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a b s t r a c t

Recent years have witnessed a considerable surge of interest in the multi-label learning problem. It has

been shown that a key factor for a successful multi-label learning algorithm is to effectively exploit

relations between labels. However, most of the previous work exploiting label relations focuses on

pairwise relations. To handle the situations where there are intrinsic correlations among multiple

labels, in this paper, we propose a generative model, Labeled Four-Level Pachinko Allocation Model

(L-F-L-PAM), to capture correlations among multiple labels. In our approach of multi-label learning on

text data, we apply the proposed model for inferring the training data and the standard Four-Level

Pachinko Allocation Model for the test data. Furthermore, we propose a pruned Gibbs Sampling

algorithm in the test stage to reduce the inference time. Finally, extensive experiments have been

performed to validate the effectiveness and efficiency of our new approach. The results demonstrate

significant improvements of our model over Labeled LDA (L-LDA) and superiority in terms of both

effectiveness and computational efficiency over other high-performing multi-label learning methods.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Text data has become the major information source in our
daily life [1]. In the meantime, with the explosive growth of the
digitally stored text documents, content-based document man-
agement tasks that help users to quickly find their desired
information have gained a prominent status in the data mining
field [2]. One of these tasks is that of automatically organizing a
text document into predefined categories, which is known as text
classification. This problem has attracted more and more atten-
tion from researchers due to its wide applications, such as
information retrieval (IR), information extraction and filtering,
text mining, and natural language processing. In many real-world
problems, text data, including documents and web pages, are
frequently annotated with more than a single label. For example,
a newspaper article talking about the reactions of Christian
churches to the release of the Da Vinci Code film might belong
to the following two categories: Society/Religion and Arts/Movies.
Therefore, multi-label document classification has become a
challenging research theme in the data mining field, and has
found successful applications in various domains, not limited to
traditional document classification. For instance, Katakis et al. [3]
ll rights reserved.
models the tag suggestion as a multi-label text classification task,
where each tag associated with a document may be treated as a
label. Since the task of multi-label document classification can be
naturally modeled as a multi-label learning problem, its accuracy
and efficiency can be improved through multi-label learning
algorithms.

A variety of multi-label learning approaches have been proposed
in the literature. Most of them involve learning a number of different
binary classifiers [4,5] and using the outputs to determine the label
or labels of a new sample. The two main deficiencies of these
methods are (1) the rough separation strategy ignores the correla-
tion between the classes; (2) these approaches toward multi-label
learning suffer severely from unbalanced data, especially when the
number of labels is large.

The second group of studies on multi-label learning considers the
pairwise relations between class labels. These methods involve
modeling the correlations between any two class labels for multi-
label learning in a generative way [6,7], or discriminatively extend-
ing specific single-label learning algorithms to incorporate pairwise
label correlations [8–13].

However, these pairwise approaches may suffer from the fact
that the correlations between different labels would possibly go
beyond second-order [14]. There exists some previous work in the
literature which exploits higher order relations between class
labels, most of which imposes all the other labels’ influence on
each label [15–17], or addresses correlations among a random
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subset of labels [18,19]. However, such assumptions are likely to
be violated in many real-world applications, where certain structures
often exist among labels. Table 1 shows an example of association
rules among labels in a real data set. Association rule learning has
been considered for the task of label correlation learning in [20]. We
notice that not only pairwise correlations between labels such as the
label ‘‘M14’’ and ‘‘MCAT’’ but also correlations among multiple labels
such as the label ‘‘CCAT’’, ‘‘C151’’ and ‘‘C15’’ exist. To handle these
types of label structures, Zhang et al. [14] exploits label dependency
for multi-label learning by incorporating the correlated labels as
additional features to construct classifiers for each label. The result-
ing Bayesian networks encoding the conditional dependencies of the
labels is approximately learned.

In this paper, we present a generative model for learning from
multi-label text data. We have several motivations for using a
generative model to capture correlations of multiple labels. First,
it would be easy to postulate complex latent structures respon-
sible for a set of observations; Second, the correlations between
the different factors could be easily exploited by introducing
latent variables [6]. Fig. 1 shows the DAG structure of the model.
There is one root, s nodes at the second level, s0 labels at the third
level and n words at the bottom. If multiple label nodes at the
third level are related, they will have a parent node in the second
level. To simplify the model, we learn the parameters instead of
learning structure of connectivity between the nodes in the second
level and nodes in the third level. The root is connected to all nodes
at the second level, nodes at the second level are fully connected to
labels and labels are fully connected to words. In this paper, the
nodes in the second level are called super-labels. As we can see, the
model structure is similar to the Four-Level Pachinko Allocation
Model [21]. The major difference is that the third level consists of
observed labels instead of latent sub-topics. Thus, in this paper, we
call the proposed generative model Labeled Four-Level Pachinko
Allocation Model (L-F-L-PAM for short).

Finally, we also show how to use this model for multi-label
learning. Additionally, in order to reduce the inference time in the
test stage, we present Pruned Gibbs Sampling for inferring the
unlabeled test documents. We conduct extensive experiments on
real news articles and web pages to compare our proposed model
with the other state-of-the-art baselines. The experiments show
that our proposed model that considers relations of multiple
labels can greatly improve the performance in the label ranking
task on multi-label text data.

Overview: The remainder of the paper is organized as follows.
In Section 2, we briefly introduce the statistical generative models
Table 1
An example of association rules among labels in a real data set. The data set is a

subset of Rcv1_v2 with documents IDs from 2286 to 5479. Here, the support

threshold is set to 10% and the confidence threshold is 90%.

