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Abstract—Mobile context modeling is a process of recogniz-
ing and reasoning about contexts and situations in a mobile
environment, which is critical for the success of context-
aware mobile services. While there are prior work on mobile
context modeling, the use of unsupervised learning techniques
for mobile context modeling is still under-explored. Indeed,
unsupervised techniques have the ability to learn personalized
contexts which are difficult to be predefined. To that end, in
this paper, we propose an unsupervised approach to modeling
personalized contexts of mobile users. Along this line, we first
segment the raw context data sequences of mobile users into
context sessions where a context session contains a group of
adjacent context records which are mutually similar and usually
reflect the similar contexts. Then, we exploit topic models
to learn personalized contexts in the form of probabilistic
distributions of raw context data from the context sessions.
Finally, experimental results on real-world data show that
the proposed approach is efficient and effective for mining
personalized contexts of mobile users.
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I. INTRODUCTION

Recent years have witnessed a revolution in mobile de-
vices, which is driven by the ever-increasing needs of mobile
services. As mobile services keep evolving, there are clear
signs that context modeling of mobile users will have huge
demand. A distinct property of mobile users is that they
are usually exposed in volatile contexts, such as waiting a
bus, walking in a building, driving a car, or doing shopping.
Thus, building context-aware services by leveraging the rich
contextual information of mobile users has attracted the great
attention of many researchers [2], [11], [17].

Mobile context modeling is a process of recognizing and
reasoning about contexts and situations in a mobile envi-
ronment, which is a fundamental research problem towards
leveraging the rich contextual information of mobile users.
There are prior work on mobile context modeling such as
[1], [17]. However, most of these previous studies have a
need to predefine the typical contexts of users and predeter-
mine the corresponding rules for detecting them. While these
approaches can work well in predefined simple application
scenarios, such as guiding tourists for sightseeing [19], it
is not flexible to extend these approaches for more general
and complex scenarios where it is difficult to manually build
context models. In addition, there are some other studies
for mobile context modeling through supervised learning

methods [12], [20]. In this case, there is also a need to
predefine contexts.

It is more attractive to exploit unsupervised techniques for
mobile context modeling for the case that domain knowledge
is not available, such as learning the personalized contexts
which are difficult to be predefined. Indeed, unsupervised
learning techniques can automatically learn some semanti-
cally meaningful contexts from the low level context data.
In contrast, to model personalized contexts, both manual
approach and supervised learning approach require users to
predefine their own personalized contexts and thus will bring
additional cost and complexity to the problem.

Therefore, in this paper, we propose an unsupervised
approach to modeling personalized contexts of mobile users.
Specifically, we first segment the raw context data sequence
of mobile users into context sessions where a context session
contains a group of adjacent context records which are
mutually similar and may reflect the similar contexts. We
use an adaptive segmentation approach named the minimum
entropy segmentation [8] to address the challenges of context
segmentation on determining the number of segments and
the segmentation threshold. Secondly, we take advantage
of topic models to learn personalized contexts in the form
of probabilistic distributions of raw context data from the
context sessions. Due to the structural constraint of context
sessions, the state-of-the-art topic models can not directly
apply to mobile context modeling. Therefore, we exploit
to extend existing topic models for fitting mobile context
modeling. We first extend a single-topic-based topic model
named Mixture Unigram (MU) [14] to a mobile context
model which assumes that each context session reflects
one latent context. However, we observe that some context
sessions may reflect multiple contexts because the context
segmentation stage may not exactly detect all boundaries of
context transitions. Based this observation, we also extend
a multiple-topic-based topic model named Latent Dirichlet
Allocation (LDA) [4] for mobile context modeling. Finally,
we conduct extensive experiments on the real-world mobile
usage data. Experimental results show that the LDA based
model is more effective than that extended from MUC for
mobile context modeling but less efficient than the latter in
terms of the computational cost.

Overview. The rest of this paper is organized as follows.
First, we briefly review some related works in Section II.
The basic idea of unsupervised mobile context modeling
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is introduced in Section III. Then, the details of context
segmentation are presented in Section IV and the details
of modeling personalized contexts of mobile users through
topic models are presented and discussed in Section V,
respectively. In Section VI, we report the experimental
results on the real life history context data of users. Finally,
we conclude this paper and pinpoint some future research
directions in Section VII.

II. RELATED WORK

In general, the related work can be grouped into three
categories. In the first category, contexts are modeled man-
ually based on domain knowledge. For example, Schilit
et al. [17] used key-value pairs to model the context by
providing the value of a context information (e.g. location
information) to an application as an environment variable.
Adowd et al. [1] presented the Cyberguide project, in which
prototypes of a mobile context-aware tour guide were built.
Otzturk and Aamodt [15] proposed modeling the context
with ontologies and analyzed psychological studies on the
difference between recall and recognition of several issues
in combination with contextual information. Indeed, none
of the above studies adopted machine learning approach for
learning contexts from the raw context data automatically.
As a result, they may work well in simple environments,
such as guiding tourists in tourist attractions, but are not
flexible for applying to more complex environments where
it is difficult to build context models manually, e.g., recog-
nizing users’ contexts in their daily life.

The second category includes the research work of mobile
context modeling though supervised learning approaches.
For example, Liao et al. [12] attempted to infer an individ-
ual’s transportation routine given the user raw GPS data. By
leveraging a dynamic Bayesian network, the system learns
and infers the person’s transportation routines between the
significant places. Zheng et al. [20] exploited to use several
supervised learning approaches for modeling user’s raw GPS
data. In their work, four different inference models including
decision tree, Bayesian network, support vector machine
(SVM) and conditional random field (CRF) are studied for
modeling user’s transportation mode. Supervised learning
approach provides more flexibility than the manual approach
for mobile context modeling because it depends on less
domain knowledge and can learn from the raw context data
automatically. However, it still needs to manually predefine
the contexts. Moreover, it needs a number of labeled training
data for model training. By contrast, the unsupervised learn-
ing approach for mobile context modeling is very flexible
because it can learn contexts from an individual user’s raw
context data without predefined contexts nor labeled training
data. Thus, it can greatly improve the user experience due
to less dependency on the user.

