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Abstract. Storage device performance prediction is a key element of
self-managed storage systems and application planning tasks, such as
data assignment and configuration. Based on bagging ensemble, we pro-
posed an algorithm named selective bagging classification and regression
tree (SBCART) to model storage device performance. It can improve
the accuracy of a single CART model. In contrast with CART modeling,
the black-box SBCART model predicts the performance with the higher
accuracy. Experiments indicate that SBCART used in storage device
performance prediction is effective and stable. In addition, we use the
caching effect as a measure in feature vector to make good predictions.

Keywords: Performance prediction, Storage device modeling, CART,
Ensemble learning, Bagging.

1 Introduction

Today’s high-end storage devices are very complex and highly configurable, mak-
ing the automation of storage management tasks a critical research challenge.
One key problem in automation of management tasks is deciding which data
sets to store on which devices, or in other words, how to map a workload of
specific characteristics to its appropriate storage device for high service quality
and system utilization. In order to do this, it requires the ability to predict how
well each device will serve each workload.

Performance models for such prediction have long been studied. Among them
are three methods which are particularly useful and efficient. They are analytic
device modeling, simulation and emulation, black-box modeling.

Building accurate analytic models of disk drives is a burdensome task be-
cause of their nonlinear, state dependent behavior. Ruemmler and Wilkes [1]
developed analytic disk models that take into account head positioning, plat-
ter rotation, data caching and read-ahead. The model is further improved by
Worthington et al. [2], resulting in the widely used disk simulator, DiskSim [3],
which represents the state of the art in disk simulation. DiskSim models almost
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all performance-relevant components of a disk, including device drivers, buses,
controllers, adapters and caches. Emulators go one step further than simulators.
In addition to modeling performance, they can interoperate with real systems.
For example, MEMS devices can interact with existing system [4]. While disk
arrays are widely used in the high-end storage systems, a lot of research work
focuses on the modeling and simulation of disk arrays [5–7]. Among the work,
the Pantheon storage system simulator [7, 8] was built to support the rapid ex-
ploration of design choices of storage systems in HP AutoRAID advanced disk
array technology [9] and TicherTAIP parallel RAID architecture [10]. Uysal et
al. developed a composite analytic model of mid-range disk array and reported
its accuracy within 15% of actual measurements [6].

Compared with simulations and emulations, analytic models are much faster.
However, they usually can not capture as many details as simulators and em-
ulators. Both methods rely heavily on human expertise on the targeted system
and thus are called white-box approach. Given sufficient time and expertise, the
white-box approach can work well in exploring design requests for a particular
device. Unfortunately, such time and expertise is not available for the high-end
storage system because the high-end storage system is complex and opaque. In
addition, some information such as patented configurations, use of algorithms
and optimizations is not disclosed, which makes automatic approaches [11] inef-
fective. Furthermore, the trend toward storage consolidation in large data cen-
ters means that building an accurate model or simulator using white box method
cannot be a general solution for serving a variety of very different workloads. In
contrast, the so-called black box approach treats the storage system as a black
box without knowing the internal components or algorithms and can serve a
wide variety of very different workloads. In this approach, the training data sets
which contain quantified description of characteristics of the input requests and
their corresponding responses from the system are recorded in a table [12] and
fed into a statistic model [13] , or a machine learning model [14, 15].

Wang et al. [15] deployed the black-box method (CART) in performance
modeling as it is easy to fit, leading to good interpretability and can provide
good approximations to highly nonlinear mappings. However, CART is a kind
of decision tree algorithms and is instable, that is, a small change of the data set
can lead to a vital change of the result ( The details will be described in section
2.1 ).

