes a central server with a
high calculation cost. In contrast, the local cache update scheme assumes that every mobile
node has a Cache Request List recording the data requests from itself and its neighbors.
When a mobile node receives a new data request from its neighbor, it undergoes a possible
cache update to keep itself adaptive to the dynamic network conditions, based on formula
(5) for calculating the weight of any of its cached blocks:

W ¼ Ff

Ss»Dd
ð5Þ

The variable F is the number of times the cached block (holding a segment/file) is requested
(by itself and its neighbors), f, s, d are the ratio parameters for calculation, the parameter S
is the size of the cached segment/file, and D is the duplication number of the cached
segment/file in the network the node ever knows. For precise exposition, the calculation of
the parameters D and F can be illustrated by formula (6) and (7) below:

D ¼
Xt

i¼1

numn
i

hophi
ð6Þ

F ¼
Xt

i¼1

freq f
i

hophi
ð7Þ

The parameters hopi and numi stand for the ith hop and the repetition number of a segment
at hop i in the network; The exponents n, f, h are the relative ratios of the corresponding
parameters. freqi stands for the request times of a cache block with all the nodes at hop i.
All the variables should be normalized by:

hopi ¼ hopi � min hopð Þ= max hop� min hopð Þ;
numi ¼ hopi � min numð Þ= max num� min numð Þ;
freqi ¼ freqi � min freqð Þ= max freq� min freqð Þ:

The segment/file with the minimum W will be kicked out of the cache and replaced by the
newly required data item (viz, a multimedia file segment).

5.3 Further analysis: relationship between update and placement

Actually, cache placement is similar to multiple cache update to a great extent. If cache
update is achieved globally, it can be regarded as “placement”. On the other hand, though
the benefit for cache update is calculated dynamically and locally, so as to accommodate
dynamic data requests, the operation is conducted when each node in the MP2P network
becomes “placed” which can be denoted as “fully cached”.

252 World Wide Web (2011) 14:243–259

However, they still have some differences: when we “place” a cache block, there still
exists enough space for holding the new segment/file, so no replacement will occur. On
the other hand, when doing cache update, the predicted small-weight-ones should be
kicked out.

6 Simulation experiments

In order to evaluate the efficiency of our proposed cache placement and update schemes,
this section conducts comparison study on four cache placement schemes as: Random
Cache Placement (RAND), Global Benefit based Cache Placement (GBCP), Localized
Benefit based Cache Placement (LBCP) and Cluster Based Cache Placement (CBCP).
Table 1 show the relative parameters for the simulation study.

Without loss of generality, in our simulation study, the compared measure is the
Average Hop Count (AHC) for every node. AHC is defined as the average number of
hops for a required mobile data to be transmitted. The length of each file is based on a
uniform distribution. The comparisons are conducted in a simulated MP2P network
with 40 nodes on a 600 m*600 m square place. The user requests are generated based
on Poisson distribution for each node. The nodes are moving based on a random walk
model. The Hop Bound is the neighbors of the maximum hop distance for duplication
calculation.

The first comparison in Figure 3 assumes each node have a relatively small cache space
(number of unit segments). With the changes of the cache size of each node, we compare
the statistic variable AHC to evaluate the system performance. Note that if a mobile host
can not get the required multimedia segment from its local cache and its neighbors’ cache,
it is assumed that its base station/access point can supply the multimedia data with a
maximum hop count.

Figure 3 is the scenario with each mobile node having about 5000 requests
generated, there are totally 10 segments to cache, the total node number is 20 and the
cache space for each node is 2. From the comparison, we find GBCP, LBCP and CBCP
have little difference while GBCP has the minimum AHC. Note that if a node can obtain
the requested data segment from its local cache, the hop count is regarded as 0. In the
simulation, LBCP uses 3 hop neighbors for the cache benefit calculation. As the total data
number is small, all three heuristic placement algorithms (other than the RAND) can

Table 1 The simulation parameters.

