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Clustering is an important research area with numerous applications in pattern recognition,
machine learning, and data mining. Since the clustering problem on numeric data sets
can be formulated as a typical combinatorial optimization problem, many researches
have addressed the design of heuristic algorithms for finding sub-optimal solutions in
a reasonable period of time. However, most of the heuristic clustering algorithms suffer
from the problem of being sensitive to the initialization and do not guarantee the high
quality results. Recently, Approximate Backbone (AB), i.e., the commonly shared intersection
of several sub-optimal solutions, has been proposed to address the sensitivity problem
of initialization. In this paper, we aim to introduce the AB into heuristic clustering
to overcome the initialization sensitivity of conventional heuristic clustering algorithms.
The main advantage of the proposed method is the capability of restricting the initial
search space around the optimal result by defining the AB, and in turn, reducing the
impact of initialization on clustering, eventually improving the performance of heuristic
clustering. Experiments on synthetic and real world data sets are performed to validate
the effectiveness of the proposed approach in comparison to three conventional heuristic
clustering algorithms and three other algorithms with improvement on initialization.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Clustering is a process of grouping a set of objects into
clusters so that objects within a cluster are highly sim-
ilar, but are dissimilar to objects in other clusters [1–3].
A common way of clustering is to calculate a set of centres
such that the sum of squared errors between data objects
and their nearest centres are minimized [4]. Essentially,
this is equivalent to a classical combinatorial optimization
problem, but solving it completely is NP-hard even with
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a simplest case of just two clusters [5]. The solution be-
comes worse in case of a larger data set due the inherence
of optimization problem. To address this, researchers are
seeking heuristic methods to solve this problem. For ex-
ample, K-centre clustering is a popularly used clustering
approach based on heuristic search, which is to minimize
the accumulated square errors in a designated region (i.e.,
guarding the heuristic search with the specified initial val-
ues). In this scenario, the obtained clustering result is de-
pendent on the initialization and the minimized squared
error only reflects the sub-optimal solution with this run-
ning of heuristic search. In the other words, the nature
of heuristic search process makes the K-centre clustering
algorithms heavily sensitive to the initialization settings,
thus not guaranteeing the higher quality clustering results
with randomly chosen initializations [4]. Therefore, how
to deal with the sensitivity problem of initialization in K-
centre clustering is becoming an active and well concerned
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Fig. 1. Illustrative picture of the “big valley” phenomenon.

challenge in clustering research community. As various ex-
ecutions of K-centre clustering with different initializations
capture the different sub-optimal solutions corresponding
to different searching regions, it is intuitive that combining
these sub-optimal solutions into consideration will greatly
facilitate the identification of the optimal information in
the whole search range. This intuition originates a variety
of new clustering algorithms such as cluster ensemble [6],
consensus clustering [7] and our approach proposed in this
paper.

On the other hand, we from the various executions
of K-centre algorithm can observe that the different sub-
optimal clustering results do reflect the existences of data
objects gathering around the different cluster centres in a
data set [6]. If we can make full use of these sub-optimal
results for the determination of the initialization, a more
appropriate start in heuristic search will be obtained, mak-
ing that the sensitivity problem of initialization effectively
tackled. Furthermore, in [8–10], the authors have indi-
cated an interesting phenomenon that nearly 80% of the
sub-optimal results are distributed around the optimal re-
sult when they dealt with the Traveling Salesman Problem
(TSP) by using heuristic search. Inspired by their findings
(i.e. the “big valley” phenomenon shown in Fig. 1), we
further envision the use of the overlapped common inter-
sections of these sub-optimal results as a priori, to help the
convergence to the optimal solution during the optimiza-
tion process. Particularly in the context of K-centre cluster-
ing, it is expected that properly choosing these intersection
areas as the initialization would benefit overcoming the
sensitivity of initialization and finding the better cluster-
ing result.

Backbone analysis is becoming an active research topic
in NP-hard problems recently. The Backbone defined as the
core part of all optimal solutions was first proposed in
[11] for TSP and it has been successfully applied in differ-
ent applications [12,13]. A complete Backbone, however, is
usually impossible to be obtained for many optimization
problems in real applications. Instead, Approximate Back-
bone (AB), an approximate form of Backbone, i.e. the in-
tersection of different sub-optimal solutions of a dataset,
is becoming a practical means in real applications. The
AB is often used to investigate the characteristics of a
dataset and expedite the convergence speed of heuristic
algorithms [14–16].

