
An Effective Approach for Mining Mobile User Habits

Huanhuan Cao1,2 Tengfei Bao1,2 Qiang Yang3 Enhong Chen1 Jilei Tian2

1University of Science and Technology of China 2Nokia Research Center
3Hong Kong University of Science and Technology

1{happia.cao, jilei.tian}@nokia.com 2{tfbao92, cheneh}@ustc.edu.cn
3qyang@cse.ust.hk

ABSTRACT
The user interaction with the mobile device plays an im-
portant role in user habit understanding. In this paper, we
propose to mine the associations between user interactions
and contexts captured by mobile devices, or behavior pat-
terns for short, from context logs to characterize the habits
of mobile users. The extensive experiments on the collected
real life data clearly validate the ability of our approach for
mining effective behavior patterns.

Categories and Subject Descriptors
H.2.8[Database Management] [Database Applications]:
Data Mining

General Terms
Algorithms, Experimentation

Keywords
Mobile user, habit mining, behavior patterns.

1. INTRODUCTION
The rich user interaction information captured by the mo-

bile device can be used to understand user habits, which can
bring a great business value, such as targeted advertising and
personalized recommendation. A distinct property of the
user interactions with mobile devices is that they are usu-
ally associated with volatile contexts, such as waiting a bus,
driving a car, or doing shopping. Intuitively, some user inter-
actions are context-aware, that is, the occurrences of these
user interactions are influenced by the contexts of users. For
example, some users would like to listen to music with their
smart phones when taking a bus to the workplace but rarely
do the same thing on other contexts. Therefore, we argue
that the associations between user interaction records and
the corresponding contexts, which are refereed as behavior
patterns, can be used to characterize user habits.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

Context logs collect the history context data and interac-
tion records of mobile users, and thus can be used as data
sources for mining behavior patterns. However, mining be-
havior patterns is not a trivial problem because it cannot
be addressed by the traditional association rule mining [1].
To this end, we propose an effective approach for behavior
pattern mining which takes context logs as time ordered se-
quences of context records and calculates the support of a
context by taking into account its time ranges of appear-
ances. Experimental results on real data sets clearly show
that our approach outperforms the traditional association
rule mining approach for mining behavior patterns.

2. PROBLEM STATEMENT
To ease presenting the problem of behavior pattern min-

ing, we first define some related notions as follows.

Definition 1 (Context). Given a contextual feature
set 𝐹 = {𝑓1, 𝑓2, ..., 𝑓𝐾}, a context 𝐶𝑖 is a group of contex-
tual feature-value pairs, i.e., 𝐶𝑖 = {(𝑥1 : 𝑣1), (𝑥2 : 𝑣2), ..., (𝑥𝑙 :
𝑣𝑙)}, where 𝑥𝑛 ∈ 𝐹 and 𝑣𝑛 is the value for 𝑥𝑛 (1 ≤ 𝑛 ≤ 𝑙).
A context with 𝑙 contextual feature-value pairs is called an
𝑙-context.

Definition 2 (Sub-Context, Super-Context). Given
two contexts 𝐶𝑖 and 𝐶𝑗, if ∀𝑝𝑖∈𝐶𝑗𝑝𝑖 ∈ 𝐶𝑖, where 𝑝𝑖 denotes
a contextual feature-value pair, 𝐶𝑗 is called a sub-context
of 𝐶𝑖 and 𝐶𝑖 is called a super-context of 𝐶𝑗.

A contextual feature denotes a type of context data, such
as day period, location, audio level, etc. For simplicity of
operating contexts, such as context comparison, we require
that contextual feature-value pairs be sorted in a predefined
order of contextual features.

Definition 3 (Interaction Record). An interaction
record is an item in the interaction set Γ = {𝐼1, 𝐼2, ..., 𝐼𝑄},
where 𝐼𝑛(1 ≤ 𝑛 ≤ 𝑄) denotes a kind of user interaction.

