
Gaussian Process for Recommender Systems

Qi Liu1, Enhong Chen1, Biao Xiang1, Chris H.Q. Ding2, and Liang He1

1 University of Science and Technology of China, Hefei, Anhui, China
{feiniaol,cheneh,bxiang,hshl05}@mail.ustc.edu.cn

2 University of Texas, Arlington, TX 76019, USA
chqding@cse.uta.edu

Abstract. Nowadays, recommender systems are becoming increasingly impor-
tant because they can filter noisy information and predict users’ preferences. As
a result, recommender system has become one of the key technologies for the
emerging personalized information services. To these services, when making rec-
ommendations, the items’ qualities, items’ correlation, and users’ preferences
are all important factors to consider. However, traditional memory-based rec-
ommender systems, including the widely used user-oriented and item-oriented
collaborative filtering methods, can not take all these information into account.
Meanwhile, the model-based methods are often too complex to implement. To
that end, in this paper we propose a Gaussian process based recommendation
model, which can aggregate all of above factors into a unified system to make
more appropriate and accurate recommendations. This model has a solid statis-
tical foundation and is easy to implement. Furthermore, it has few tunable pa-
rameters, therefore it is very suitable for a baseline algorithm. The experimental
results on the MovieLens data set demonstrate the effectiveness of our method,
and it outperforms several state-of-the-art algorithms.

Keywords: Gaussian Process, Recommender Systems, Collaborative Filtering.

1 Introduction

With the rapid growth of information that is generated and collected from the Internet,
sensors, wireless communications, etc, users have more and more choices and little
time to make decisions. Examples of such decisions vary from the choice of movies
and books in e-commerce to possible pick-up points for taxi drivers [8]. As a possible
solution for such information overload problems, recommender systems can help users
filter useless information and predict the items they may like or want to buy based
on the preference model learned from their previous transactions, their demographic
information, or the content of items, etc (see [1] for a survey). Many related techniques
have been proposed and developed for designing effective recommender systems, such
as the collaborative filtering methods [19], the content-based approaches [12] and the
hybrid approaches [9].

Among them, collaborative filtering methods only require the information about user
interactions, and do not rely on the content of items or user profiles, these methods have
been widely implemented and studied [20]. Collaborative filtering based recommender
systems usually assume that a given user will prefer an item, if other users with similar

H. Xiong and W.B. Lee (Eds.): KSEM 2011, LNAI 7091, pp. 56–67, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Gaussian Process for Recommender Systems 57

tastes and preferences liked or purchased this item in the past [1]. So far, collaborative
filtering based recommender systems can be roughly categorized into memory-based
and model-based methods.

The memory-based approaches usually first select a set of neighbor users for a given
user, based on the entire collection of previously rated items by the users, then make
recommendations based on the items that neighbor users like [17]. These memory-
based methods are referred to as user-oriented memory-based approaches. In addition,
an analogous procedure, which builds item similarity groups by the co-rating history, is
known as item-oriented memory-based collaborative filtering [19].

On the other hand, the model-based approaches learn a model to predict possible
rating of a user to each item. Recently, various model-based collaborative filtering ap-
proaches have been proposed, especially after the announcement of the Netflix prize
contest 1 in October 2006. Those methods including graphical models [4,5], probabilis-
tic approaches [11,23], dimensionality reduction techniques [13,14,18], etc. For those
scoring systems, the recommendation algorithms first predict the possible rating value
for each user-item pair, and then recommend high-rating items for each user.