This paper attacks this gap by using ensemble algorithms to improve and
enhance the accuracy and stability of the basic model(CART). We have modified
bagging algorithm for regression ensemble: First, train N models by bagging
and then select n representative models from N models, where n < N . In our
SBCART method, the CART is referred to as the basic model. Compared with
CART modeling, the SBCART used in storage device performance prediction
is more precise and more stable. In addition, an important measure missing in
the feature vector designed by Wang [15] is about caching effect, which makes
a substantial difference on prediction accuracy. We used it as a measure in the
vector to make good predictions.
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Fig. 1. (a) Regression tree of Financial data containing 60 instances; and (b) regression
tree of 56 instances, 4 instances are picked out randomly from 60 instances. The colored
node represents leaf node containing the predicted value. The Nmin is set to 25. The
information on Financial data may be found in section 3.

The remainder of this paper is organized as follows: section 2 describes SB-
CART model, section 3 presents our experimental results and section 4 concludes
the paper.

2 The SBCART Models

2.1 CART Methods

CART is a nonparametric algorithm which uses historical data to construct so-
called decision trees. Trees are built top-down recursively beginning with a root
node. At each step in the recursion, the CART algorithm determines which pre-
dictor variable and its value in the training data best split the current node into
child nodes. The best split should minimize the difference among the instances in
the child nodes. In other words, a good split produces child nodes with instances
that contain similar values.

Trees are grown until no further splits are possible. There are two pruning
algorithms: optimization by minimum number and cross-validation. In the first
pruning algorithm, splitting is stopped when the number of instances in the node
is less than predefined required minimum Nmin. This approach works very fast,
easy to use and has consistent results. However, it requires the calibration of
new parameter Nmin. In the second pruning algorithm, the procedure of cross
validation is mainly based on the optimal proportion between the complexity
of the tree and the misprediction error. As the increase in size of the tree, the
misprediction error is decreasing and equal to 0 when the tree grows into maxi-
mum tree. Unfortunately, complex decision trees poorly perform on independent
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Fig. 2. (a) Using ensemble learning to improve the accuracy of a basic model; and
(b) using selective ensemble learning to improve the accuracy of a basic model. In (a),
bagging or adaboost can construct a series of classifiers or emulators M1,M2, ...,Mk

and then predict the unknown sample by using voting strategy; In (b), first constructing
k models by bagging or adaboost, then selecting a part of representative models from
k models, and finally using voting strategy to predict new samples. In our SBCART
model, Mi is set to CARTi.

data. Therefore, the primary task is to find the optimal proportion between the
tree complexity and misclassification error. Cross-validation does not require
adjustment of any parameters, but this process is time consuming.

Finally, as the tree has been built, an instance travels the pruned tree to
make a prediction. Compared with the split variable and its value of the visiting
node, the left or right branch is taken. Leaf nodes contain the predicted variable
and its value will be returned.

CART may have unstable decision trees. Insignificant modification of learning
instances, such as eliminate several instances and change split variables and
values, could lead to radical changes in decision trees. As Figure 1 shows, the
decision tree constructed for 60 instances in Figure 1(a) is very different from
the tree in Figure 1(b) where 4 random instances are picked out.

A detailed discussion of CART is available in [16].

2.2 Ensemble Learning

The goal of ensemble learning methods is to construct a collection (an ensemble)
of individual classifiers or emulators to improve the accuracy and performance of
a single classifier or emulator. Many authors have demonstrated significant per-
formance improvements through ensemble methods [17, 18]. Figure 2(a) shows
the basic steps involved in training a series of models on the training data and
using voting strategy to predict new data samples.
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Two most popular techniques for constructing ensembles are bagging [19]
and the adaboost family of algorithms [20]. Both methods invoke a base learning
algorithm many times with different training sets. In bagging, each training set is
constructed by forming a bootstrap replica of the original training set, and each
training record has the same weights. Compared with the bagging, the adaboost
algorithm maintains a set of weights over the original training set and adjusts
these weights after each emulator is learned by the base learning algorithm.
The adjustments increase the weight of examples which are badly predicted by
the base learning algorithm and decrease the weight of examples which are well
predicted.