Interaction records capture the occurrences of user inter-
actions with mobile devices, such as listening to music, mes-
sage session or Web browsing.

Definition 4 (Context Record, Context Log). A
context record 𝑟 =< 𝑇𝑖𝑑,𝐶𝑖, 𝐼 > is a triple of a timestamp
𝑇𝑖𝑑, a context 𝐶𝑖, and a user interaction record 𝐼. A con-
text log 𝑅 = 𝑟1𝑟2...𝑟𝑁𝑅 is a group of context records ordered
by timestamps.

1677

A context record captures the most detailed available con-
text and the occurrence of a user interaction during a time
interval. We mention “available” because a context record
may miss the values of some contextual features though the
set of context-features whose values should be collected is
predefined. Moreover, interaction records can be empty (de-
noted as “Null”) if no interaction happen during the time
interval.
Context logs integrate the history context data and in-

teraction records of mobile users, and thus can be data
sources for mining behavior patterns. However, mining be-
havior patterns is not a trivial problem because the tradi-
tional association rule mining approach suffers the unbal-
anced occurrences of contexts and interaction records. For
example, suppose that Sam usually listens to rock music
when taking a bus during workdays’ AM8:00-9:00. When
the context {(Is a holiday?: No),(Time range: AM8:00-
9:00),(Transportation: On vehicle)} appears, Sam usually
listens to rock music but the exact time points when the
interaction happens are uncertain. Consequently, the oc-
currences of the interaction Listening to rock music are very
sparse compared with the occurrences of the context {(Is a
holiday?: No),(Time range: AM8:00-9:00),(Transportation:
On vehicle)} in context records, which causes the traditional
association rule mining approach can hardly discover the be-
havior pattern {(Is a holiday?: No),(Time range: AM8:00-
9:00),(Transportation: On vehicle)} =⇒ Listening to rock
music. One may argue for a method in which we first ex-
tract the context records which contain non-empty interac-
tion records and then apply the traditional association rule
mining. This alternative approach loses the discriminative
information that how likely no interaction happens with a
given context. As a result, the calculated confidence may be
meaningless. The detailed explanation of the problem can
be found in [2].
From context logs we observe that if a user interaction

is influenced by the context 𝐶𝑖, the corresponding interac-
tion record 𝐼 usually co-occurs with 𝐶𝑖 in the time ranges
when 𝐶𝑖 continuously appears in several adjacent context
records. Therefore, we propose to not only consider the co-
occurrences of contexts and interaction records in separate
context records but also consider their co-occurrences in the
whole time ranges of contexts. To be specific, we take con-
text logs as time ordered sequences of context records and
calculate the support of a context by taking into account
its time ranges of appearances. For a candidate behavior
pattern 𝐶𝑖 =⇒ 𝐼, the support (denoted as 𝑆𝑢𝑝(𝐶𝑖 =⇒ 𝐼))
is still calculated by counting the context records where 𝐶𝑖

and 𝐼 co-occur. But for a context 𝐶𝑖, the support (denoted
as 𝑆𝑢𝑝(𝐶𝑖)) is calculated separately in two different cases. If
𝐶𝑖 continuously appears in several adjacent context records
and all of these context records only contain empty inter-
action records, we will count 𝐶𝑖 once. Otherwise, we will
count 𝐶𝑖 by the number of non-empty interaction records
in these context records. We discriminate the two different
cases because in this way we ensure that 𝑆𝑢𝑝(𝐶𝑖) is always
not smaller than

∑
𝐼 𝑆𝑢𝑝(𝐶𝑖 =⇒ 𝐼), which is a basic as-

sumption for calculating the confidence.
The formal problem statement of behavior pattern mining

is as follows.

Definition 5 (Match Context). A context record 𝑟 =
< 𝑇𝑖𝑑,𝐶𝑖, 𝐼 > matches a context 𝐶𝑗 iff 𝐶𝑗 is a sub-context

of 𝐶𝑖. For simplicity, we can use 𝑟⊥𝐶𝑖 to denote that 𝑟
matches 𝐶𝑖.