However, traditional memory-based collaborative filtering methods can only take
users’ information (i.e., user-oriented) or items’ information (i.e., item-oriented) into
account, while the model-based methods are often too complex to implement (e.g., too
many tunable parameters). To that end, in this paper, we construct a Gaussian process
model (GPM) to learn user/item preferences. It is a unified model to take many factors
into consideration, including the items’ own qualities, the ratings correlations between
items, the given user’s rating preferences etc. Moreover, it has a strong statistical foun-
dation and is simple to implement, thus, it is suitable for a baseline algorithm. In
this model, we assume that user ratings for each item follow a Gaussian distribution
(which is demonstrated in Section 3.2), thus the user profiles can be modeled by a
Gaussian process approach. To verify the correctness and effectiveness of this model,
we applied a unified algorithm, which is only based on the Gaussian process model, to
the MovieLens data set, which is one of the standard data sets for evaluating recom-
mender systems. The experimental results demonstrate that our algorithm is better than
traditional collaborative filtering algorithms. Furthermore, our model does not require
explicit parameter tuning (except for one regularization parameter).

The remainder of this paper is organized as follows. In Section 2, we describe our
Gaussian process based recommendation model in detail. In Section 3, we show the
experimental results in MovieLens data set.In Section 4, we introduce the related work.
Finally, we conclude the paper in Section 5.

2 Gaussian Process Model

In this section, we first provide the definition of the recommendation problem. Then,
we introduce how to make rating predictions based on Gaussian process model and
its computational complexity. In addition, we describe the regularization problem for
Gaussian process. Finally, we sum up each step together and illustrate the complete
training process.

1 http://www.netflixprize.com/



58 Q. Liu et al.

2.1 Problem Definition

Like many model-based recommender systems, in this paper, we formulate collabora-
tive filtering mainly as a rating prediction problem. In the following, we note the input
data matrix as R, the ratings of n users for p items. Each row of R denotes an item (a
movie, a music, etc). The j-th column of R contains the rating scores that user u j gives
for each item (most of the users only rate a subset of the items). The task of the rec-
ommender system is to learn an information filtering procedure or a rating prediction
function such that when a new user rates a few items, the recommender system auto-
matically presents to the user many other selected items. These recommended items
are chosen from the rest of the items that he/she has not yet rated, by considering the
predicted ratings on them. As shown in Figure 1, for our recommendation model, the
predicted ratings will be generated in the output.

Input OutputR u3

Gaussian 

Process

User_1 User_2 User_3 User_4 … User_n

Item_1 4 ? 2 5 … ?

Item_2 3 2 1 ? … 3

Item_3 ? 2 ? 3 … 4

… … … … … … …

Item_p 5 ? 3 4 … ?

User_1 User_2 User_3 User_4 … User_n

Item_1 4 3 2 5 … 4

Item_2 3 2 1 2 … 3

Item_3 3 2 4 3 … 4

… … … … … … …

Item_p 5 4 3 4 … 5

Fig. 1. The flowchart of the recommendation process, where the missing ratings in the input
matrix are noted as ’?’

In all, we approach this rating estimation problem from a model prediction point of
view. Consider all ratings of a user would give on all items (i.e., suppose he/she had the
opportunity to see all the items and has the time to rate all of them). This is called a
user-profile, u. In this way, the input rating data matrix R in Figure 1 can be viewed as
R = (u1, u2, · · · , un), with lots of entries missing. Each profile u is a vector with size p.

We view a user-profile u as a vector of stochastic variables and assume their values
follow a Gaussian distribution. We propose to use Gaussian process to model this user-
profile u. In the Gaussian process model, the user-profile u follows the multi-variate
Gaussian distribution:

p(u) ∝ exp [−1
2

(u − ū)TΣ−1(u − ū)] (1)

where the parameters for the model are Θ = (ū, Σ). This means we must obtain the
p-by-p rating covariance matrix Σ on the p items and the global mean ū,which can be
easily computed by the following equations:

Σ =
1

n − 1

n∑

i=1

(ui − ū)(ui − ū)T , ū =
1
n

n∑

i=1

ui. (2)



Gaussian Process for Recommender Systems 59

In these formulations, we can see that all entries in R = (u1, · · · , un) are assumed
to be known. However, in recommender system, there is a very large proportion of
elements in R which are unknown. This is dealt with in the training process which is
described in the following section.

2.2 Model Based Prediction

In this subsection, we show how to fill in the missing entries by a model based predic-
tion. For clarity, suppose that we have already obtained ū, Σ in this subsection, while
we will discuss the computation of them in Section 2.5. Now given a new user ui, with
partial ratings (the observed part) uo

i , the task is to predict the missing part um
i .