Inspired by the above discussion on the use of sub-
optimal results and the concept of AB, we in this pa-
per intend to introduce the AB to address the initializa-
tion problems in heuristic clustering algorithms described
above, and in particular, we propose an algorithm named
Heuristic Clustering Approach Based on Approximate Backbone
(HC_AB). The basic process of HC_ AB is that: we first iden-
tify the AB from a set of sub-optimal solutions derived
by running K-centre clustering with different initializa-
tion settings; then, we construct a new initialization based
on the AB for heuristic search; eventually, we re-run the
K-centre clustering algorithm by using this new initializa-
tion to generate a better clustering result. Experiments on
synthetic and real world data sets have been conducted to
validate the effectiveness of the proposed approach on im-
proving the quality of clustering and reducing the impact
of initialization.

As mentioned above, HC_AB essentially follows the sim-
ilar fundamental principle of cluster ensemble and con-
sensus clustering [6,7] that makes use of the multiple
clustering results, but with different focuses. Specially, Ap-
proximate Backbone captures the intersection of data ob-
jects within the clusters derived from multiple execution
of clustering, from the perspective of the original signifi-
cance of data to form a new initialization, and then re-run
the K-centre clustering algorithm again on the data set
with this new initialization to generate the better clus-
tering result. In contrast, cluster ensemble and consensus
clustering directly assemble the various clustering results
in a unified manner to get the final cluster result rather
than re-running the K-centre clustering algorithm.

In summary, the main contributions of this paper are
(1) we define the intersection of various sub-optimal solu-
tions, i.e. the AB, as the new search start point for heuris-
tic clustering; (2) we define the quality measures, namely
scale and purity to guide the selection of AB and propose
a new algorithm to address the heuristic clustering; (3) we
conduct experiments to evaluate the efficiency and effec-
tiveness of the proposed approach.

The rest of paper is structured as follows: Section 2
gives the theoretical background of this paper, Section 3
discusses the algorithmic details and Section 4 reports the
experimental results and comparisons. Section 5 concludes
the paper.

2. Theoretical background of Approximate Backbone

In this section, we first briefly discuss the concept of
optimal clustering result and the sub-optimal clustering
result, and then, we give the definition of Backbone and
Approximate Backbone.

Given a data set D = {x1, x2, . . . , xN } which contains N
objects and each object xi ∈ D is described by d numeric
attributes. Let dist : Rd × Rd �→ R+ be a given distance
function between any two objects in Rd . The clustering
problem on numeric data sets can be formulated as: par-
titioning the N objects into distinct K clusters such that
the overall distance function φ = ∑K

k=1
∑

xi∈Ck
dist(xi, vk)

is minimized, where Ck is a cluster and vk is the centre
of Ck . For simplicity, here we denote each cluster centre
vk by one object identifier in D , for example, 22, 78 rep-
resent the cluster centre being the data point #22, #78
and so on. As discussed above, this clustering problem is
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Fig. 2. An example of K-centre clustering algorithm with different initial-
izations.

actually a typical combinatorial optimization problem. The
search space S of this clustering problem consists of all the
possible combinations of the data objects. For optimiza-
tion, we need to traverse S to find out a set of data objects
V ∗ = {v∗

1, . . . , v∗
K } such that the φ value is minimized. This

data objects set V ∗ = {v∗
1, . . . , v∗

K } is defined as the opti-
mal clustering result. Obviously, it is almost impractical to
thoroughly traverse the S of a very large data set due to
the NP-hard nature. Recently, to deal with time consump-
tion many researchers have proposed heuristic clustering
algorithms that only search a subset S ′ ⊂ S to discover the
approximation of the optimal solution. And the clustering
result V = {v1, v2, . . . , v K } corresponding to the smallest
φ value in S ′ is considered as the sub-optimal clustering
result. For example, K-centre clustering algorithm is a typ-
ical heuristic clustering algorithm, which takes D as an
input to achieve a sub-optimal clustering result with an
initialization. Fig. 2 gives an illustration of how the differ-
ent sub-optimal solutions are achieved with different ini-
tializations in K-centre clustering algorithm. In Fig. 2, the
X axis denotes feasible clustering results and the Y axis
denotes the corresponding φ values of feasible solutions.
Without loss of generality, given that the point 3 is se-
lected as an initialization for K-centre clustering algorithm,
it will converge to the point 4, which is one of the fea-
sible solutions with optimal φ value. If the optimization
process starts from the point 1 for the same clustering al-
gorithm, the algorithm will reach to another optimal result
of point 2, which is actually a worse solution with larger
φ value.