Bagging generates diverse classifiers or emulators only if the base learning
algorithm is unstable, that is, small changes to the training set lead to large
changes in the learned classifier or emulator. Bagging can be viewed as ways
of exploiting this instability to improve prediction accuracy. Adaboost requires
less instability than bagging, because it can make much larger changes in the
training set.

In our SBCART model, we use and adapt the ensemble of bagging to improve
the accuracy and performance of a single CART model, because CART is an
unstable model.

2.3 The SBCART Method

Bagging is one of the famous ensemble learning algorithms. Each training set
is constructed by forming a bootstrap replica of the original training set, thus,
some samples in original training set may appear many times in bootstrap data
set while other samples may not appear. Research indicated that bagging can
boost the performance of the unstable basic method [19].

However, as the number of ensemble models increases, the storage space
and computation time will increase linearly. Thus, many methods [21–23] have
been proposed to solve this problem on classification. In those methods, Zhou
et al. [21] proposed a method to select a part of whole models by using genetic
algorithm to prune the scale. Bakker et al. [22] proposed to cluster whole mod-
els firstly and then select representative models in each class to prune whole
models. Martinez-munoz et al. [23] proposed a new method to prune in ordered
bagging ensembles. However, those pruning methods are complicated. In con-
trast, our SBCART algorithm is proposed to solve the problem on regression
and the pruning method is simple. We adopt CART as the basic model. First,
create k models by bagging; Second, sort the models based on Bagging by me-
dian relative error on training set, and finally, select the first 20%-50% of whole
models to prune the scale. We can choose the small proportion (20% for ex-
ample) while the k is large, in contrast, choose the large proportion (50% for
example) while the k is small. Compared with unpruned bagging ensembles of
CART model, SBCART has big advantages in both storage space and compu-
tation time. Figure 2(b) shows the basic steps involved in training a series of
models on the training data, selecting a part of whole models, and at last using
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voting strategy to predict new data samples based on the pruned models. Com-
pared with figure 2(a), figure 2(b) adds a selective (pruning) function to prune
the k models. The specific SBCART algorithm is listed below:

Algorithm: SBCART
Input:
D: the dataset containing d samples;
M: CART(the basic model);
k: the number of models;
s: the number of pruned models
Output:
Pruned models M∗;

Training Phase:
(1)for i=1 to k do //Bagging
(2) In-sampling with replacement, yield Di (remove duplicated instances);
(3) Create the model Mi based on Di;

(4) Compute error(Mi) (error(Mi) = 1
d

∑d
j=1

|Mi(Xj)−yj |
yj

); //median relative
error
(5)end for

Pruning Phase:
(1)Order k models by error(Mi) in ascending order;
(2)Get the first 20%-50% of the ordered models

Predicting Phase:
Using the pruned models to predict testing data X
(1)for i=1 to s do

(2) Wi = log( (1−error(Mi))
error(Mi)

+ 1); //assign weight for each model

(3) Vi = Mi(X); //predicted values
(4)end for
(5)Normalize the Wi;
(6)return

∑n
i=1 Wi ∗ Vi

2.4 Predicting Performance with SBCART

Our goal is to build a model for a given storage device which predicts device
performance as a function of I/O workload. We use the Umass traces [24] which
define a workload as a sequence of disk requests. Each request Ri is uniquely
described by five attributes: application specific unit (ASU), logical block address
(LBA), size (SIZE), opcode (OPCODE) and timestamp (TIMESTAMP). The
ASU is a positive integer representing the application specific unit; The LBA field
is a positive integer that describes the ASU block offset of the data transferred
for this record; The SIZE field is a positive integer that describes the number
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Fig. 3. (a) Training a SBCART model based on observed response times; and (b) using
the model to predict service times.

of bytes transferred for this record, where the size of a block is contained in
the description of the trace file; The OPCODE field is a single, case insensitive
character that defines the direction of the transfer, R or r indicates a read
operation, W or w indicates a write operation; The TIMESTAMP field is a
positive real number representing the offset in seconds for this I/O request from
the start of the trace.