At first, we re-order the index of the variables (e.g., movie items) in ui such that
the observed movie items which have been rated by user ui are grouped together, and
the movie items with missing ratings are grouped together. Thus, the corresponding
notations can be represented by the following Equation:

ui =

(
uo

i
um

i

)
, ūi =

(
ūo

i
ūm

i

)
, ûi =

(
ûo

i
ûm

i

)
, Σ =

(
Σoo Σom

Σmo Σmm

)
. (3)

where ūi stores the global mean values for each movie item, and ûi is a realization of the
random vector variable for given user ui. In this paper, we can view ûm

i as the predicted
results for um

i , and ûo
i is always equal to uo

i . Correspondingly, covariance matrix Σ is
re-ordered and decomposed into four sub-matrixes in a similar way.

Now, the task of predicting um
i with known uo

i is identical to conditional Gaussian
distribution [2]. Given the global mean ū and covariance matrix Σ, and the partial real-
izations of the vector of random variables, the Gaussian process model asserts that the
probability distribution for the missing part um

i is still a Gaussian distribution:

p(um
i ) ∝ exp [− 1

2 (um
i − ûm

i )T Σ̂−1
mm(um

i − ûm
i )]

= exp[− 1
2 [(um

i )T Σ̂−1
mmum

i − (um
i )T Σ̂−1

mmûm
i − (ûm

i )TΣ−1
mmum

i + (ûm
i )TΣ−1

mmûm
i ]] (4)

where the parameters for this model are the mean ûm
i and the covariance Σ̂mm.

In order to compute ûm
i and Σ̂mm, first consider the quadratic form in the exponent of

the Gaussian distribution of all the items:

p(ui) ∝ exp [− 1
2 (ui − ūi)TΣ−1(ui − ūi)]

= exp [− 1
2 [(uo

i − ūo
i )T ∧oo (uo

i − ūo
i ) + (uo

i − ūo
i )T ∧om (um

i − ūm
i )

+(um
i − ūm

i )T ∧mo (uo
i − ūo

i ) + (um
i − ūm

i )T ∧mm (um
i − ūm

i )]]

where ∧ is Σ−1, and can be represented as

(∧oo ∧om

∧mo ∧mm

)
. If we apply this equation to the

conditional Gaussian distribution p(um
i |uo

i ) and pick out all terms that are second order
in um

i , we have − 1
2 (um

i )T ∧mm um
i . Meanwhile, as shown in Equation (4), for Gaussian

distribution, the matrix of coefficients entering in the second order term in um
i should be

the inverse covariance matrix Σ̂−1
mm, thus Σ̂mm = ∧−1

mm.



60 Q. Liu et al.

Further, consider all the terms in the exponent that are linear in um
i , we have:

(um
i )T [∧mmūm

i − ∧mo(uo
i − ūo

i )]

where we have used ∧T
om = ∧mo. While for Equation (4), the coefficient of um

i in this
expression equals to (um

i )T Σ̂−1
mmûm

i , and hence

ûm
i = ūm

i − ∧−1
mm ∧mo (uo

i − ūo
i )

Then, using the definition

(
Σoo Σom

Σmo Σmm

)−1

=

(∧oo ∧om

∧mo ∧mm

)
and making use of the inverse of

a partitioned matrix 2, we can get:

ûm
i = ūm

i + ΣmoΣ
−1
oo (ûo

i − ūo
i ) (5)

Σ̂mm = Σmm − ΣmoΣ
−1
oo Σom (6)

We emphasize again that ûi is a realization of ui, and ûo
i equals to uo

i . After learn-
ing (through the training process described in Section 2.5) the model parameters (ū, Σ)
and given the input ûo

i , the prediction results for user ui’s missing part is (ûm
i , Σ̂mm),

where ûm
i is the predicted result for um

i .