Notation Default value Definition (range of value)

Cache Size 2 2–10% of the total file obtained

Total File Number 40 20–100(total file can be obtained)

Node No. 40 20–100

Simulation Range Square place 600 m*600 m matrix bound

Node Signal Transmission Range 150 m 50 m–200 m

Request number for each node 2000 500–5000

Maximum Hop Count(MHC) 10 When cache miss, the MHC value will be used
for calculation

Hop Bound for LBCP 4 2–8

World Wide Web (2011) 14:243–259 253

place the data effectively. In fact, when the data number is small, most of the mobile
nodes can obtain their requested multimedia segments from their 1 or 2 hops’ neighbors.

Figure 4 investigates another comparison of the four cache placement schemes
against different total number of multimedia segments to be accessed. Each node in the
network can keep only 2 segments in its cache, this time the total node number is 40.
When the total data number is small, all the cache placement schemes have little
difference because most mobile nodes can obtain their needed data from nearby
neighbors. As the total file number becomes larger, the GBCP algorithm wins out with
respect to the hop count. While LBCP performs a bit poorer than GBCP, it does not
need any global information of the network, and is very adaptive to the MP2P network
conditions. When the number of data segments is not too large, GBCP and LBCP have
little difference compared with the CBCP scheme. Although clustering is a quite

0 2 4
2

4

6

8

10

A
ve

ra
ge

 H
op

 C
ou

nt

Cache Size(Number of Blocks) for each Node

 LBCP
 GBCP
 CBCP
 RAND

Figure 3 AHC against different
cache size.

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
0

2

4

A
ve

ra
ge

 H
op

 C
ou

nt

Total Data Number

 LBCP
 GBCP
 CBCP
 RAND

Figure 4 AHC against different
total data number.

254 World Wide Web (2011) 14:243–259

effective method for MP2P network organization and management, it is obvious that
CBCP does not perform as well as LBCP and GBCP when the total data number
becomes large.

Figure 5 illustrates some detailed difference of the compared cache placement
algorithms, the total data number is fixed with 80 data files and the cache space of each
node can contain at most 2 data file. As revealed in the figure, when the total nodes number
in the experiment increase; the AHC value of each algorithm becomes smaller for the
available total cache space become bigger. By using 4 hops neighbor for duplication
calculation for LBCP, compared with GBCP, it is only a bit worse than GBCP. We can find
when nodes number is small, the CBCP scheme is even wore than random placement
(RAND), that is because when nodes number is smaller, the nodes in each cluster is even
smaller by dividing the cluster number on average. For CBCP scheme, the nodes should get
the cache data only from the special cluster which they belong to, obviously CBCP scheme
will cause many cache miss of the most request and the punish cost for cache miss is large.
However, when the total node number get larger, each cluster can contain at least 1 copy of
each data file, then the efficiency of it will easily exceed RAND.

A comparison of the running time of GBCP and LBCP mainly from the aspect of
calculating time the placement benefit is illustrated in Figure 6. Suppose n, d, c, e denote
the node number, total multimedia segments number, cache blocks number and edge
number of the simulation network, respectively. We further assume that one segment has
the same size as one cache block and each segment has the same size. The running time
complexity of GBCP is calculated as follows: every data placement needs to try, on
average, 0.5*n*d choices to place cache, so the calculation cost for a placement is
0.5*n*d*O(n2), where O(n2) is the cost for calculating the minimum path for each pair of
nodes by Dijkstra algorithm. The total number of cache blocks to place is n*c, so the cost
for GBCP is 0.5*n*c*n*d*O(n2). The time complexity for GBCP is thus equal to O(cdn4).
As for LBCP, the total number of cache blocks to place is also n*c. For each placement,
suppose t (t<n) neighbors have the same data segment in k hops, then the cost is t*O(s2) for
conflict calculation, where O(s2) is the minimum cost calculated for each pair of nodes
within hop k, and s (s<n) is the maximum number of nodes of each sub-graph formed by

20 30 40 50 60 70 80

2

3

4

5

6

7

8

A
ve

ra
ge

 H
op

 C
ou

nt

Total Nodes Number

 LBCP

 GBCP

 CBCP

 RAND

Figure 5 AHC comparison
against total nodes number.