Our approach deploys SBCART to approximate the function. We assume
that the model construction algorithm can feed any workloads into a device to
observe and profile their characteristics for model training. Figure 3 shows the
basic steps involved in training a model based on the observed response times
and using the model to predict system response (which is per-request service
time in this study). Model construction does not require any information about
the internals of the modeled device. Therefore, the methodology is generally
enough to model any device.

We compared our SBCART model with CART model in Table 1. The two
models were constructed on the first 5000 instances of WebSearch user1 trace
and run on another 5000 instances of the same trace for testing ( The informa-
tion about the trace we used may be found in section 3 ). The parameter k in
SBCART is set to 20 and Nmin in CART is set to 10.

As shown in Table 1, the prediction error(median relative error) of SBCART
is lower and the stability is better compared to CART, as the composite models
can reduce variance of a single model. The construction time of SBCART model
is more time-consuming and the storage requirement of this model is higher,
because SBCART needs to build k different models, but those are not the most
important elements in storage device performance prediction (The most impor-
tant element is prediction error). Furthermore, the construction time of SBCART
can be shortened by using parallel technology as each bootstrap modeling is in-
dependent. Overall, the SBCART used in storage device performance prediction
is more stable and more precise compared to CART.
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Table 1. Comparison between SBCART and CART tools in predicting per-request
response time. The comparisons are on prediction error, stability, interpretability, ro-
bustness to outliers, ability to handle irrelevant input, model construction time and
prediction time. We rank the features in the order of their importance.

3 Experiments

3.1 Request Feature Vector

Our request Feature Vector (FV) for Ri contains the following variables: Re-
quest Vector Ri = [TimeDiffi(1), ..., T imeDiffi(k), LBNi, LBNDiffi(1), ...,
LBNDiffi(m), Sizei, RWi, Seq(i), Hit(i)] where TimeDiffi(l) = TimeStampi-
TimeStampi−l (l = 1, 2, ..., k), LBNDiffi(k)=LBNi-LBNi−k (k = 1, 2, ...,m);
The first k variables measure the temporal burstiness of the workload when Ri
arrives. The next m + 1 variables measure the spatial locality which supports
prediction of the seek time of the request. Seq(i) indicates whether the request is
a sequential access; Sizei and RWi support prediction of the data transfer time.
Hit(i) indicates the caching effect, which makes a great difference on prediction
accuracy.

3.2 Devices and Traces

We use DiskSim [3] to simulate a disk. The disk is one Seagate ST32171W disk
(7200RPM). We replay all the traces on the device to obtain the training data.
We use the UMass traces [24] consisting of Finacial traces and WebSearch traces.
The Finacial traces are from OLTP applications at two large finacial institutions
(relatively more sequential) and the WebSearch traces are from a popular search
engine (relatively more random).

There are several fields for a single request in UMass trace file. The first
field is the ASU which is related to application. In our experiments, we consider
one user executing one application on the server. Therefore, ASU number could
be considered as a user ID. We randomly chose two ASU numbers and filtered
out all the requests for each of these ASUs, respectively. According to this, we
obtained WebSearch-user1 and WebSearch-user2 traces from WebSearch1.spc,
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Fig. 4. Comparison of SBCART and CART on four traces: ModelFin2, ModelFin4,
ModelWeb1, ModelWeb2. CART-nocache shows that cache information (Hit) is not
considered in feature vector and CART-cache shows that cache information is used as
a measure in feature vector.

Financial-user2 and Financial-user4 traces from Financial1.spc. We built our
models based on those traces.

3.3 Evaluation Methods

For evaluation, we use the trained device models to predict response time for

a single request. We defined the relative prediction error as |Ŷ−Y |Y to show the
accuracy of different modeling algorithms. We also show the average, 90th, 80th,
and 70th percentile relative error of response time for different data sets.