m
iu

o
iu

iu

oo

mo

mm

o
iu

m
iu

u ˆ iu

ˆo
iu

ˆm
iu

1 ˆo o
mo oo i iu u

Fig. 2. The implication of the predicting Equation(5), and the meanings of the rating value influ-
ential factors

Implications. From an application point of view, it is worth understanding the each
part’s implication of the prediction Equation (5). Actually, this equation shows that
each rating prediction is made by considering two values: the global mean (i.e., ūm

i )
and its modification (i.e., ΣmoΣ

−1
oo (ûo

i − ūo
i )). Here ūm

i stands for the quality of the movie
item, which can be concluded from the ratings of other users. ΣmoΣ

−1
oo (ûo

i − ūo
i ) can

be seen as the impact of ui’s rating preferences. Specifically, this impact is modeled
by the difference between ui’s rating preference and all users’ rating preferences, and
this difference is weighted by the rating correlations between the movie items. These
influential factors are illustrated in Figure 2.

2.3 Computational Complexity

A key observation regarding the computational efficiency of the Gaussian process model
for recommender system is the following. At first glance, the inverse of Σ is computa-
tionally expensive because Σ is a p-by-p matrix, where p could be tens of thousands

2 For more detailed inference on Equation (5) and Equation (6), please refer to Ref. [2].



Gaussian Process for Recommender Systems 61

(e.g., p = 18, 000 for the Netflix system), and the computational complexity of this ma-
trix inversion is O(p3). However, in real-world recommender systems, we never need
to compute or evaluate Σ−1. All we need is to compute Σ−1

oo efficiently (please refer to
Equation(5)). Since the number of movie items that each user can rate may only vary
from several dozens to 200, which means the size of Σoo is at most 200-by-200. Invert-
ing a matrix of this size is computationally trivial, thus the prediction can be done very
quickly and efficiently.

2.4 Regularized Gaussian Process

There always exist many random factors and noises for such diverse collection of users
of a recommender system—one user may give many high scores to his/her favorite
movies and does not give scores to the ones that he/she does not appreciate; some other
users may only give scores for movies they dislike while not bother giving scores to the
movies they like.

For these reasons, in this subsection we propose to use regularization in the Gaussian
process. More specifically, we believe that the covariance matrix for items from the
computed values of Equation (2) could have significant noise, and a regularization is
proposed on it. As the following, when predicting (ûm

i , Σ̂mm), where in Equations (5
and 6), we replaced the covariance matrix from the computed values of Equation (2) by

Σ ← Σ + β ∗ I

where I is the p × p identity matrix and β > 0 is a parameter. This type of regular-
ization is often used in statistics and is sometimes called Ridge regularization. In fact,
this kind of noise has been manifested by many other works. Besides the ridge regular-
ization that we propose to use in this paper, other regularization methods may also be
applicable [21].

Parameter Setting. Since Σ is a covariance matrix, it is real symmetric and positive
semi-definite. We can write

Σ = V � VT =

p∑

i=1

λiviv
T
i

where V = [v1, v2, ...vp] and � = diag{λ1, λ2, ...λp} 3 are the eigenvector matrix and
eigenvalue diagonal matrix of Σ, respectively. Then,

Σ−1 =

p∑

i=1

1
λi

viv
T
i , (Σ + β ∗ I)−1 =

p∑

i=1

1
λi + β

viv
T
i (7)

From Equation 7, we can see that the eigenvectors with smaller eigenvalues in Σ will
contribute significantly to its inverse Σ−1, while not after the ridge regularization. To
prevent the eigenvectors with smaller eigenvalues contributing too much to Σ−1, we
should choose a proper β value. In our study, we set β equaling to λ20, which is the 20th
largest eigenvalue of Σ, so that effectively eigenvectors with eigenvalues less than λ20

will have nearly equal contributions to (Σ + β ∗ I)−1. In practice, eigenvalues decrease
very fast at the beginning, and then slowly. Thus choosing β=λ20 or β=λ30 makes very
little difference.