World Wide Web (2011) 14:243–259 255

the nodes within h hops of the current node. Each time O(d/2) of multimedia segments
should be accessed on average to select the segment with the maximum benefit. So the total
calculation cost is:

n»c»d=2»t»O s2
� � ¼ O cdts2n

� �
<< O cdn4

� � ð8Þ
We can calculate in advance all the minimum paths between every pair of nodes in the
simulation network, but the inequality (8) remains the same. Figure 6 depicts the
complexity (running time) comparison between GBCP and LBCP.

For algorithm LBCP, Figure 7 shows a comparison against different hop neighbors with
totally 40 files. We compare AHC against the average cache size of each mobile node.
Neighbors with different hop counts (marked as 2,4,6,8 hops) are considered for benefit
calculation. Notably, when a node’s cache space is small, taking further neighbors into the

10 20 30 40 50
0

100

200

300

400

500

600

700

800

R
un

 T
im

e
(S

)

Total Data Number

 GBCP

 LBCP

Figure 6 Run time comparison.

0 1 2 3 4 5 6

2

4

6

8

A
ve

ra
ge

 H
op

 C
ou

nt

Cache Size

 2 hop neighbors
 4 hop neighbors
 6 hop neighbors
 8 hop neighbors

Figure 7 Comparisons against
different hop neighbors with
LBCP.

256 World Wide Web (2011) 14:243–259

conflict calculation is useful; however, when the average cache size of each mobile node is
large, it becomes meaningless to calculate the global benefit for cache placement.

Similar with Figure 7, the experiment in Figure 8 takes comparison against various total
data number with different hop neighbors for duplication calculation, in this scenario,
totally 20 nodes combined with 20,40,60 and 80 data files are measured. Each node’s cache
size is at most 2 data file. The simulation illustrate that 4 or 6 hop neighbors used for
duplication calculation is best in such scenario as the AHC value improvement is bigger.
When the total hops used for duplication calculation become 8 from 6 hops, the
improvement is small. However, in a distributed manner, farther neighbors used for
duplication calculation means more information exchange and energy consumption.

The final experiment examines the advantage of combining placement and update operation
in the network. As shown in Figure 9, with the placement and cache update support the

20 30 40 50 60 70 80
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

A
ve

ra
ge

 H
op

 C
ou

nt

Total Data Number

 2 hops
 4 hops
 6 hops
 8 hops

Figure 8 Comparisons against
total data number with different
hops.

10 20 30 40 50

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

A
ve

ra
ge

 H
op

 C
ou

nt

Time (s)

 Random Placement without updating
 Random Placement with Updating
 Local Placement without Updating
 Local Placement with Local Updating

Figure 9 The advantage of
placement and update.

World Wide Web (2011) 14:243–259 257

network can greatly decrease the AHC value for data access, compared with those supporting
none (i.e., no operation) or just one type of these operations. Indeed, an optimized placement
and demand-adaptive cache update can make data requests to be satisfied mostly from local
or only a few hops’ neighbors. In addition, proper update support can handle the problems of
dynamic user movement and data popularity change effectively.

7 Conclusion and future work

MP2P networks provide decentralization, self-organization, scalability characters, but suffer
from high latency and link break problems. In this article, we have proposed several cache
placement and update schemes for MP2P networks. Various simulation experiments show
that: (1): the Global Benefit based Cache Placement (GBCP) has the best placement cost
but is hard to be implemented in a distributed manner; (2): the Cluster Based Cache
Placement (CBCP) is a useful method for MP2P network management, yet the efficiency is
not as good; (3): both CBCP and the LBCP schemes are easier for adoption in a real MP2P
network, and they have nearly the same cost as the GBCP scheme when the local cache size
of each node is not too small (hence the chance of having segment duplication is relatively
high); (4): LBCP can get much the same cost as GBCP if the conflict is calculated with
enough neighbors and when the level of data redundancy is not too small; (5): the support
and provision of both placement and cache update can greatly decrease the AHC for data
access, thereby improving the overall efficiency of the entire MP2P network.

As future work, energy consumption as a new parameter will be considered, and more
subtle statistic values (e.g., the total bytes of messages sent and received) should be
calculated for cache placement and update. Furthermore, as mobile devices are very often
different in their inner characters such as their bandwidth, cache size, process ability and
even security level, mobile caching and update with heterogeneous nodes in heterogeneous
wireless networks (with possibly different service providers) will be a challenging and
practically important direction for our future work.