Definition 6 (Context Range). Given a context 𝐶𝑖

and a context log 𝑅 = 𝑟1𝑟2...𝑟𝑁𝑅 , we say that 𝑅𝑛
𝑖 = 𝑟𝑖𝑟𝑖+1...𝑟𝑖+𝑛

is a context range of 𝐶𝑖 iff 1)∀1≤𝑗≤𝑛(𝑟𝑖+𝑗⊥𝐶𝑖); 2) Both
(𝑟𝑖−1⊥𝐶𝑖) and (𝑟𝑖+𝑛+1⊥𝐶𝑖) are false.

Definition 7 (Support, Confidence). Given a con-
text 𝐶𝑖,an interaction record 𝐼, and a context log 𝑅, the
support of 𝐶𝑖 w.r.t. 𝐼 (𝑆𝑢𝑝(𝐶𝑖 =⇒ 𝐼)) is

∑
𝑚 𝐶𝑜𝑢𝑛𝑡𝑚(𝐼),

where 𝐶𝑜𝑢𝑛𝑡𝑚(𝐼) denotes the occurrence number of 𝐼 in the
𝑚-th context range of 𝐶𝑖.

Given an interaction set Γ, the support of 𝐶𝑖 (𝑆𝑢𝑝(𝐶𝑖))
is

∑
𝐼∈Γ 𝑆𝑢𝑝(𝐶𝑖 =⇒ 𝐼) +𝑁0, where 𝑁0 denotes the number

of context ranges of 𝐶𝑖 that do not contain any non-empty
interaction record. Moreover, the confidence of 𝐶𝑖 w.r.t. 𝐼

(𝐶𝑜𝑛𝑓(𝐶𝑖 =⇒ 𝐼)) is 𝑆𝑢𝑝(𝐶𝑖=⇒𝐼)
𝑆𝑢𝑝(𝐶𝑖)

.

Definition 8 (Promising Context, Behavior Pattern).
Given a context 𝐶𝑖, a context log 𝑅, two user defined pa-
rameters min sup and min conf, if ∃𝐼𝑆𝑢𝑝(𝐶𝑖 =⇒ 𝐼) ≥
𝑚𝑖𝑛 𝑠𝑢𝑝, 𝐶𝑖 is called a promising context. Moreover, if
𝑆𝑢𝑝(𝐶𝑖 =⇒ 𝐼) ≥ 𝑚𝑖𝑛 𝑠𝑢𝑝 and 𝐶𝑜𝑛𝑓(𝐶𝑖 =⇒ 𝐼) ≥ min conf,
𝐶𝑖 =⇒ 𝐼 is called a behavior pattern.

3. ALGORITHM FOR BEHAVIOR PATTERN
MINING

Most of the traditional association rule mining algorithms
divide the mining procedure into two stages. In the first
stage, all frequent itemsets are found from the transaction
data base. In the second stage, the rules are generated from
the frequent itemsets and their confidences are calculated.
This strategy may significantly reduce the total memory re-
quirement since the number of association rules may increase
exponentially with the number of frequent items. For exam-
ple, given a frequent itemset 𝑎𝑏𝑐, the possible association
rules are 𝑎𝑏 =⇒ 𝑐, 𝑎𝑐 =⇒ 𝑏, 𝑏𝑐 =⇒ 𝑎, 𝑎 =⇒ 𝑏𝑐, 𝑏 =⇒ 𝑎𝑐,
and 𝑐 =⇒ 𝑎𝑏. However, in behavior pattern mining, we
can integrate the two stages because the upper bound of
the number of behavior patterns is linear to the number of
promising contexts.