3 In this paper, we note that λ1 ≥ λ2... ≥ λp ≥ 0.



62 Q. Liu et al.

2.5 Training

In this subsection, we illustrate the complete training process of our model, including
the computation of model parameters Θ = (ū, Σ) and the final prediction for ûm

i .

Initialization. The first step in training process is to initialize the input matrix R by
filling its missing ratings. We consider two simple approaches here (more sophisticated
methods can be designed). (1) Item-based initialization. We compute the mean value
of each item based on those already filled entries. The missing entries of this item are
filled with this mean value. (2) User-based initialization. We compute the mean value
of each user based on existing filled entries. The missing entries of this user are filled
with this mean value.

Process. The training process is the iteration on the following two steps:

1. Given the current estimation of the missing part in R, we compute the updated
model parameters Θ = (ū, Σ), by the following Equation:

Σ =
1

n − 1

n∑

i=1

(ûi − ū)(ûi − ū)T + β ∗ I, ū =
1
n

n∑

i=1

ûi.

2. Given the current estimation of the model parameters Θ, we use conditional Gaus-
sian distribution formula Equation (5) to predict a newer and better estimate of um

i
for all users ui (the newer ûm

i ).

The above two steps are repeated until convergence or reaching a pre-specified maxi-
mum number of iterations, for example 10 iterations.

3 Experimental Evaluation

In this section, we present the experimental results to evaluate the performance of our
Gaussian process model based recommender system. Specifically, we demonstrate: (1)
the observation of our assumption on the Gaussian distribution of user ratings; (2) a
performance comparison between our model and the benchmark methods.

3.1 Experimental Setup

Experiments were performed on the MovieLens data set, which is a benchmark data set
for evaluating recommender systems [3]. This data set contains 100, 000 ratings from
943 users for 1, 682 movies, and each user has rated at least 20 movies. The rating
values vary from 1 to 5.

We do the following cross-validation. For each user’s ratings, we randomly selected
some percentage of the ratings for training and the remaining ones for testing. In total,
we constructed 5 pairs of training and test sets: 90:10, 80:20, 70:30, 60:40 and 50:50. For
example, 90:10 split means 90% ratings are used as the training data and the remaining
10% ratings serve as the test data.

Evaluation Measures. We use the mean absolute error (MAE) and the root mean
squared error (RMSE) to evaluate the quality of the results. Both of them are widely



Gaussian Process for Recommender Systems 63

used for the purpose of evaluating the rating effectiveness. If ûTi
i is the test part for user

ui, with its size Ti, then these measures can be defined as follow:

MAE =

n∑
i=1

Ti∑
t=1
|ût

i − ut
i|

| n∑
i=1

Ti|
, RMS E =

√√√√√√√√√√√
n∑

i=1

Ti∑
t=1
|ût

i − ut
i|2

| n∑
i=1

Ti|

Benchmark Methods. In order to demonstrate the effectiveness of our Gaussian pro-
cess based recommendation model, we compare it with many benchmark methods.
Specifically, we implement two widely used item-based [19] and user-based [17] (i.e.,
item/user-oriented memory-based) collaborative filterings, as well as a SVD model
based method named regularized SVD [6]. For the item-based collaborative filtering,
adjusted cosine method is used to compute item similarity and weighted sum is used
to make predictions [19]. For the user-based method, Pearson’s correlation is chosen to
compute user similarities [17]. For the regularized SVD, we set the parameters similar
with Simon Funk, except for the number of features K, which was not mentioned in
Ref. [6]. To that end, we train K from 20 to 200 steps by 20, and finally we get its best
performance at K equaling to 120. All these three benchmark methods are the state-of-
the-art collaborative filtering algorithms, and they are widely used for baselines.

3.2 Results and Discussions

First, we demonstrate our assumption on the Gaussian distribution of user ratings, which
is a common practice in many previous works, including Ref. [6]. We tested our as-
sumption on the MovieLens data set, and the corresponding results are shown in Fig-
ure 3 and Figure 4.