Acknowledgements The research described in this paper has been supported primarily by a grant from City
University of Hong Kong (Project No.7008043), and partially by a grant from the Research Grants Council
of the Hong Kong SAR, China (Project No. CityU 117608). It has also been supported by the Key Program
of Natural Science Foundation of China (No.60933013) and the National Natural Science Foundation of
China (Grant No.60775037, 61073110). The research has been benefited from various discussions among the
group members of the Joint Research Lab between CityU (Hong Kong) and USTC (China) in their advanced
research institute in Suzhou, China.

References

1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-
median and facility location problems. Society for Industrial and Applied Mathematics. (2004)

2. Baev, I., Rajaraman, R.: Approximation algorithms for data placement in arbitrary networks, Proc. 12th
ACM-SIAM Symposium on Discrete Algorithms, pp. 661–670, USA, (2001)

3. Chan, A., Lau, R., Ng, B.: A hybrid motion prediction method for caching and prefetching in distributed
virtual environments. ACM VRST 2001, pp. 135–142 (2001)

4. Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location and k-median
problems, Proc. 40th IEEE Symposium on Foundations of Computer Science. 378–388 (1999)

5. Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algorithms for network
design. STOC’03, June 9–11, 2003, San Diego, California, USA

258 World Wide Web (2011) 14:243–259

6. Hara, T.: Effective replica allocation in mobile P2P networks for improving data accessibility. IEEE
INFOCOM (2001)

7. Kalpakis, K., Dasgupta, K., Wolfson, O.: Sterner-optimal data replication in tree networks with storage
costs. Proc. IDEAS, (2001)

8. Krishnan, P., Raz, D., Shavitt, Y.: The cache location problem. IEEE/ACM Trans Networking 8(5), 568–
582 (2000)

9. Li, W., Chan, E., Chen, D.: Energy-effective cache replacement policies for cooperative caching in
mobile Ad Hoc network. Wireless Communications and Networking Conference (WCNC’07). (2007)

10. Li, F., Lau, R., Ng, F.: Vsculpt: A distributed virtual sculpting environment for collaborative design.
IEEE Trans Multimedia 5(4), 570–580 (2003)

11. Ng, B., Si, A., Lau, R., Li, F.: A multi-server architecture for distributed virtual walkthrough, ACM
VRST 2002. pp. 163–170, (2002)

12. Nuggehalli, P., Srinivasan, V., Chiasserini, C., Rao, R.R.: Efficient cache placement in multi-hop
wireless networks. IEEE Transactions on Networking. 14(5): (2006)

13. Petrank, E., Rawitz, D.: The hardness of cache conscious data placement. Nord. J. Comput
14. Tamir, A.: An O(pn2) algorithms for the p-median and related problems on tree graphs. Oper. Res. Lett.

19, (1996)
15. Tang, B., Gupta, H., Das, S.R.: Benefit-based data caching in mobile P2P networks. IEEE Trans Mob

Comput 7(3), 289–304 (2008)
16. Ye, F., Li, Q., Chen, E.: Adaptive caching with heterogeneous devices in mobile peer to peer network.

ACM SAC’08
17. Yin, L., Cao, G.: Support cooperative caching in mobile P2P networks. IEEE Trans Mob Comput 5(1),

77–89 (2006)

World Wide Web (2011) 14:243–259 259

	Benefit based cache data placement and update for mobile peer to peer networks
	Abstract
	Introduction
	Related work
	Single data item placement
	In general graph
	In tree graph
	Greedy placement algorithm for single data

	Multiple data items placement
	Cache update

	Cache placement: problem formulation
	MP2P network scenario
	Cache placement scenario
	Problem formulation

	Placement algorithms
	Global benefit based cache placement (GBCP)
	Random placement (RAND)
	Distributed cache placement scheme
	Local benefit based cache placement (LBCP)
	Cluster based cache placement (CBCP)
	Approximate ratio analysis

	Cache update
	Global cache update
	Local cache update
	Further analysis: relationship between update and placement

	Simulation experiments
	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