The multiple executions of K-centre clustering with var-
ious initialization settings form a collection of sub-optimal
clustering results, and our aim is to utilize the intersection
of these sub-optimal solutions to construct a new good
core for a search start point. Since the new search start
point does reflect the closeness to the optimal solution,
the heuristic clustering algorithm is much able to obtain
a clustering result close to the optimal one. In this man-
ner, the initialization sensitivity problem is considerably
handled and the heuristic clustering quality is accordingly
improved. To further consolidate the theoretical foundation
of our intuition, we below define the following concepts.

Definition 1 (Backbone). Given a collection of optimal clus-
tering results for a numeric clustering problem i.e. Z∗ =
{V 1∗, V 2∗, . . . , V P∗}, in which each optimal result V p∗ is
denoted by V p∗ = {v p∗
1 , v p∗

2 , . . . , v p∗
K }, p = 1, . . . , P , the

Backbone of this clustering problem is defined as the in-
tersection of all optimal clustering results:

backbone
(

V 1∗, V 2∗, . . . , V P∗) = V 1∗ ∩ V 2∗ ∩ · · · ∩ V P∗.

Principally, the optimal solution is hard to obtain for
an NP-hard problem in reality, resulting in the difficulty
in identifying the theoretically ideal Backbone. However,
in some studies, researchers have observed an interesting
phenomenon that there are nearly 80% sub-optimal solu-
tions being distributed around the optimal solution and a
“big valley” structure is seen [8–10]. Motivated by this ob-
servation, we intuitively have an idea in mind on how to
approximate the ideal Backbone by making use of the sub-
optimal solutions [12].

Definition 2 (Approximate Backbone). Given a collection
of sub-optimal clustering result of a numeric clustering
problem, i.e. Z = {V 1, V 2, . . . , V M}, in which each sub-
optimal result V m is denoted by V m = {vm

1 , vm
2 , . . . , vm

K }
m = 1, . . . , M , the Approximate Backbone (AB) is defined as
the intersection of all sub-optimal clustering results:

a_bone
(

V 1, V 2, . . . , V M) = V 1 ∩ V 2 ∩ · · · ∩ V M .

As described above, our method aims to make use of
the AB of sub-optimal solutions to form the initialization
(i.e. the start point for heuristic search), thus construct-
ing an appropriate AB in K-centre clustering for heuristic
search becomes an important issue. In other words, the
quality of the K-centre clustering results is greatly de-
pendent on the characteristics of AB. Essentially, the size
and quality of AB are two key measures needed to be
considered, here we propose two parameters to describe
the characteristics of AB—Scale and Purity. The former one
describes how many percentages of total sub-optimal so-
lutions are included in the AB; whereas the latter one
denotes how many percentages of sub-optimal solutions
included in the AB also exist in the theoretically ideal
Backbone simultaneously. In particular, Approximate Back-
bone Scale (ABS) and Approximate Backbone Purity (ABP) are
defined as follows.

Definition 3 (Approximate Backbone Scale). Given an AB,
a_bone(V 1, V 2, . . . , V M), the Approximate Backbone Scale is
defined as the ratio of the AB’s cardinality to the cluster
number K :

ABS = |a_bone(V 1, V 2, . . . , V M)|
K

.

Definition 4 (Approximate Backbone Purity). Given an AB,
a_bone(V 1, . . . , V M), and a backbone backbone(V 1∗, . . . ,
V P∗), the Approximate Backbone Purity is defined as the ra-
tio of the cardinality of the intersection of the AB and the
Backbone to the AB’s cardinality:

ABP = |a_bone(V 1, V 2, . . . , V M ) ∩ backbone(V 1∗, V 2∗, . . . , V P∗)|
|a_bone(V 1, V 2, . . . , V M )| .
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Table 1
An example of clustering results of D .