The third category of related work focuses on user mod-
eling through unsupervised approaches. In a latest literature,

Eagle et al. [5] proposed to use the eigenvector of user
behavior for modeling individual users and infer community
affiliations within the subjects’ social network. Though they
also used an unsupervised approach to discover the user
context and behavior pattern from the user history data,
the objective of their research is intrinsically different from
our work. Our goal is to discover the personalized mobile
contexts which can be applied to context-aware services.

In addition, the proposed approach in this paper exploits
topic models, which are widely used generative probability
models in document modeling. Typical topic models include
the Mixture Unigram (MU) model [14], the probabilistic
latent semantic analysis (pLSA) model [10], and the latent
Dirichlet allocation (LDA) model [4]. Most of other topic
models are extended from them and applied to specific
applications. In our approach, we extend MU to MUC and
extend LDA to LDAC for satisfying the constraint of context
data.

III. LEARNING PERSONALIZED MOBILE CONTEXTS

FROM CONTEXT LOGS

The context collection software on mobile devices can
collect rich context data of mobile users through their
personal context logs. A context log consists of a number
of context records with timestamps, and a context record
is formed as a group of raw context data, i.e., contextual
feature-value pairs, where a contextual feature denotes a
type of context data, such as Day name, Speed, and Cell ID,
etc. The contextual value in a contextual feature-value pair
indicates the value of the corresponding contextual feature at
a particular time point. The context collection software can
predefine a set of contextual features whose values should
be collected, but a context record may miss the values of
some contextual features because these values are not always
available. For example, when a user is in door, the mobile
device can not receive the GPS signal. In context logs, only
the contextual feature-value pairs whose contextual values
are not missing are recorded.

From the contextual feature-value pairs in context logs
we may be able to discover some meaningful contexts of
mobile users. For example, suppose Table I shows a part
of the context log of Ada, we can see that in a workday
and during time at AM8:00-AM9:00 , Ada’s moving speed
was high and the background was noisy observed by audio
level, which might imply the context is that she was driving
a car to her work place. Moreover, in a holiday during
time at AM10:00-11:00, Ada was moving in door and the
background is noisy. In addition, considering that the cell ID
represents a shopping mall, the context might be that Ada
was go shopping.

If several adjacent context records in a context log are
mutually similar, we say that they make up a context
session. The context records in the same context session may
capture the similar context information of the mobile user. If

39



Table I
A TOY CONTEXT LOG.

Timestamp Context record
𝑡1 {(Is a holiday?: No),(Time range: AM8:00-9:00),(Speed: High),(Audio level: Low),(Interaction: Listening music)}
𝑡2 {(Is a holiday?: No),(Time range: AM8:00-9:00),(Speed: High),(Audio level: Middle)}
𝑡3 {(Is a holiday?: No),(Time range: AM8:00-9:00),(Speed: High),(Audio level: Middle)}

......
𝑡38 {(Is a holiday?: No),(Time range: AM10:00-11:00),(Movement: Not moving),(Audio level: Low),(Inactive time: Long)}
𝑡39 {(Is a holiday?: No),(Time range: AM10:00-11:00),(Movement: Not moving),(Audio level: Low),(Inactive time: Long)}
𝑡40 {(Is a holiday?: No),(Time range: AM10:00-11:00),(Movement: Not moving),(Audio level: Low),(Inactive time: Long)}

......
𝑡58 {(Is a holiday?: Yes),(Time range: AM10:00-11:00),(Movement: Moving),(Cell ID: 2552),(Audio level: Middle)}
𝑡59 {(Is a holiday?: Yes),(Time range: AM10:00-11:00),(Movement: Moving),(Cell ID: 2552),(Audio level: High)}
𝑡60 {(Is a holiday?: Yes),(Time range: AM10:00-11:00),(Movement: Moving),(Cell ID: 2552),(Audio level: Middle)}

two contextual feature-value pairs usually co-occur in same
context sessions, they may represent the same context. An
unsupervised approach can automatically discover the highly
related contextual feature-value pairs which reflect the same
context by taking advantage of their co-occurrences. Once
a group of highly related contextual feature-value pairs are
found, users can assign them meaningful context tags for
binding them with multiple context-aware applications, such
as context-aware reminder, context-aware recommendations.
For example, if an unsupervised approach can discover that
the contextual feature-value pairs (Is a holiday?: Yes), (Time
range: AM10:00-11:00), (Movement: Moving), and (Cell ID:
2552) are highly related, Ada will be encouraged to tag
this group of contextual feature-value pairs with an explicit
context label “Go shopping” and define the services she
wants on that context, such as playing a favorite music
or recommending the information of fashion dress. This
kind of semi-automatic context-aware configuration is more
convenient than a manual alternative that lets Ada define
the contextual feature-value pairs of “Go shopping” by her-
self. Along this line, we propose a two-stage unsupervised
approach for learning the personalized contexts of mobile
users. In the first stage, we takes advantage of an adaptive
segmentation approach to segment the context log into
context sessions. In the second stage, we use the extended
topic models to learn personalized contexts from the context
sessions. The details of the approach are presented in the
following sections.

IV. EXTRACTING CONTEXT SESSIONS

Given a context log 𝑅 = 𝑟1𝑟2...𝑟𝑛, where 𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑛)
denotes a context record, extracting context sessions from
𝑅 is a procedure of segmenting 𝑅 into 𝑁 segments 𝑆 =
{𝑠1, 𝑠2, ..., 𝑠𝑁}, where 𝑠𝑖 (1 ≤ 𝑖 ≤ 𝑁) denotes a context
session which consists of a group of adjacent and similar
context records, and 𝑆 is called a 𝑁 -segmentation of 𝑅.

There are two challenges for segmenting the context log
into context sessions. First, it is hard to estimate the number
of context sessions in a context log, i.e., the parameter 𝑁 .
It is because mobile users may have different frequencies of
context transitions due to their life styles, which implies the
numbers of context sessions in their personal context logs

may also vary significantly. Therefore, the partition based
segmentation approach (e.g., [9], [18]) can not apply to
context segmentation. Second, it is also difficult to define
a unified similarity threshold to determine where the orig-
inal context log should be segmented for each individual
user’s context log. Thus, the similarity threshold based
segmentation approach (e.g., [6], [13]) can not apply too.
To address the context segmentation problem, we need an
adaptive approach which can automatically segment context
logs according to their intrinsic statistic properties without
external guidance.