Based on the above four users’ traces, we trained four models: ModelFin2,
ModelFin4, ModelWeb1, ModelWeb2 respectively. One hundred thousand requests
are obtained for each user from the original trace and half of the requests are
used for training while half of them are used for testing. In our experiments,
k in TimeDiffi(k) is set to 3 and m in LBNDiffi(m) is set to 5. The k in
SBCART is set to 20, the pruning proportion is set to 50% and the Nmin of
CART is set to 10.
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Fig. 5. Comparison of stability between CART and SBCART. X-coordinate describes
the number of training data missing from the first 5000 instances of WebSearch-user1
trace and its testing data from another 5000 instances from the same trace.

3.4 Predictors in Comparison

Figure 4 compares the median relative error of the two predictors (SBCART
and CART) in modeling a Seagate ST32171W disk on Financial (ModelFin2 ,
ModelFin4) and WebSearch (Modelweb1,Modelweb2) traces respectively. Over-
all, the SBCART-based device models provide good prediction accuracy in pre-
dicting the average, 90th, 80th and 70th percentile response times compared to
CART predictors. Several more detailed observations can be made.

First, feature vector must be designed to include all relevant measures. An
important measure missing in the feature vector designed by Wang et al. [15]
is about caching effect, which makes a substantial difference on prediction accu-
racy. As hitting in the buffer cache is basically determined by temporal locality
of accessed blocks [25], we propose to maintain an approximate LRU stack to
efficiently track recency of requested blocks and use it as a measure in the vector.
As shown in Figure 4(a), CART-cache can reduce the error from 25.12%, 25.04%,
91.64%, 23.18% to 15.01%, 14.15%, 15.99%, 13.48% on ModelWeb1, ModelWeb2,
ModelFin2, ModelFin4 respectively. We can see that the median relative er-
ror reduce about 10% on ModelWeb1, ModelWeb2, ModelFin4, but about 75%
on ModelFin2. We also observed that the traces of ModelWeb1, ModelWeb2,
ModelFin4 are relatively more random and the trace of ModelFin2 is relatively
more sequential, Therefore, sequential workloads like Financial-user2 are more
easily affected by the caching effect so that adding the cache information greatly
reduced the prediction error.

Second, SBCART can improve the accuracy and stability of CART. As shown
in Figure 4(a), the SBCART-nocache can improve about 5% of accuracy com-
pared to CART-nocache and the SBCART-cache can improve about 3% com-
pared to CART-cache. We can see that using the measure Hit in feature vector
and the ensemble method, the prediction accuracy increases by about 13% to
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more random workloads and about 70% to more sequential workloads. As shown
in Figure 5, the SBCRAT is more stable than CART with the training data
changes, because selective ensemble models can reduce the variance of a single
model.

Finally, it was more difficult to predict the high quantile response times. As
shown in Figure 4(b), (c) and (d), the median relative error is reduced about 5%,
8% and 11% respectively compare to Figure 4(a). We can observe that SBCART
are always more precise than CART with different quantile response times.

In summary, the SBCART-based models can give accurate predictions and
more stable when the training and testing workloads have the same charac-
teristics. The good accuracy indicates the SBCART and workload descriptions
(feature vector) used in storage device performance prediction are more effective.

4 Conclusion

Storage device performance modeling is an important element in self-managed
storage systems, especially in high-end storage systems. Our SBCART model
takes a workload as input and predicts its performance on the modeled de-
vice efficiently and accurately compared to CART model. Based on bagging
algorithms, we proposed our selective bagging classification and regression tree
(SBCART) using the basic model CART. The SBCART model makes device
models independent of the storage devices being modeled, so it can handle any
type of devices. We preprocessed the UMass traces on which we built the SB-
CART models. In addition, we considered the caching effect and used it as a
measure in feature vector to make good predictions.

There are several challenges to allow the black model to make accurate pre-
dictions : First, it is not a easy work to select the training data set that should
provide a comprehensive and efficient coverage of workload characteristics; Sec-
ond, workload characterization is still an open problem; Finally, the methodology
itself has some deficiency. Thus, in future we will do more research considering
above three aspects to make the accurate predictions.
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