0 1 2 3 4 5 6 7
0

1

2

3

4
x 10

4

rating value 

N
u

m
b

er

Fig. 3. The Gaussian distribution of all user rating values

Figure 3 illustrates the distribution of all user ratings in the MovieLens data set. We
can see that the distribution of different rating values can be well fitted by a Gaussian
distribution. 4 To demonstrate the Gaussian assumption for each variable (i.e., movie),
we choose the first three movies in this data set as an example, and their rating values

4 All the Gaussian distributions in this paper are obtained by making use of the Matlab curve-
fitting toolbox cftool, and the R-Square of this Gaussian distribution is equal to 0.9772.



64 Q. Liu et al.

Table 1. Experimental results for different algorithms
(a) (MAE)

�����Alg.
Split

50 : 50 60 : 40 70 : 30 80 : 20 90 : 10

Gaussian Process Init
Item-based 0.8199 0.8160 0.8166 0.8120 0.8223
User-based 0.8348 0.8347 0.8346 0.8320 0.8448

Gaussian Process
Item-based Init 0.7491 0.7361 0.7249 0.7219 0.7191
User-based Init 0.7361 0.7266 0.7153 0.7112 0.7095

Traditional CF
Item-based 0.7581 0.7520 0.7502 0.7487 0.7552
User-based 0.7561 0.7514 0.7446 0.7412 0.7465

Regularized SVD 0.7517 0.7489 0.7472 0.7406 0.7395

(b) (RMSE)

�����Alg.
Split

50 : 50 60 : 40 70 : 30 80 : 20 90 : 10

Gaussian Process Init
Item-based 1.0282 1.0231 1.0229 1.0190 1.0289
User-based 1.0409 1.0397 1.0405 1.0367 1.0539

Gaussian Process
Item-based Init 0.9559 0.9399 0.9244 0.9207 0.9207
User-based Init 0.9359 0.9243 0.9080 0.9040 0.9006

Traditional CF
Item-based 0.9673 0.9565 0.9526 0.9520 0.9601
User-based 0.9619 0.9569 0.9459 0.9425 0.9465

Regularized SVD 0.9575 0.9477 0.9378 0.9339 0.9149

are described in Figure 4. We can see that the ratings for each movie can also be well
fitted by a Gaussian distribution, and different movies have different means and vari-
ances. Though the Gaussian assumption is very simple and practical, we note that there
are still many limitations for it. For example, for many reasons (e.g., for lack of enough
ratings), there may exist movies whose rating distributions are not obviously Gaussian.
What’s more, the ratings in many data sets may not be rated as we expected, and for
these situations, incorrect assumptions will lead to biased prediction. Thus, more so-
phisticated and appropriate models should be designed [16].

Then, we present an effectiveness comparison between our Gaussian process model
and three benchmark approaches. The results of each method with respect to

0 1 2 3 4 5 6 7 8

50

100

150

200

250

rating value

n
u

m
b

er

(a) Item 1.

0 1 2 3 4 5 6 7 8

10

20

30

40

50

60

rating value

n
u

m
b

er
 

(b) Item 2.

0 1 2 3 4 5 6 7 8

5

10

15

20

25

30

rating value

n
u

m
b

er

(c) Item 3.

Fig. 4. The Gaussian distribution of the ratings for the first three items



Gaussian Process for Recommender Systems 65

different splits are illustrated in Table 1. In this table, ”Gaussian Process Init” rows list
MAE/RMSE measures on the results after the Initialization step (Section 2.5); while
”Gaussian Process” rows list the results after the iteration Process step.

From Table 1 we can see that since Gaussian process based algorithm can aggregate
many rating factors, it clearly outperforms the traditional item-based and user-based
collaborative filtering algorithms (Traditional CF) in each split with a significant mar-
gin, and it also performs better than the regularized SVD, regardless of which similarity
measure has been chosen. On the other hand, it is interesting to find that the Gaus-
sian process algorithm with user-based initialization performs better than the one with
item-based initialization, and this relationship is similar to the results listed in the ”Tra-
ditional CF” rows. Further more, Figure 5 shows the effect of the number of iterations
on the performances of our Gaussian process algorithm with item-based initialization,
from which we can see that each iteration of the training process does enhance the per-
formance of rating prediction and all the rating curves converge after only a few steps.