Name Centre set

V ∗ 22, 78, 109, 180, 230, 292, 310, 366, 412, 475
V 1 43, 78, 109, 198, 240, 262, 310, 366, 412, 480
V 2 43, 78, 128, 198, 240, 262, 310, 366, 412, 480
V 3 43, 78, 128, 198, 240, 252, 310, 366, 432, 480

In this paper, we assume that the originating cluster
centres indicate the unique optimal solution that should be
found by clustering, thus we here particularly treat these
originating cluster centres as the “ideal” Backbone to cal-
culate the purity of Approximate Backbone.

In order to achieve the better result of heuristic cluster-
ing algorithm, we expect to form an appropriate AB with
both large ABS and ABP values. The rationale behind this
consideration is due to the two-fold assumptions. On the
one hand, the larger the ABS values, the more proportions
of the sub-optimal solutions are included in the AB, i.e. the
higher optimal coverage. On the other hand, the bigger the
ABP value, the better the included optimal solutions are,
i.e. the included sub-optimal solutions are closely scattered
around the optimal clustering result.

Thus determining the appropriate values of ABS and
ABP becomes a crucial task in our proposed approach.
However, in real applications, ABS and ABP possess totally
different characteristics, resulting in the difficulty in em-
pirically determining them. Below let’s take an example to
demonstrate the underlying relationship between ABS and
ABP.

Consider a data set D containing 500 objects which
form 10 clusters, each cluster is represented by a represen-
tative data object (i.e. cluster centre). The assumed optimal
clustering result V ∗ (e.g. the real cluster centers) is shown
at the first row in Table 1, and three sub-optimal cluster-
ing results V 1, V 2, V 3, obtained by running the K-centre
clustering algorithm with three different initializations, are
also listed in Table 1. There is only one optimal clustering
result in D , that is backbone(V ∗) = V ∗ .
For this example, we can obtain the AB: a_bone(V 1,

V 2, V 3) = {43,78,198,240,310,366,480}. Known from
the definition of ABS, the value of ABS in this example
is calculated as:

ABS = |a_bone(V 1, V 2, V 3)|
K

= 7

10
= 0.7.

We observe that there are three commonly overlapped
centres existing in the AB and the Backbone, thus the value
of ABP is:

ABP = |a_bone(V 1, V 2, V 3
3 ) ∩ V ∗|

|a_bone(V 1, V 2, V 3)| = 3

7
= 0.429.

According to Definition 2, the AB is derived from M sub-
optimal solutions, so the characteristics of AB has a close
correlation to M . In order to illustrate this relationship,
we construct three data sets: RandomS1, RandomS2 and
RandomS3, each of which contains 34 clusters. Each clus-
ter has 100 data objects, among which 99 objects are
generated by a Gaussian distribution function with differ-
ent mean (μ) and standard deviation (σ ) and the 100th
data one is the mean of the rest of 99 data objects,
i.e. the 100th data objects is the centre of the cluster
in this manner. We run the Vertex Substitution Heuristic
(VSH) algorithm [17], a classical K-centre clustering algo-
rithm, on these three data sets, and denote the results as
VSH_RandomS1, VSH_RandomS2 and VSH_RandomS3, re-
spectively. VSH is executed for M = 2 : 2 : 20 times on each
data set, where M = 2 : 2 : 20 means M changing from 2
to 20 with step 2. The relationships between ABS, ABP and
M are shown in Fig. 3.

From Fig. 3, we can see that the changes on ABS and
ABP are in opposite trends with M . ABS is gradually de-
clining with the increase of M , while on the contrary, ABP
is increasing with M , and eventually the changes of ABS
and ABP become slight until a stable state is reached. The
explanation to this observation is intuitively because with
the increase of M , the overlap size of optimal results (ABS)
would decrease due to the stricter joint operation require-
ment, while for ABP the likelihood of more optimal results
Fig. 3. The plots of ABS and ABP of AB.
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in existence of the optimal clustering results dominates the
change. As a consequence, ABS has a totally reverse change
trend with M against ABP. As indicated above, we aim to
form an appropriate AB with both higher ABS and ABP val-
ues to construct a good start point in heuristic clustering.
Due to the reverse changes of ABS and ABP with M , we
obviously are not able to achieve their best optimizations
at the same time, and thus having to choose a tradeoff
between them to ensure the better initialization. In real
applications, the tradeoff of ABS and ABP is determined by
selecting an appropriate M . However, the setting of M is
still an open question in various applications [14,15], the
well used approach of selecting the M value is through
empirically choosing a reasonable M , which can guarantee
a better AB found. In the experimental study part, we will
describe this process of selecting M in detail.