Hermes et al. [8] proposed a minimum entropy approach
which can segment pixels of an image adaptively without
any domain knowledge related parameter. The basic idea
of the approach is to transform the objective of finding
the optimized segmentation to finding the minimum con-
ditional entropy of the pixels given the segmentation. This
approach can be easily extended to segment context logs
because context segmentation can be also transformed to
the problem of seeking the minimum entropy. To be specific,
if we measure the similarity between two adjacent context
records through the probability that they are assigned into
the same context session by a random segmentation, the
objective of seeking the optimized segmentation becomes
seeking the segmentation 𝑆∗ = argmax𝑆 𝐿(𝑅∣𝑆), where
𝐿(𝑅∣𝑆) denotes the likelihood of all context records given
the segmentation 𝑆. Seeking the maximum 𝐿(𝑅∣𝑆) is equal
to seeking the maximum 𝑙𝑜𝑔𝐿(𝑅∣𝑆). If we assume that 1)
for each context record 𝑟, the probability to be assigned into
a given context session 𝑠 is independent, and 2) for each
context feature-value pair 𝑝 of a given context record 𝑟, the
probability to be assigned into a given context session 𝑠 is
independent, 𝑙𝑜𝑔𝐿(𝑅∣𝑆) can be expressed as follows.

𝑙𝑜𝑔𝐿(𝑅∣𝑆) =
∑
𝑠

∑
𝑟𝑠

𝑙𝑜𝑔𝑃 (𝑟𝑠∣𝑆)

=
∑
𝑠

∑
𝑟𝑠

∑
𝑝𝑟𝑠

𝑙𝑜𝑔𝑃 (𝑝𝑟𝑠 ∣𝑠)

=
∑
𝑠

∑
𝑝

𝑛𝑠,𝑝𝑙𝑜𝑔𝑃 (𝑝∣𝑠), (1)

where 𝑠 denotes a context session in 𝑆, 𝑟𝑠 denotes a context
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record in 𝑠, 𝑝𝑟𝑠 denotes a contextual feature-value pair in 𝑟𝑠,
𝑝 denotes a unique contextual feature-value pair, and 𝑛𝑠,𝑝

indicates the occurrence number of the feature-value pair
𝑝 in context session 𝑠. If we use 𝑛𝑠,𝑝

𝑁𝑝
to estimate 𝑃 (𝑝, 𝑠),

where 𝑁𝑝 denotes the number of all feature-value pairs in
𝑅, Equation 1 can be transformed as follows.

(1) = 𝑁𝑝

∑
𝑠

∑
𝑝

𝑃 (𝑝, 𝑠)𝑙𝑜𝑔(𝑃 (𝑝∣𝑠)) = −𝑁𝑝 ⋅𝐻(𝑝∣𝑠),

where 𝐻(𝑝∣𝑠) denotes the conditional entropy of all
contextual feature-value pairs given all context sessions.
Therefore, the original problem is transformed to 𝑆∗ =
argmin𝑆 𝐻(𝑝∣𝑠).

Hermes et al. [8] have demonstrated that this problem
can be addressed by taking advantage of the greedy opti-
mization. To be specific, to search a 𝑁 -segmentation with
the minimum entropy, we first find a 𝑁 + 1-segmentation
with the minimum entropy. Then we try to merge each
pair of adjacent context sessions and in this way find a
𝑁 -segmentation 𝑆

′
with the minimum entropy, and 𝑆

′
is

the exact solution of 𝑆∗. Moreover, 𝐻(𝑝∣𝑠) has a certain
solution when 𝑁 is equal to 𝑛. It is because in this case
there exists only one segmentation that each context record
makes up one context session. Therefore, we can easily find
the optimized 𝑁 -segmentation (𝑁 ∈ [1, 𝑛]).

It is easy to prove that the global minimum entropy
appears when 𝑁 = 𝑛 and the local minimum entropy given
𝑁 increases with the decrease of 𝑁 . However, only taking
into account the minimum entropy usually causes over-
fitting because such a segmentation is usually too complex.
Therefore, we also take into account the growth rate of the
local minimum entropy to balance the complexity of the
segmentation and the corresponding local minimum entropy.
To be specific, we start from 𝑁 = 𝑛 and then iteratively set
𝑁 = 𝑁 − 1 and calculate the corresponding local minimum
entropy. If the growth rate of the local minimum entropy
is larger than 𝜉, we terminate seeking next local minimum
entropy. In practice, we set 𝜉 to be 10%. Figure 1 illustrates
the procedure of seeking the global optimized segmentation
by balancing the complexity of the segmentation and the
minimum entropy. The worst complexity of the adaptive
segmentation approach is 𝑂(𝑁𝑙𝑜𝑔𝑁).

V. LEARNING PERSONALIZED CONTEXTS FROM

CONTEXT SESSIONS

Topic models are generative models that are successfully
used for document modeling. They assume that there exist
several topics for a corpus 𝐷 and a document 𝑑 in 𝐷 can
be taken as a bag of words {𝑤𝑑,𝑖} which are generated by
these topics. Intuitively, if we take contextual feature-value
pairs as words, take context sessions as bags of contextual
feature-value pairs to correspond documents, and take latent
contexts as topics, we can take advantage of topic models
to learn contexts from context sessions. However, we can
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Figure 1. Seeking the global optimized segmentation by balancing the
complexity of the segmentation and the minimum entropy.

not directly apply topic models to mobile context modeling
because the occurrences of the contextual features and the
corresponding values in contextual feature-value pairs are
dependent on different factors. As mentioned above, in
a context session, the occurrences of contextual features
are dependent on some external conditions, such as the
availability of the corresponding signal. In contrast, the
occurrences of contextual values are dependent on the latent
contexts and the corresponding contextual features. If we
simply take contextual feature-value pairs as words in topic
models, we will not be able to discriminate the generation
of contextual features and that of contextual values. To this
end, we extend the existing topic models for fitting mobile
context modeling.