A naive algorithm for behavior pattern mining enumer-
ates all contexts appeared in the context log as candidate
promising contexts and then counts their supports and con-
fidences w.r.t. each interaction by scanning the context log.
However, this algorithm is inefficient since its time complex-
ity is 𝑂(𝑁𝑅 ⋅ ∏𝐾

𝑘=1 𝑁𝑘), where 𝑁𝑅 indicates the number
of context records and 𝑁𝑘 indicates the number of values
for the contextual feature 𝑓𝑘 appeared in the context log.
Wisely, we can reduce the number of candidate promising
contexts

∏𝐾
𝑘=1 𝑁𝑘 to a much smaller number by leveraging

the Apriori-property of behavior patterns. That is, given a
context 𝐶𝑖 and an interaction record 𝐼, if 𝑆𝑢𝑝(𝐶𝑖 =⇒ 𝐼) >
𝛼, for any sub-context of 𝐶𝑖 denoted as 𝐶𝑗 , we can conclude
that 𝑆𝑢𝑝(𝐶𝑗 =⇒ 𝐼) > 𝛼. It means that if a context 𝐶𝑖 is
not a promising context, i.e., !∃𝐼𝑆𝑢𝑝(𝐶𝑖 =⇒ 𝐼) ≥ 𝑚𝑖𝑛 𝑠𝑢𝑝,
none of 𝐶𝑖’s super-contexts is promising. Along this line, we
propose an algorithm for behavior pattern mining based on
the framework of Apriori-all algorithm [1], which is named

1678

GCPM (Generating Candidate promising contexts for be-
havior Pattern Mining). The main idea of GCPM is to gen-
erate candidate promising 𝑙+ 1-contexts by joining promis-
ing 𝑙-contexts. The notion of joining contexts is defined as
follows.

Definition 9 (Join Context). Given two contexts 𝐶𝑖

={(𝑥1 : 𝑣1), (𝑥2 : 𝑣2), ..., (𝑥𝑙 : 𝑣𝑙)} and 𝐶𝑗 = {(𝑦1 : 𝑢1), (𝑦2 :
𝑢2), ..., (𝑦𝑙 : 𝑢𝑙)}, if ∀1<𝑛≤𝑙(𝑥𝑛 = 𝑦𝑛−1 ∧ 𝑣𝑛 = 𝑢𝑛−1), we say
that 𝐶𝑖 and 𝐶𝑗 can join. The joined context of 𝐶𝑖 and 𝐶𝑗

is denoted as 𝐶𝑖 ⋅ 𝐶𝑗 = {(𝑥1 : 𝑣1), (𝑥2 : 𝑣2), ..., (𝑥𝑙 : 𝑣𝑙), (𝑦𝑙 :
𝑢𝑙)}.
Given a context log 𝑅 and a user interaction set Γ =

{𝐼1, 𝐼2, ... , 𝐼𝑄}, GCPM first enumerates all 1-contexts ap-
peared in 𝑅 as Λ1 = {𝐶1

𝑖 } and set 𝑙 to be 1. Then, given a
set of candidate promising 𝑙-contexts Λ𝑙, the following pro-
cedure is executed iteratively until no candidate promising
contexts can be generated.

1) Scan 𝑅 and find all promising 𝑙-contexts from Λ𝑙

and the corresponding behavior patterns.

2) Generate Λ𝑙+1 by joining candidate promising 𝑙-
contexts 𝐶𝑙

𝑖 and 𝐶𝑙
𝑗 where ∃𝐼∈Γ𝑆𝑢𝑝(𝐶

𝑙
𝑖 , 𝐼) ≥ 𝑚𝑖𝑛 𝑠𝑢𝑝

∧𝑆𝑢𝑝(𝐶𝑙
𝑗 , 𝐼) ≥ 𝑚𝑖𝑛 𝑠𝑢𝑝;

3) If Λ𝑙+1 = 𝜙, the algorithm terminates. Otherwise
𝑙 ++ and go to 1).