0 2 4 6 8 10
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

iteration number

M
A

E

 

 

50:50
60:40
70:30
80:20
90:10

(a) MAE results.

0 2 4 6 8 10

0.92

0.94

0.96

0.98

1

1.02

1.04

iteration number

R
M

S
E

 

 

50:50
60:40
70:30
80:20
90:10

(b) RMSE results.

Fig. 5. The experimental results according to different number of iterations for each split

In summary, considering the simplicity of the Gaussian process based recommen-
dation model (without tunable parameters except β which is always to the 20th largest
eigenvalue of Σ), these results are very encouraging.

4 Related Work

Recommender systems emerged as an independent research area in the mid-1990s when
researchers started working on recommendation problems that explicitly rely on the
ratings structure [1]. In its most common formulation, the recommendation problem is
reduced to the problem of estimating ratings for the items that have not been seen by
a user. Meanwhile, some other approaches consider the recommendation problem as
either a classification problem [10] or a ranking problem [15].

As can be seen from this paper, our Gaussian process model based recommender sys-
tem can be classified as one of the model-based rating estimation oriented collaborative
filtering methods. In our model, the user ratings on each item are assumed to follow a



66 Q. Liu et al.

Gaussian distribution. Actually, there are many other recommendation scenarios, where
Gaussian distribution is chosen as a prior or hyper distribution for modeling data. For
example, Hoffman presents an expectation maximization (EM) algorithm for collabo-
rative filtering that estimates latent classes with Gaussian probability distributions [11];
Salakhutdinov et al. propose a Probabilistic Matrix Factorization (PMF) based collabo-
rative filtering model by introducing Gaussian noise to observed user ratings [18], and
Ge et al. successfully extend this PMF model for recommending travel packages by
considering both the travel cost and the tourist’s interests [7].

To the best of our knowledge, among these recommendation models where the as-
sumption of Gaussian distribution is considered, the models proposed in Ref. [21] and
Ref. [22] are the most closely related to our work. In Ref. [21], Schwaighofer et al.
propose the method of learning Gaussian process covariance functions for multi-task
learning problems from a hierarchical bayesian point of view, and Umyarov et al. extend
this collaborative filtering model by incorporating externally specified aggregate rating
information [22]. Though we are based on the same Gaussian distribution assumption,
in this paper, we explored the implications of this type of model from an application
point of view, and consequently, we designed a novel training process which makes our
method easier for implementation and understanding. However, we should note that,
as experimentally observed in Ref. [16], rating data in different recommendation ap-
plications may have different properties, and we should observe their characteristics
carefully before any assumptions are made.

5 Concluding Remarks

In this paper, we propose a Gaussian process model for building an effective collab-
orative filtering based recommender system. This model can aggregate many factors,
such as items’ qualities, items’ correlations, and users’ rating preferences, which are
all very important for personalized information services, into a unified system. The ex-
perimental results demonstrate that this algorithm is effective, and it outperforms many
state-of-the-art methods including two traditional collaborative filterings and a SVD
based method. What’s more, this algorithm has a solid statistical foundation, is easy to
implement and has little hassle of tuning parameters. Thus, it is suitable for a baseline
algorithm. We plan to further refine the model and do more experiments on other data
sets like Netflix.

Acknowledgments. This research was supported in part by National Natural Science
Foundation of China (Grant No. 61073110), the Key Program of National Natural Sci-
ence Foundation of China (Grant No. 60933013), the research fund for the Doctoral
Program of Higher Education of China (Grant No. 20093402110017), the National Ma-
jor Special Science & Technology Project (Grant No. 2011ZX04016-071).