A. Single-Context-based Context Model

If we assume that one context session reflects one latent
context, we can extend a typical singe-context-based topic
model named the Mixture Unigram (MU) model [14] for
mobile context modeling. MU assumes that a document 𝑑
is generated as follows. Given 𝐾 topics and 𝑀 words, to
generate the word 𝑤𝑑,𝑖 in 𝑑, the model firstly generates a
topic 𝑧𝑑 from a prior topic distribution for the corpus 𝐷.
Then the model generates 𝑤𝑑,𝑖 given the prior word distri-
bution for 𝑧𝑑. In a corpus, both the prior topic distribution
and the prior word distributions for different topics follow
the Dirichlet distribution.

We extend the MU model to the Mixture Unigram Context
(MUC) model which assumes that a context session is
generated by a prior contextual feature distribution and a
prior context distribution together. To be specific, given 𝐾
contexts and 𝐹 contextual features, the MUC model assumes
that a context session 𝑠 is generated as follows. Firstly,
a global prior context distribution 𝜃 is generated from a
prior Dirichlet distribution 𝛼. Secondly, a prior contextual
feature distribution 𝜋𝑠 is generated from a prior Dirichlet
distribution 𝛾. Then, a context 𝑐𝑠 is generated from 𝜃.
Finally, a contextual feature 𝑓𝑠,𝑖 is generated from 𝜋𝑠, and
the value of 𝑓𝑠,𝑖 denoted as 𝑣𝑠,𝑖 is generated from the
distribution 𝜙𝑐𝑠,𝑓𝑠,𝑖 . Moreover, there are totally 𝐾 × 𝐹
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conditional distributions of contextual feature-value pairs
{𝜙𝑘,𝑓} which follow a Dirichlet distribution 𝛽. Figure 2
shows the graphical representation of the MUC model.
Notice that 𝛼, 𝛽 and 𝛾 are represented by parameter vectors
−→𝛼 = {𝛼𝑘}, −→𝛽 = {𝛽𝑣}, and −→𝛾 = {𝛾𝑓} respectively
according to the definition of Dirichlet distribution, where
𝑘 indicates a context, 𝑣 indicates a contextual value, and 𝑓
indicates a contextual feature.
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Figure 2. The graphical representation of the MUC model.

In the MUC model, given the parameters 𝛼, 𝛽 and 𝛾, the
joint probability of a context session 𝑠 = {(𝑓𝑠,𝑖 : 𝑣𝑠,𝑖)}, a
prior context distribution 𝜃, a latent context 𝑐𝑠, a contextual
feature distribution 𝜋𝑠, and a set of 𝐾 × 𝐹 conditional
contextual value distributions Φ = {𝜙𝑘,𝑓} is calculated as
follows.

𝑃 (𝑠, 𝜃, 𝑐𝑠, 𝜋𝑠,Φ∣𝛼, 𝛽, 𝛾) = 𝑃 (𝑐𝑠∣𝜃)𝑃 (𝜃∣𝛼)𝑃 (Φ∣𝛽)𝑃 (𝜋𝑠∣𝛾)

×
(

𝑁𝑠∏
𝑖=1

𝑃 (𝑣𝑠,𝑖∣𝑐𝑠, 𝑓𝑠,𝑖,Φ)𝑃 (𝑓𝑠,𝑖∣𝜋𝑠)

)
,

where 𝑃 (𝑣𝑠,𝑖∣𝑐𝑠, 𝑓𝑠,𝑖,Φ) = 𝑃 (𝑣𝑠,𝑖∣𝑐𝑠, 𝑓𝑠,𝑖, 𝜙𝑐𝑠,𝑓𝑠,𝑖) and 𝑁𝑠

indicates the number of contextual feature-value pairs in 𝑠.
The likelihood of a set of context sessions 𝑆 is calculated

as follows.

𝐿(𝑆) =
∏
𝑠

𝑃 (𝑠∣𝛼, 𝛽, 𝛾)

=
∏
𝑠

∫ ∫ ∫ (𝑁𝑠∏
𝑖=1

∑
𝑐𝑠

𝑃 (𝑝𝑠,𝑖∣𝑐𝑠, 𝑓𝑠,𝑖,Φ)𝑃 (𝑓𝑠,𝑖∣𝜋𝑠)

)

×𝑃 (𝑐𝑠∣𝜃)𝑃 (𝜃∣𝛼)𝑃 (Φ∣𝛽)𝑃 (𝜋𝑠∣𝛾)𝑑𝜃𝑑Φ𝑑𝜋𝑠,

The representation of the likelihood of MUC is in a too
complex form and it may not be feasible to calculate the pa-
rameters of the model directly. Alternatively, we use a com-
monly used iterative approach for approximately estimating
the parameters of MU called Gibbs sampling [7], [16]. In
the Gibbs sampling approach, each observed variable is
iteratively assigned a label by taking into account the labels
of other observed variables. For our problem, the Dirichlet

parameter vectors −→𝛼 ,
−→
𝛽 , and −→𝛾 are empirically predefined

first. Then the Gibbs sampling approach iteratively assigns
context labels to each context session according to the labels
of other context sessions.

The Gibbs sampler of the context label for a context
session 𝑠, denoted as 𝑐𝑠, is defined as follows.

𝑃 (𝑐𝑠 = 𝑘∣𝐶¬𝑠, 𝑆) ∝ 𝑃 (𝑐𝑠 = 𝑘,𝐶¬𝑠, 𝑆)

∝ 𝑃 (𝑐𝑠 = 𝑘,𝐶¬𝑠, 𝑉, 𝐹 )

∝ 𝑃 (𝑉 ∣𝑐𝑠 = 𝑘,𝐶¬𝑠, 𝐹 )𝑃 (𝑐𝑠 = 𝑘∣𝐶¬𝑠)𝑃 (𝐹 )

∝ 𝑃 (𝑣𝑠∣𝑐𝑠 = 𝑘,𝐶¬𝑠, 𝐹, 𝑉¬𝑠)𝑃 (𝑐𝑠 = 𝑘∣𝐶¬𝑠),

where ¬𝑠 means removing 𝑠 from 𝑆, 𝐶¬𝑠 denotes the
context labels of other context sessions expect for 𝑠, 𝑉 and
𝐹 denote all contextual values and all contextual features in
𝑆, respectively, and 𝑣𝑠 denotes all contextual values in 𝑠.