3. Heuristic clustering algorithm based on Approximate
Backbone

In this section, we present the description of our pro-
posed algorithm as shown in Algorithm 1 which gives the
pseudo code of HC_AB. The whole process consists of two
stages, namely (1) the new initialization construction and
(2) the re-execution of K-centre clustering.

Algorithm 1: HC_AB.

Input: D , K , M
Output: best_V
(1) Generate M clustering result, Z = {V 1, V 2, . . . , V M }, by running

K-centre clustering algorithm;
(2) Find the AB a_bone(V 1, V 2, . . . , V M ) from Z;
(3) Select K − |AB| centres from ST;
(4) Rerun K-centre clustering algorithm with the new initialization;
(5) Return best_V .

In first stage, a K-centre clustering algorithm is run on
D with different initializations to generate the sub-optimal
clustering results collection Z . The AB a_bone(Z) is gen-
erated based on Definition 2 (shown in step 2) in order
to construct the first part of initialization centres. Since
a_bone(Z) only has |AB| centres, which is less than the
predefined cluster number K , we need to find the rest
K −|AB| initial centres. As shown in step 3, we then do the
search in ST = ⋃

Z \ a_bone(Z) to determine the K − |AB|
points with the highest frequency of presence in the esti-
mated optimal results Z , as the complementary part of the
initialization centres. The reason behind this computation
is how to select the K − |AB| points from the C K−|AB|

|ST| pos-
sible results in ST via an appropriate way, which is usually
a time-consuming process. To deal with it, here we adopt a
greedy method. Because the K-centre clustering algorithm
could generate well dispersed clustering results, we intend
to select the K − |AB| centres with the highest presence
frequencies in Z and the biggest deviations from the AB. To
do this, for each centre in ST , we first calculate the average
distance between the selected centre and all other centres
in the AB, and then multiply the average distance with its
presence frequency to generate a value for this centre. The
values of all candidate centres in ST form a sequence; we
Table 2
Descriptions of datasets used in experiments.

Data set Size Attribute Class

RandomS 2700 2 34
Statlog(Heart) 178 13 7
Digits 5620 64 9
Water 527 64 13
Sponge 76 45 12

sort it and select the top K − |AB| centres. Finally we com-
bine these K − |AB| centres with the |AB| centres derived
from AB to generate a new initialization setting and re-
execute the K-centre clustering algorithm with this new
initialization setting to generate the final clustering result
best_V (step 4).

According to the above discussion, each centre in Z is
uniquely represented by a data object ID in D , however,
for some kinds of K-centre clustering algorithms, such as
K-means where the clusters centres are the mean of all
data objects in the cluster rather than one data object. In
this case, we will use the follow steps to obtain the AB:
(1) in the same way we run the K-means algorithm for M
times on the data set D; and for each corresponding clus-
ter of M times results we use the join operation on the
data objects of the cluster to filter out a set of data objects
that are co-occurred in the same cluster, i.e., for example,
for the first cluster, we jointly filter out the data objects
that simultaneously assigned to the first cluster in total M
running; (2) we calculate the mean of these filtered data
objects within the mth cluster as V k

km , m = 1, . . . , K , and
eventually form the AB = {V 1

km, V 2
km, . . . , V K

km}, note that
V m

km could be void due to the no existence of data objects
jointly occurred in M results, i.e., K � |AB|; (3) we treat
this AB as one part of initialization and follow the same
process to add the K − |AB| objects to obtain the final ini-
tialization. For more details regarding this process, please
refer to [18].