Through iterative joining stages, GCPM largely reduces
the number of candidate promising contexts from

∏𝐾
𝑘=1 𝑁𝑘

to
∑

𝑙 ∣Λ𝑙∣, which is much smaller than the former number
in practice. Therefore, the time complexity of GCPM is
𝑂(𝑁𝑅 ⋅∑𝑙 ∣Λ𝑙∣).
The main cost of GCPM comes from counting the sup-

ports of candidate promising contexts w.r.t. each interac-
tion. To improve the efficiency of this stage, we introduce
a novel data structure called CH-Tree (Context Hash Tree)
for quickly updating the supports of candidate promising
contexts w.r.t. each interaction when scanning context records.
It is worth noting that Park et al. [4] proposed a hash based
algorithm for association rule mining which can largely re-
duce the number of candidate 2-frequent items. The ob-
jective of their approach is different from ours because CH-
Trees are designed for speeding up the support calculation
but not for reducing the number of candidate promising con-
texts. Actually, the latter problem has been addressed by
the joining stage of GCPM.
A CH-Tree has a tree-like representation of the nodes as

follows.

⋅ Root Node(RN): each CH-Tree has one root node.
This node contains 𝐾 pointers that point to interme-
diate nodes or null, where 𝐾 is the total number of
contextual features in a given contextual feature set.

⋅ Intermediate Node(IN): each intermediate node con-
tains 𝐻 pointers that point to leaf nodes or null, where
𝐻 is the output range of a predefined hash function
𝐻𝑎𝑠ℎ().

⋅ Leaf Node(LN): each leaf node contains a group of
contexts. Each context 𝐶𝑖 is associated with array of
support counters 𝐶𝑖.𝑠𝑢𝑝[], a boolean tag 𝐶𝑖.ℎ𝑎𝑠𝐼𝑛𝑡𝑒𝑟
to indicates whether the nearest context range of 𝐶𝑖

contains at leat one non-empty interaction record, and
a tag 𝐶𝑖.𝑖𝑠𝑀𝑎𝑡𝑐ℎ to indicates whether 𝐶𝑖 is matched
by the current context record 𝑟.

Initially, an empty CH-Tree only has a root node. The
intermediate nodes and leaf nodes are created during the
process of inserting candidate promising contexts. The oper-
ation 𝐼𝑛𝑠𝑒𝑟𝑡() is used to insert candidate promising contexts
into a CH-Tree. Given a received context 𝐶𝑖, the operation
𝐼𝑛𝑠𝑒𝑟𝑡() first selects a contextual feature 𝑓𝑘 and assigns 𝐶𝑖

to the intermediate node pointed by the 𝑘-th pointer of the
root node, denoted as 𝐼𝑁𝑘. If 𝐼𝑁𝑘 does not exist, the op-
eration 𝐼𝑛𝑠𝑒𝑟𝑡() will create it first. Then it puts 𝐶𝑖 into
the leaf node pointed by the ℎ-th pointer of 𝐼𝑁𝑘, where
ℎ = 𝐻𝑎𝑠ℎ(𝑣𝑘) and 𝑣𝑘 indicates the value of 𝑓𝑘 in 𝐶𝑖. Simi-
larly, if the leaf node does not exist, the operation 𝐼𝑛𝑠𝑒𝑟𝑡()
will also create it first.

After all candidate promising contexts are inserted, the
CH-Tree is used to calculate the supports of the candidate
promising contexts in it when scanning a context log 𝑅.
Given a context record 𝑟, the operation 𝐶𝑜𝑢𝑛𝑡() assign 𝑟
to each existing intermediate nodes. When the intermedi-
ate node 𝐼𝑁𝑘 receives 𝑟, it returns the leaf node pointed by
its ℎ-th pointer as a leaf node that may contain contexts
matched by 𝑟, where ℎ = 𝐻𝑎𝑠ℎ(𝑢𝑘) and 𝑢𝑘 indicates the
value of 𝑓𝑘 in 𝑟. Only the candidate promising contexts
in these returned leaf nodes are checked for updating their
supports. In contrast, in the original GCPM algorithm all
candidate promising contexts are checked whether their sup-
ports should be updated for 𝑟. Therefore, the efficiency of
updating supports of contexts is improved by CH-Trees.