Moreover, indicating the token (𝑠, 𝑖) as 𝑚, we have the
following formulas.

𝑃 (𝑣𝑠∣𝑐𝑠 = 𝑘,𝐶¬𝑠, 𝐹, 𝑉¬𝑠) =

𝑁𝑠∏
𝑖=1

𝑛¬𝑠,𝑘,𝑓𝑚,𝑣𝑚
+ 𝛽𝑣𝑚∑

𝑣 𝑛¬𝑠,𝑘,𝑓𝑚,𝑣 +
∑

𝑣∈𝑉𝑓𝑚
𝛽𝑣

𝑃 (𝑐𝑠 = 𝑘∣𝐶¬𝑠) =
𝑛¬𝑠,𝑘 + 𝛼𝑘

𝑁 − 1 +
∑𝐾

𝑘′=1 𝛼𝑘′
,

where 𝑛¬𝑠,𝑘,𝑓,𝑣 indicates the frequency that the contextual
feature-value pair (𝑓 : 𝑣) is labeled with the 𝑘-th context
in all context sessions expect for 𝑠, 𝑉𝑓 denotes the set of
contextual values for the contextual feature 𝑓 , and 𝑛¬𝑠,𝑘

indicates the number of context sessions with the 𝑘-th
context expect for 𝑠.

After several rounds of Gibbs sampling, eventually each
context session will be assigned a final context label. We
can derive the personalized contexts of mobile users from
the labeled context sessions by estimating the probability
distribution of contextual feature-value pairs generated by
a particular context. To be specific, the probability that a
contextual feature-value pair 𝑝𝑚 = (𝑓𝑚 : 𝑣𝑚) is generated
by the context 𝑐𝑘 is estimated as

𝑃 (𝑝𝑚∣𝑐𝑘) = 𝑃 (𝑣𝑚∣𝑐𝑘, 𝑓𝑚)𝑃 (𝑓𝑚), (2)

where

𝑃 (𝑣𝑚∣𝑐𝑘, 𝑓𝑚) =
𝑛𝑘,𝑓𝑚,𝑣𝑚

+ 𝛽𝑣𝑚∑
𝑣 𝑛𝑘,𝑓𝑚,𝑣 +

∑
𝑣∈𝑉𝑓𝑚

𝛽𝑣

𝑃 (𝑓𝑚) =

∑𝐾
𝑘′=1

∑
𝑣 𝑛𝑘′,𝑓𝑚,𝑣 + 𝛾𝑓𝑚∑

𝑓

∑𝐾
𝑘′=1

∑
𝑣 𝑛𝑘′,𝑓𝑚,𝑣 +

∑
𝑓 𝛾𝑓

.

B. Multiple-Context-based Context Model

In practice, the stage of context segmentation may not
detect the exact boundaries of context sessions. Therefore,
it is more general to assume that one context session
may reflect multiple latent contexts. To this end, we also
propose a multiple-context-based context model which is
extended from a multiple-topic-based topic model named
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the Latent Dirichlet Allocation (LDA) model [4]. Compared
with MU, LDA assumes each document is generated by a
prior distribution of topics instead of a single topic. To be
specific, LDA assumes that a document 𝑑 is generated as
follows. Given 𝐾 topics and 𝑀 words, to generate the word
𝑤𝑑,𝑖 in 𝑑, the model firstly generates a topic 𝑧𝑑,𝑖 from a
prior topic distribution for 𝑑. Then the model generates 𝑤𝑑,𝑖

given the prior word distribution for 𝑧𝑑,𝑖. Moreover, similar
to MU, LDA assumes that both the prior topic distributions
for different documents and the prior word distributions for
different topics follow the Dirichlet distribution.

We extend LDA to the Latent Dirichlet Allocation on
Context model (LDAC) for mobile context modeling. In the
LDAC model, a context session 𝑠 is generated as follows.
Firstly, a prior context distribution 𝜃𝑠 is generated from a
prior Dirichlet distribution 𝛼. Secondly, a prior contextual
feature distribution 𝜋𝑠 is generated from a prior Dirichlet
distribution 𝛾. Then, for the 𝑖-th contextual feature-value pair
in 𝑠, a context 𝑐𝑠,𝑖 is generated from 𝜃𝑠, a contextual feature
𝑓𝑠,𝑖 is generated from 𝜋𝑠, and the value of 𝑓𝑠,𝑖 denoted as
𝑣𝑠,𝑖 is generated from the distribution 𝜙𝑐𝑠,𝑖,𝑓𝑠,𝑖 . Moreover,
there are totally 𝐾 × 𝐹 prior distributions of contextual
feature-value pairs {𝜙𝑘,𝑓} which follow a Dirichlet distri-
bution 𝛽. Figure 3 shows the graphical representation of the
LDAC model.
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Figure 3. The graphical representation of the LDAC model.

In the LDAC model, given the parameters 𝛼, 𝛽 and 𝛾, the
joint probability of a context session 𝑠 = {(𝑓𝑠,𝑖 : 𝑣𝑠,𝑖)}, a
prior context distribution 𝜃𝑠, a group of latent context labels
𝑐𝑠 = {𝑐𝑠,𝑖}, a contextual feature distribution 𝜋𝑠, and a set of
𝐾×𝐹 conditional contextual value distributions Φ = {𝜙𝑘,𝑓}
is calculated as follows.

𝑃 (𝑠, 𝜃, 𝑐𝑠, 𝜋𝑠,Φ∣𝛼, 𝛽, 𝛾) = 𝑃 (𝜃𝑠∣𝛼)𝑃 (Φ∣𝛽)𝑃 (𝜋𝑠∣𝛾)

×
(

𝑁𝑠∏
𝑖=1

𝑃 (𝑣𝑠,𝑖∣𝑐𝑠,𝑖, 𝑓𝑠,𝑖,Φ)𝑃 (𝑓𝑠,𝑖∣𝜋𝑠)𝑃 (𝑐𝑠,𝑖∣𝜃𝑠)
)
.