4. Experiments

In order to evaluate the effectiveness of AB on overcom-
ing the initialization sensitivity of K-centre clustering algo-
rithms, we compare our algorithm with three traditional K-
centre clustering algorithms: K-means [19], CLARANS [20]
and VSH [17] and three modified K-centre clustering algo-
rithms with the improvement on initialization: CCIA [21],
CSI [22] and kd-tree [23], in terms of cluster quality. We
assess the clustering results derived by these clustering al-
gorithms on five data sets (shown in Table 2), including
a random synthetic data set and four real world data sets
downloaded from UCI. Particularly, in data pre-processing,
we omit all the non-numeric attributes from Sponge, Stat-
log and Digits data sets. The sum of square error, φ, be-
tween all the objects and their closest centres, is chosen
as the evaluation metric. Obviously, the smaller the φ value
the higher quality the clustering result achieves.

The experiments are conducted on a Pentium 4 ma-
chine with 2.66 GHz CPU and 2 GB RAM, running Windows
XP. The algorithms are implemented using Matlab 7.
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Table 3
Experimental results on five data sets.

Data set K-means CLARANS VSH CCIA CSI kd-tree HC_AB_K-means HC_AB_CLARANS HC_AB_VSH

RandomS 0.32 0.303 0.307 0.265 0.245 0.282 0.223 0.221 0.221
Statlog 0.433 0.427 0.413 0.389 0.361 0.393 0.312 0.298 0.302
Digits 0.804 0.778 0.792 0.698 0.726 0.743 0.561 0.558 0.558
Water 0.219 0.175 0.202 0.144 0.152 0.157 0.112 0.099 0.102
Sponge 0.108 0.046 0.085 0.039 0.041 0.038 0.035 0.029 0.031
4.1. Clustering quality results

We first run each compared K-centre algorithm on
these datasets for M ′ times (M ′ increases from 2 by
step 2), and then we determine the best one which makes
ABS and ABP value achieving the best tradeoff as the num-
ber of estimated optimal solutions, i.e., the parameter M
of HC_AB described in Section 3. After the determina-
tion of M , we run K-means, VSH and CLARANS under the
HC_AB framework, and denote them as HC_AB_K-means,
HC_AB_VSH and HC_AB_CLARANS respectively. For each
adapted HC_AB algorithm, we run each original K-centre
clustering algorithm for M − 1 times respectively to gen-
erate its corresponding sub-optimal clustering result col-
lection Z = {V 1, V 2, . . . , V M−1}, and then we form the AB
from Z and refine the initialization space by using the pro-
posed algorithm, last we re-run these K-centre clustering
algorithms with the new constructed initialization setting
to obtain the final clustering result. Meanwhile, we also
perform the experiments with these three traditional K-
centre clustering algorithms and three modified K-centre
clustering algorithms with the improvement on initializa-
tion. We carry out these six clustering algorithms for M
times and choose the best one out the clustering results
for comparison, to check whether our proposed approach
is able to outweigh them in terms of clustering quality. The
detailed experimental results are presented in Table 3.

From Table 3, we find that the φ values of HC_AB_
K-means, HC_AB_VSH and HC_AB_CLARANS are consis-
tently smaller than those of other six algorithms on five
data sets, which justifies the capability of our proposed
approach dealing with the initialization sensitivity in K-
centre clustering, therefore overcoming the drawback of
traditional heuristic clustering algorithms. Furthermore, it
is shown that the φ value of CLARANS algorithm is smaller
than those of K-means and VSH, indicating that CLARANS
is more robust in handling the initialization problem. Al-
though CLARANS is able to deal with the initialization sen-
sitivity problem in K-centre clustering algorithm via the
random restart method, it still has another drawback of
missing the better clustering results [19]. The finding of
the φ values of VSH being smaller than those of K-means
on five datasets is probably because that VSH is a noise-
insensitive algorithm by using the distribution method of
p devices [17]. However, VSH and K-means are both sensi-
tive to the initialization.

Compared to tradition K-centre clustering, CCIA, CSI and
kd-tree algorithms, which use different ways to manipu-
late the initialization sensitivity in K-means algorithm, are
able to achieve the improvement in terms of the φ val-
ues. However, their clustering performances are still much
lower than our approaches by up to 25%. As a result, we
conclude that our proposed AB based heuristic clustering
algorithm is not only able to effectively improve the clus-
tering result quality against the traditional K-centre clus-
tering algorithms, but also consistently outperform other
modified K-centre methods with the improvement on ini-
tialization.