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems:
A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. and Data
Eng. (TKDE) 17, 734–749 (2005)



Gaussian Process for Recommender Systems 67

2. Bishop, C.M.: Pattern recognition and machine learning, vol. 4, ch. 2. Springer, New York
(2006)

3. GroupLens Research (2007), http://www.grouplens.org/node/73#attachments
4. Ding, C., Jin, R., Li, T., Simon, H.D.: A learning framework using Green’s function and

kernel regularization with application to recommender system. In: ACM SIGKDD, pp. 260–
269 (2007)

5. Fouss, F., Pirotte, A., Renders, J.-M., Saerens, M.: Random-walk computation of similarities
between nodes of a graph with application to collaborative recommendation. IEEE Trans.
Knowl. Data Eng. (TKDE) 19(3), 355–369 (2007)

6. Funk, S.: Netflix update: Try this at home (2006),
http://sifter.org/˜simon/journal/20061211.html

7. Ge, Y., Liu, Q., Xiong, H., Tuzhilin, A., Chen, J.: Cost-aware travel tour recommendation.
In: ACM SIGKDD, pp. 983–991 (2011)

8. Ge, Y., Xiong, H., Tuzhilin, A., et al.: An energy-efficient mobile recommender system. In:
ACM SIGKDD, pp. 899–908 (2010)

9. Gunawardana, A., Meek, C.: A unified approach to building hybrid recommender systems.
In: ACM RecSys, pp. 117–124 (2009)

10. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filter-
ing recommender systems. ACM Transactions on Information Systems (TOIS) 22(1), 5–53
(2004)

11. Hofmann, T.: Latent semantic models for collaborative filtering. ACM Transactions on In-
formation Systems (TOIS) 22(1), 89–115 (2004)

12. Kim, J.W., Lee, B.H., Shaw, M.J., Chang, H.-L., Nelson, M.: Application of decision-tree
induction techniques to personalized advertisements on internet storefronts. Int. J. Electron.
Commerce 5(3), 45–62 (2001)

13. Koren, Y.: Collaborative filtering with temporal dynamics. In: ACM SIGKDD, pp. 447–456
(2009)

14. Kurucz, M., Benczur, A.A., Csalogany, K.: Methods for large scale SVD with missing values.
In: ACM KDDCup 2007, pp. 31–38 (2007)

15. Liu, Q., Chen, E., Xiong, H., Ding, C.H.Q.: Exploiting user interests for collaborative filter-
ing: interests expansion via personalized ranking. In: ACM CIKM, pp. 1697–1700 (2010)

16. Marlin, B.M., Zemel, R.S.: Collaborative prediction and ranking with non-random missing
data. In: ACM RecSys, pp. 5–12 (2009)

17. Paul, R., Neophytos, I., Mitesh, S., Peter, B., John, R.: GroupLens: an open architecture for
collaborative filtering of netnews. In: ACM CSCW, pp. 175–186 (1994)

18. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS, vol. 20, pp. 1257–
1264 (2008)

19. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommen-
dation algorithms. In: WWW, pp. 285–295 (2001)

20. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative Filtering Recommender
Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS,
vol. 4321, pp. 291–324. Springer, Heidelberg (2007)

21. Schwaighofer, A., Tresp, V., Yu, K.: Learning Gaussian process kernels via hierarchical
Bayes. In: NIPS, vol. 17, pp. 1209–1216 (2005)

22. Umyarov, A., Tuzhilin, A.: Improving collaborative filtering recommendations using external
data. In: IEEE ICDM, pp. 618–627 (2008)

23. Wu, H., Wang, Y., Cheng, X.: Incremental probabilistic latent semantic analysis for automatic
question recommendation. In: ACM RecSys, pp. 99–106 (2008)

 http://www.grouplens.org/node/73#attachments
 http://sifter.org/~simon/journal/20061211.html

	Gaussian Process for Recommender Systems
	Introduction
	Gaussian Process Model
	Problem Definition
	Model Based Prediction
	Computational Complexity
	Regularized Gaussian Process
	Training

	Experimental Evaluation
	Experimental Setup
	Results and Discussions

	Related Work
	Concluding Remarks
	References