Similar to the parameter estimation in MUC, we also use
the Gibbs sampling approach to estimating the parameters

for LDAC. Denoting the token (𝑠, 𝑖) as 𝑚, the Gibbs sampler
of 𝑐𝑚 is as follows.

𝑃 (𝑐𝑚 = 𝑘∣𝐶¬𝑚, 𝑆) ∝ 𝑃 (𝑐𝑚 = 𝑘,𝐶¬𝑚, 𝑆)

∝ 𝑃 (𝑣𝑚∣𝑐𝑚 = 𝑘,𝐶¬𝑚, 𝐹, 𝑉¬𝑚)

×𝑃 (𝑐𝑚 = 𝑘∣𝐶¬𝑚),

where ¬𝑚 means removing the contextual feature-value pair
(𝑓𝑚 : 𝑣𝑚) from 𝑆, and

𝑃 (𝑣𝑚∣𝑐𝑚 = 𝑘,𝐶¬𝑚, 𝐹, 𝑉¬𝑚) =
𝑛¬𝑚,𝑘,𝑓𝑚,𝑣𝑚

+ 𝛽𝑣𝑚∑
𝑣 𝑛¬𝑚,𝑘,𝑓𝑚,𝑣 +

∑
𝑣∈𝑉𝑓𝑚

𝛽𝑣

𝑃 (𝑐𝑚 = 𝑘∣𝐶¬𝑚) =
𝑛𝑠,¬𝑚,𝑘 + 𝛼𝑘∑𝐾

𝑘′=1 𝑛𝑠,¬𝑚,𝑘′ +
∑𝐾

𝑘′=1 𝛼𝑘′
,

where 𝑛¬𝑚,𝑘,𝑓,𝑣 indicates the frequency that the contextual
feature-value pair (𝑓 : 𝑣) is labeled with the 𝑘-th context
in all context sessions after removing the 𝑚-th contextual
feature-value pair, and 𝑛𝑠,¬𝑚,𝑘 indicates the number of
contextual feature-value pairs labeled with the 𝑘-th context
in 𝑠 expect for the 𝑚-th one.

Similar to MUC, in the LDAC model, the personalized
contexts of mobile users can be also derived from the labeled
contextual feature-value pairs according to Equation 2. From
the experimental results on real data we find that LDAC
outperforms MUC with respect to the effectiveness of mobile
context modeling. However, the effectiveness of MUC is
also acceptable and it largely outperforms LDAC in terms of
efficiency. Generally, MUC is a good candidate approach to
mobile context modeling when the computation resource is
limited. Otherwise, we can use LDAC for pursuing the best
performance. The detailed comparisons between the practi-
cal performance between MUC and LDAC are presented in
Section VI.

C. Determining The Number of Contexts

Both of MUC and LDAC need a predefined parameter
𝐾 to indicate the number of contexts to be learnt. Thus,
to select an appropriate 𝐾, we can assume that the number
of personalized contexts for any mobile user falls into a
range [𝐾𝑚𝑖𝑛,𝐾𝑚𝑎𝑥], where 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥 indicate the
minimum number and the maximum number of possible
contexts, respectively. The values of 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥 can be
empirically determined through the user study which selects
users with different backgrounds first and then asks them
how many typical contexts exist in their daily life. Thus, we
can select the best 𝐾 from [𝐾𝑚𝑖𝑛,𝐾𝑚𝑎𝑥] by measuring the
performance of the learnt context models. To be specific, we
first partition a context session set 𝑆 into a training set 𝑆𝑎

and a test set 𝑆𝑏. Then we learn a context model from 𝑆𝑎

with a given 𝐾 and obtain 𝐾 contexts 𝑐1, 𝑐2, ..., 𝑐𝐾 . Last,
we calculate the perplexity [3] of the 𝑆𝑏 by the following
equation.

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑆𝑏) = 𝐸𝑥𝑝

[
−
∑

𝑠∈𝑆𝑏
𝑙𝑜𝑔𝑃 (𝑠∣𝑆𝑎)∑
𝑠∈𝑆𝑏

𝑁𝑠

]
,
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where 𝑃 (𝑠∣𝑆𝑎) means the probability that a context session
𝑠 appears given 𝑆𝑎 and is calculated as follows.

𝑃 (𝑠∣𝑆𝑎) =
∏

𝑝𝑚∈𝑠

𝑃 (𝑝𝑚∣𝑆𝑎) =
∏

𝑝𝑚∈𝑠

𝐾∑
𝑘=1

𝑃 (𝑝𝑚, 𝑐𝑘∣𝑆𝑎)

=
∏

𝑝𝑚∈𝑠

𝐾∑
𝑘=1

𝑃 (𝑝𝑚∣𝑐𝑘, 𝑆𝑎)𝑃 (𝑐𝑘∣𝑆𝑎),

where 𝑃 (𝑝𝑚∣𝑐𝑘, 𝑆𝑎) = 𝑃 (𝑝𝑚∣𝑐𝑘) can be calculated by
Equation 2, and 𝑃 (𝑐𝑘∣𝑆𝑎) is calculated differently in MUC
and LDAC. In the MUC model, 𝑃 (𝑐𝑘∣𝑆𝑎) =

𝑛𝑘+𝛼𝑘

𝑁+
∑𝐾

𝑘′=1
𝛼𝑘′

,

where 𝑛𝑘 indicates the number of context sessions la-
beled with 𝑐𝑘 in 𝑆𝑎. In the LDAC model, 𝑃 (𝑐𝑘∣𝑆𝑎) =

𝑛𝑠,𝑘+𝛼𝑘∑𝐾

𝑘′=1
𝑛𝑠,𝑘′+𝛼𝑘′

, where 𝑛𝑠,𝑘 indicates the number of con-

textual feature-value pairs labeled with 𝑐𝑘 in 𝑠.
Generally, the smaller the perplexity of 𝑆𝑏 is, the better

the learnt contexts will be. However, it is worth noting that
the perplexity of test sets usually drops with the increase of
𝐾. If we only take into account the perplexity, we probably
select the maximum 𝐾 of a given range, which may make
the learnt model over-fitting. Thus, we balance the above
approach by a simple way, that is, if the decline rate of the
perplexity is less than 𝜏 , we do not select a larger 𝐾. In
practice, we set 𝜏 to be 10%.