To reduce the average number of checked candidate promis-
ing contexts, it is desirable to partition the contexts to each
leaf node as equally as possible. To this end, we expect
that the value distribution for the selected hash key 𝑓𝑘 is as
sparse as possible. Therefore, the operation 𝐼𝑛𝑠𝑒𝑟𝑡() selects
the 𝑓𝑘 in a sparseness descending order. The sparseness of
the value distribution for 𝑓𝑘 can be evaluated by the infor-
mation entropy, i.e., 𝐻(𝑓𝑘) = −∑

𝑣𝑘
𝑃 (𝑣𝑘∣𝑓𝑘)𝑙𝑜𝑔𝑃 (𝑣𝑘∣𝑓𝑘),

where 𝑃 (𝑣𝑘∣𝑓𝑘) denotes the probability that the value of

𝑓𝑘 is 𝑣𝑘. 𝑃 (𝑣𝑘∣𝑓𝑘) can be estimated as 𝐹𝑟𝑒𝑞(𝑓𝑘,𝑣𝑘)
𝐹𝑟𝑒𝑞(𝑓𝑘)

, where

𝐹𝑟𝑒𝑞(𝑓𝑘, 𝑣𝑘) indicates the frequency of contextual feature-
value pair (𝑓𝑘 : 𝑣𝑘), and 𝐹𝑟𝑒𝑞(𝑓𝑘) indicates the frequency of
contextual feature 𝑓𝑘.

4. EXPERIMENTS
To evaluate the proposed approach, we conduct extensive

experiments on real context logs of mobile users. We build
a data collection system for collecting the rich context data
such as GPS data, system information, GSM data, call log,
sensor data, and interaction records of 50 college volunteers
spanning for one month. Due to the page limitation, we only
show the detailed experimental results for two randomly se-
lected volunteers’ context logs, namely, data set D𝐴 and
data set D𝐵 . But we still report the general phenomenon
shown in the experiments for other context logs.

To evaluate the ability of our approach for mining behav-
ior patterns, we use the association rule mining approach
as the baseline method. Notice that in the following para-
graph we use “association rules” only to denote the associ-
ation rules whose antecedents are contexts and the conse-
quents are interaction records. The implementation of the
association rule mining approach is based on the FP-Growth
algorithm [3].

Figure 1 and Figure 2 compare the distribution of behav-
ior patterns (CP) and that of association rules (AR) with

1679

Table 1: Examples of mined behavior patterns.
behavior pattern Sup Conf

D𝐴

Context: {(Is a holiday?: No),(Day period: Morning),(Time range: AM8:00-9:00),(Speed: High(>20km/h))}
14 0.64

=⇒ Interaction: Listening to music
Context: {(Is a holiday?: No),(Day period: Afternoon),(Profile: General),(Movement: Not moving),

15 0.68
(Coordinate: (39.8554 116.4097))} =⇒ Interaction: Message session

D𝐵

Context: {(Is a holiday?: Yes)(Time range: AM7:00-8:00),(Battery level: High(50%-80%)),(Ring type: Silent)}
5 0.62

=⇒ Interaction: Listening to visible radio
Context: {(Day name: Thursday),(Day period: Noon),(Time range: AM12:00-PM13:00),(Profile: Silent)}

4 1
=⇒ Interaction: Accessing Web

respect to confidence in D𝐴 and D𝐵 , respectively. In these
figures, the confidences are accurate to 0.01. To observe the
difference of two distributions more clearly, we mark the av-
erage confidences (Avg. Conf.) of each distribution. From
these figures, we can see that the confidences of association
rules are usually too low to let us distinguish meaningful
rules from noisy data. The experiments on other context
logs show the similar phenomenon.