4.2. Efficiency comparisons and complexity discussions

On the other hand, we also evaluate the efficiency (i.e.
time consumption) of each compared clustering algorithm
on five datasets. We run these six compared clustering
algorithm for M times and keep the average time con-
sumptions as the result. For HC_AB, the whole time cost of
HC_AB consists of two parts: the time cost of generating
sub-optimal clustering results collection Z , and the time
cost of finding AB and re-running K-centre clustering. Note
that the time cost for obtaining the (M − 1) sub-optimal
clustering results in a sequential execution manner would
be (M −1) times of the cost for running a round of the tra-
dition K-centre algorithm, such as K-means. Thus it is not
fair to compare the adapted HA_AB algorithms with their
counter-algorithms in this way. In order to increase the
reliability of efficiency comparison, we choose some tech-
nical means to reduce the overhead for preparing the sub-
optimal results in our experiment. One solution is that we
use parallel computing mechanism to generate the cluster-
ing results collection Z at first. In order to clearly describe
the time cost of HC_AB, we give an example of HC_AB_K-
means on RandomS data set. We run K-means algorithm
by using M − 1 threads on RandomS data set to gener-
ate the clustering results collection Z simultaneously, and
get the average time cost of 9.71 s as for the first step. By
adding the time cost 2.67 s of second steps of HC_AB_K-
means, we obtain the total time consumption of HC_AB_K-
means, i.e., 12.38 s. The time costs of HC_AB_CLARANS and
HC_AB_VSH are generated in the same way. We give the
time consumption results in the last three column of Ta-
ble 4.

From Table 4, we can find that the time consump-
tions of CLARANS, VSH, CCIA, CSI and kd-tree methods
are higher than those of K-means on five data sets. For
CLARANS and VSH, their computational complexity is
O (N2). The time consumptions of CCIA and CSI depend
on the time cost of new initialization constructing process
and the searching process. For kd-tree clustering algorithm,
the kd-tree of data objects must be constructed at first and
its computational complexity is O (N log(N)). The analysis
of the time cost of CLARANS, VSH, CCIA, CSI and kd-tree
methods conforms to the phenomena shown in Table 4.

From Table 4, we also could see that the time cost of
the proposed algorithms is in almost the same rang of that
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Table 4
Time consumption of compared clustering algorithms.

Data set K-means CLARANS VSH CCIA CSI kd-tree HC_AB_K-means HC_AB_CLARANS HC_AB_VSH

RandomS 9.72 162.88 123.67 99.02 81.72 169.43 12.38 167.87 130.29
Statlog 1.34 89.65 67.66 45.43 30.75 102.24 16.89 109.47 72.64
Digits 8.65 164.96 138.78 85.64 67.92 178.99 13.67 170.36 144.31
Water 5.44 112.39 100.87 91.29 81.57 156.42 20.12 118.34 110.81
Sponge 0.86 35.75 22.32 37.29 26.37 90.44 6.07 40.77 31.73
of counter-algorithms: K-means, CLARANS and VSH. For
example, HC_AB_CLARANS only needs 4.99 s (167.87 s −
162.88 s = 4.99 s) extra time cost over that of CLARANS
on RandomS data set. There are two reasons for this phe-
nomenon: (1) the parallel computing mechanism dramati-
cally reduces the time cost of the processors of generating
the clustering results collection Z ; (2) the initialization de-
rived from AB increases the converging speed of K-centre
clustering algorithm. As a result, we can conclude that al-
though the HA_AB algorithms will incur in some extra
time for generating the initialization, the convergence of
clustering speeds up and the final cluster results are of
better quality.

5. Conclusion

Heuristic clustering is sensitive to initializations and
is prone to sub-optimal solutions. Due to the strength of
AB on improving the performance of heuristic algorithms,
many studies have introduced it in heuristic clustering al-
gorithms. In this paper, we have proposed a novel solu-
tion to this by devising an Approximate Backbone based
K-centre clustering approach. The main strength of the
proposed method is the capability of restricting the ini-
tialization space around the optimal results by using the
Approximate Backbone, and in turn, reducing the impact of
initialization and improving the performance of heuristic
clustering. Experiments on synthetic and real world data
sets in comparison with traditional and modified K-centre
clustering algorithms have shown that the proposed ap-
proach possesses the capability of improving the quality of
clustering and reducing the initialization impact.
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