VI. EXPERIMENTS

In this section, we evaluate the efficiency and the ef-
fectiveness of the proposed approach for mobile context
modeling through extensive experiments on real context data
sets.

A. Data Sets and Preprocess

The first data set used in the experiments is the Reality
Mining data set [5]. Reality Mining data set is a public
data set which captures the raw context data from 100
college volunteers at MIT over the course of the 2004-
2005 academic year. The raw context data contains the
communication, proximity, location, and activity information
and can be used for learning personalized contexts of the
users. We randomly select 10 volunteers’ context data from
the Reality Mining data set to evaluate the performance of
the proposed approach of mobile context modeling. Table II
lists the details of the Reality Mining data sets used in our
experiments, where the Owner ID identifies the owner of the
context data, 𝑛 denotes the number of context records, 𝑁
denotes the number of extracted context sessions, 𝑃 denotes
the number of unique contextual feature-value pairs, 𝑁𝑝

denotes the occurrence number of all contextual feature-
value pairs.

The evaluation of unsupervised approaches is challenging
because of the lack of ground truth. Though some metrics

Table II
THE DETAILS OF THE REALITY MINING DATA SETS.

Owner ID 𝑛 𝑁 𝑃 𝑁𝑝

1 23,114 7,029 1,702 188,342
2 26,157 7,170 1,950 204,902
3 9,115 2,712 1,209 72,225
4 14,588 3,487 690 112,689
5 16,544 5,144 1,024 133,500
6 21,011 4,940 1,740 168,228
7 16,225 4,762 1,623 130,404
8 26,352 6,136 1,024 204,760
9 10,592 2,587 954 82,957

10 30,955 4,245 2,326 241,620

such as perplexity can be applied to evaluating the proposed
approach, it is more desirable to ask users to manually
evaluate the personalized contexts learnt from their raw
context data. However, it is difficult to contact the owners of
the reality mining data sets and ask them to conduct manual
evaluations. To this end, we collect 10 college volunteers’
context data spanning for one month through their mobile
devices by ourselves. The collected context data set includes
rich types of contextual features listed in Table III and
the owners of these context data are invited to participate
the human evaluation of the proposed approach to mobile
context modeling. For simplicity, we denote the collected
context data set as Rich Context.

Table IV
THE DETAILS OF THE RICH CONTEXT DATA SETS.

Owner ID 𝑛 𝑁 𝑃 𝑁𝑝

1 29,910 6,403 990 369,691
2 19,959 4,006 1,143 250,848
3 29,587 5,633 702 361,783
4 35,979 6,071 509 448,187
5 17,149 2,231 499 213,623
6 26,461 4,976 1,044 326,096
7 25,642 4,222 366 314,968
8 38,664 7,476 1,475 483,116
9 13,977 2,652 330 173,822

10 19,422 3,910 374 240,263

We first partition each experimental data set into the
training set and the test set as follows. For each Reality
Mining data set, we use the last month data as the test set
and use the remaining data as the training set. For each Rich
Context data set, we use the last week data as the test set
and use the remaining data as the training set. Then, we
use the proposed approach to learn mobile contexts from
each training set and then evaluate the learnt contexts on
the corresponding test set.

B. Efficiency of the Proposed Approaches

For the sake of privacy concern, one simple alternative
solution is to model the personalized contexts of mobile
users in their mobile devices instead of in a back end server.
Thus, the efficiency of mobile context modeling is crucial
for in-device applications due to the resource constraint
of mobile device. In the experiments we observe that the
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Table III
THE COLLECTED CONTEXTUAL FEATURES IN RICH CONTEXT.

Data type Contextual feature Value range

Time Info

Day name {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}
Is a holiday? {True, False}
Day period

{Morning(AM7:00-AM11:00), Noon(AM11:00-PM14:00), Afternoon(PM14:00-PM18:00),
Evening(PM18:00-PM21:00), Night(PM21:00-Next day AM7:00)}

Time range {AM0:00-AM1:00,AM1:00-AM2:00,AM2:00-AM3:00, ...,PM23:00-PM24:00}

System Info

Profile type {General, Silent, Meeting, Outdoor, Pager, Offline}
Battery level {Low(<25%), Middle(25%-50%), High(50%-80%), Full(>80%)}
Inactive time {Short(< 5 minutes), Middle(5-30 minutes), Long(> 30 minutes)}
Ring type {Normal, Ascending, Ring once, Beep, Silent}.

GSM Info
Cell ID Integers.
Area ID Integers.

GPS Info
Speed {Low(< 5km/h), Middle(5-20km/h), High(> 20km/h)}
Movement {Moving, Not moving}
Coordinate Pair of longitude and latitude.

Event Applications {Call, Message, Web browsing, Music, Video, E-book, Radio, Game}

computation cost of extracting context sessions is trivial
compared with that of learning contexts by topic models
(averagely less than 20 seconds). Thus, we evaluate the
efficiency of the proposed approach by comparing the ef-
ficiencies of MUC and LDAC for mobile context modeling.
Since both approaches adopt iterative learning methods,
we evaluate their efficiencies by taking into account their
convergence speeds. The experiments are conducted on a
Core2 1.86GZ, 2G memory PC.

The convergence of Gibbs sampling is measured by the
log likelihood of the training set. The super parameters
𝛼, 𝛽, and 𝛾 of MUCs and LDACs are empirically set to
50/K, 0.01, and 0.01 according to [7]. Figure 4 compares
the request iterations to converge for MUC and LDAC on
the Reality Mining data set and the Rich Context data set,
respectively. Each label around the circle indicates the owner
ID of a data set. For each data set, the most appropriate 𝐾
is selected by the method mentioned in Section V. From
this figure we can see that the Gibbs sampling process of
LDAC usually converges after hundreds of iterations while
that of MUC usually converges after less than 30 iterations.
Figure 5 further compares the time cost to converge for
MUC and LDAC. From this figure we can see that the
Gibbs sampling process of MUC usually converges tens
of times faster than that of LDAC. In a summary, though
both the proposed approaches can converge within limited
iterations, MUC is much more efficient than LDAC for
learning personalized mobile contexts. It is because the
Gibbs sampling for LDAC is more complex than that of
MUC. To train a LDAC model, we need to build a Gibbs
sampler for each contextual feature-value pair. In contrast,
the training of MUC only needs to build Gibbs samplers
for context sessions, which are much fewer than contextual
feature-value pairs in practice. Consequently, the Gibbs
sampling of MUC largely outperforms that of LDAC in
terms of both the time cost of one iteration and the iterations
to converge.
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Figure 4. Spherical MUC vs. LDAC in terms of the request iterations to
converge.
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Figure 5. Spherical MUC vs. LDAC in terms of the time cost to converge
(ms).