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

Confidence

N
um

be
r

Association rule
Context pattern
Avg. Conf. of AR
Avg. Conf. of CP

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

Confidence

N
um

be
r

Association rule
Context pattern
Avg. Conf. of AR
Avg. Conf. of CP

(a) 𝑚𝑖𝑛 𝑠𝑢𝑝 = 4 (b) 𝑚𝑖𝑛 𝑠𝑢𝑝 = 6

Figure 1: The distributions of behavior patterns and
association rules in D𝐴.

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

4000

Confidence

N
um

be
r

Association rule
Context pattern
Avg. Conf. of AR
Avg. Conf. of CP

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

Confidence

N
um

be
r

Association rule
Context pattern
Avg. Conf. of AR
Avg. Conf. of CP

(a) 𝑚𝑖𝑛 𝑠𝑢𝑝 = 4 (b) 𝑚𝑖𝑛 𝑠𝑢𝑝 = 6

Figure 2: The distributions of behavior patterns and
association rules in D𝐵.

We manually check the mined behavior patterns and find
that most of them can reflect the habits of users. Table 1
shows some behavior patterns mined from D𝐴 and D𝐵 . These
behavior patterns reflect some habits of the corresponding
users. For example, the first pattern of D𝐴 implies that
the corresponding volunteer usually listens to music dur-
ing workdays’ AM8:00-9:00 when taking a vehicle (Speed:
High(>20km/h)).
To achieve a more objective evaluation, we also ask vol-

unteers to evaluate the behavior patterns mined from their
own context logs. Precisely, for each volunteer, we mine all
behavior patterns with 𝑚𝑖𝑛 𝑠𝑢𝑝=2 and 𝑚𝑖𝑛 𝑐𝑜𝑛𝑓=0.5 from
his (or her) context log. Then we select at most top 20 be-
havior patterns for each interaction instead of using all the
mined behavior patterns. It’s because the total number of

the mined behavior patterns usually exceeds to several hun-
dreds and thus it may bring too much burden to evaluate
all behavior patterns. Given a behavior pattern to be eval-
uated, the volunteer can select one from the following three
remarks:

- I: it is Interesting. It’s correct but I have not realized
till now.

- Y: Yes, it is correct. I usually follow this pattern and
I know.

- N: No, it is not correct. I rarely follow this pattern.

To ensure the quality of the evaluation, we generate a
copy for each behavior pattern and randomly mix them with
the original ones. If a behavior pattern is assigned different
remarks from that of its copy, we will revisit it again. The
evaluation result shows that all volunteers gave more than
95% positive remarks (I+Y) for the mined behavior patterns
and the average ratio of positive remarks for each volunteer
is more than 98%.

We also evaluate the efficiency of the proposed algorithms
including GCPM and its optimization, denoted as GCPM-
H, for D𝐴 and D𝐵 . Both algorithms are implemented with
standard C++ on a 2×2.0G CPU, 2G main memory PC.
The experiments on all context logs show that the average
running time of GCPM-H is about 10% of that of GCPM.

5. CONCLUSION
In this paper, we propose an effective approach for min-

ing behavior patterns which takes context logs as time or-
dered sequences of context records and takes into account
the co-occurrences of contexts and interaction records in the
whole time ranges of contexts. The experiments on real data
sets clearly show that our approach is effective, efficient and
promising.

Acknowledgement. This work is supported by grants
from Natural Science Foundation of China (No.60775037),
Key Program of National Natural Science Foundation of
China (No.60933013) and Nokia.

6. REFERENCES
[1] Agrawal, R. and Srikant, R. Fast algorithms for mining

association rules. In VLDB’94, pages 487–499, 1994.
[2] Cao, H., Bao, T., and Yang, Q. et al. An effective approach

for mining mobile user habits. Technical report, 2009.
http://dm.ustc.edu.cn/paperlist.html

[3] Han, J., Pei, J., and Yin, Y. Mining frequent patterns
without candidate generation. In SIGMOD’00, pages 1–12.
ACM, 2000.

[4] Park, J. S., Chen, M., and Yu, P. S. An effective hash-based
algorithm for mining association rules. In SIGMOD ’95,
pages 175–186, 1995.

1680