C. Effectiveness of the Proposed Approaches

In this section, we report the experimental results of
the proposed approach with respect to the effectiveness for
mobile context modeling.

1) Perplexity: Figure 6 compares the perplexity of each
test set with the contexts learnt by MUC and LDAC. Each
label around the circle indicates the owner ID of a test set.
From this figure we can see that LDAC always outperforms
MUC in terms of perplexity, which concludes that LDAC is
more effective for mobile context modeling than MUC.

2) Human Evaluation: To find out the quality of the
learnt contexts more intuitively, we ask the owners of the
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Figure 6. Spherical MUC vs. LDAC in terms of perplexity.

Rich Context data sets to evaluate the personalized contexts
learnt from their own context data. For each learnt con-
text, we select the contextual feature-value pairs 𝑝 where
𝑃 (𝑝∣𝑐𝑘) > 0.01 to represent the context 𝑐𝑘.

For each learnt context to be evaluated, the corresponding
testee selects one from the following three remarks:

- P: Perfect. This remark means that the learnt context
reflects one of testee’s typical contexts well. No irrel-
evant context information is included and no relevant
context information is missing.

- G: Good. This remark means that the learnt context
partially reflects one of the testee’s typical contexts but
contains some irrelevant context information or misses
some relevant information.

- B: Bad. This remark means that it is hard to state the
learnt context reflects which typical context of testee.

To ensure the evaluation quality, we do not inform testees
that a given learnt context is learnt by which context model.
Moreover, we generate a copy for each learnt context and
randomly mix them with the original learnt contexts. If a
learnt context pattern is assigned different remarks from that
of its copy, we will revisit it again. Figure 7 compares the
human evaluation results of the contexts learnt by MUC and
LDAC for each data set of Rich Context. From the figure
we can see that LDAC outperforms MUC for mobile context
modeling in terms of perfect cases. But considering all pos-
itive cases (P+G), their performance are comparable. Gen-
erally speaking, we can conclude that LDAC outperforms
MUC in terms of effectiveness for mobile context modeling,
which is consistent with the experimental conclusion in the
view of perplexity.

3) A Case study: We also manually analyze some mined
contexts for intuitively understanding how LDAC’s learning
result outperforms that of MUC. Limited by space, we just
show one typical example as follows. First, we contact one
volunteer and know he has a typical personalized context
that he usually plays basketball in weekends’ afternoon
(PM14:00-17:00). Then we manually check the learnt con-
texts of MUC and LDAC, and find that both of them discover
a group of contextual feature-value pairs corresponding to
that context. For simplicity, we denote the context learnt by
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Figure 7. Spherical MUC vs. LDAC in terms of human evaluation for
Rich Context data.

MUC as 𝑐𝑎 and denote the context learnt by LDAC as 𝑐𝑏.

Table V
CONTEXT 𝑐𝑎 LEARNT BY MUC.

(Is a holiday?: Yes)
(Day name: Saturday)
(Day period: Afternoon)
(Time range: PM13:00-14:00)
(Time range: PM16:00-17:00)
(Time range: PM17:00-18:00)
(Location: Basketball area)
(Area ID: 21761)
(Cell ID: 10066)
(Profile: Outdoor)
(Movement: Not moving)
(Battery level: High(50%-80%))
(Battery level: Full(>80%))
(Inactive time: Middle(5-30 minutes))

Table VI
CONTEXT 𝑐𝑏 LEARNT BY LDAC.

(Is a holiday?: Yes)
(Day name: Saturday)
(Day name: Sunday)
(Day period: Afternoon)
(Time range: PM14:00-15:00)
(Time range: PM15:00-16:00)
(Time range: PM16:00-17:00)
(Location: Basketball area)
(Area ID: 21761)
(Cell ID: 10066)
(Profile: Outdoor)
(Movement: Not moving)
(Battery level: Full(>80%))
(Inactive time: Middle(5-30 minutes))

Table V shows 𝑐𝑎 which is in the form of a group of
contextual feature-value pairs. The location ID has been
translated to meaningful locations to ease understanding.
The most of the contextual feature-value pairs of 𝑐𝑎 are
reasonable, such as (Day name: Saturday), (Day period:
Afternoon), (Location: Basketball area). But it also contains
two noisy contextual feature-value pairs, namely, (Time
range: PM13:00-14:00) and (Time range: PM17:00-18:00),
and misses some more relevant contextual feature-value
pairs such as (Time range: PM14:00-15:00) and (Time
range: PM15:00-16:00). Thus, it is labeled with “Good”.
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Table VI lists all contextual feature-value pairs in 𝑐𝑏. From
this table we can see that all listed contextual feature-value
pairs are sensible to represent the user context. As expected,
𝑐𝑏 is labeled with “Perfect”.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an unsupervised approach to
mobile context modeling which is a fundamental research
problem towards leveraging the rich contextual information
of mobile users to support personalized customer experi-
ences. Specifically, we first extracted context sessions from
the raw context data of mobile users and then extended
topic models to learn personal mobile contexts from the
context sessions. Two topic models have been extended
and exploited for mobile context modeling, namely, MU
and LDA. Experiments results on real-world context data
show that the LDA based context model outperforms the
MU based context model in terms of the effectiveness for
mobile context modeling. However, the latter has a better
computational performance.

As for future work, it is desirable if we can incorporate
some domain knowledge of common contexts, such as
“waiting a bus” or “having a dinner”, with unsupervised
approaches for mobile context modeling. Such a semi-
supervised approach may improve the learning performances
of common contexts while keeping the flexibility of super-
vised approaches for learning personalized contexts.
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