Association rule Support (%) Confidence (%)

{C15-CCAT} 19.6 100

{CCAT,C151-C15} 11.7 100

{M14-MCAT} 10.2 100

r

t1 ... ts

t’1 t’2 t’s’

w1 w2 wn

...

...

Fig. 1. The DAG structure of L-F-L-PAM.
applied in learning multi-label text data. Section 3 shows the
L-F-L-PAM and presents the generative learning process on multi-
label documents, followed by the introduction of the inference
algorithm and the parameter estimation method. In Section 4,
we conduct experiments to evaluate L-F-L-PAM. Finally, Section 5
concludes the paper.
2. Generative topic models for learning multi-label text data

Statistical generative models have been successfully used to
capture the semantic characteristics in text documents. Latent
Dirichlet Allocation (LDA) [22] is a widely used topic model, a
completely unsupervised algorithm that models each document
as a mixture of topics. Some research shows that unsupervised
LDA does not perform very well in supervised settings [23]. To
address this issue, several modifications of LDA are successively
proposed, such as Supervised LDA [24] and DiscLDA [25]. How-
ever, these models are inappropriate for multi-label learning
because they only allow a single label for each document [26].

For the task of multi-label text classification, several generative
topic models have been recently proposed. For example, McCallum
[27] proposed a mixture model trained by EM, assuming that a multi-
label document is produced by a mixture of the word distributions of
its labels, where each label generates different words. Given a new
document the most probable set of labels is then selected from the
power set of possible classes with Bayes rule. Based on an assump-
tion that multi-labeled text has a mixture of characteristic words
appearing in single-labeled text, Parametric Mixture Models (PMM1
and PMM2) [7] are presented, where PMM2 is a more flexible version
of PMM1 and explicitly incorporates the pairwise correlation
between any two class labels. Ramage et al. [26] proposed Labeled
LDA (L-LDA) based on the idea that each word in a document is
associated with the most appropriate labels. As a multi-label classi-
fier, L-LDA can trade off label-specific word distributions with
document-specific label distributions in quite the same way. It is
also shown to be competitive with a strong baseline (multiple one
vs-rest SVMs) for multi-label text classification. Another related piece
of work is the ColModel proposed by Wang et al. [6], which is a
generative probabilistic model employing a multivariate normal
distribution to capture the correlation between two labels. Unfortu-
nately, the work discussed above can not capture correlations of
multiple labels. In this paper, we present Labeled Four-Level Pachinko
Allocation Model which adds one additional latent correlations level
based on the Labeled LDA model. The model can capture relations
among multiple labels to improve the learning performance on
multi-label text data.
3. Labeled Four-Level Pachinko Allocation Model

In this section, we introduce several notations and then give a
description of the generative process, inference algorithm and
parameter estimation method for the L-F-L-PAM.

First, we define a multi-label training set D consisting of 9D9
documents, K unique labels and V words, and the model consists
of s super-labels in the second level, K labels in the third level and
V words at the bottom. ar is an s-dimensional Dirichlet parameter
to characterize the super-label Dirichlet prior distribution under
the root r; faig

s
i ¼ 1 are s K-dimensional Dirichlet parameters to

represent the label distributions under super-labels; fbjg
K
j ¼ 1 are K

V-dimensional Dirichlet parameters to express the word distribu-
tions under labels. A given labeled document d is represented by a
tuple consisting of a list of word indices wðdÞ ¼ fw1, . . . ,wNd

g and a
list of binary label presence/absence indicators KðdÞ ¼ flðdÞ1 , . . . ,lðdÞK g,
where wiAfn1, . . . ,nV g and lðdÞk Af0;1g. Let zðdÞ ¼ fz1, . . . ,zNd

g and
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z0ðdÞ ¼ fz01, . . . ,z0Nd
g be the vectors of all words’ super-label assign-

ment and label assignment of the document d, where ziA
ft1, . . . ,tsg and z0jAft

0
1, . . . ,t0Kg. In addition, for each label t0k in the

corpus, we define Dk ¼ fd9l
ðdÞ
k ¼ 1g as the collection of documents

that contain the label t0k. Besides, we assume that the document’s

labels KðdÞ are generated using a Bernoulli coin toss for each label
t0k, with the labeling prior probability Fk that indicates whether

the corresponding label is in the given document or not [26].
Conditioned on the model parameters ða,b,UÞ, the graphical

representation of the L-F-L-PAM is depicted in Fig. 2. Following
the standard probabilistic graphical model formalism [28], each
node represents a random variable, and the links express prob-
abilistic relationships between these variables and the number s

in a box means the unit in the box is repeated s times. Shaded
nodes are observed random variables, unshaded nodes are latent
random variables.

The L-F-L-PAM can be viewed in terms of a generative process
as shown in Table 2, the main difference from traditional Four-
Level Pachinko Allocation Model is reflected in Step 2. For each
labeled document d, the label proportions yðdÞti

, under each super-
label ti, are drawn from giðai9K

ðdÞ
Þ rather than giðaiÞ. Similarly, in

Fig. 2, yi is dependent not only on the label prior parameter ai but
also the observed labels K. Therefore, the label assignment z0t , in
step 3b in Table 2, is restricted to the document’s labels KðdÞ.

Following this process, we can write the joint distribution of
all known and hidden variables given the Dirichlet parameters as
follows:

pðd,zðdÞ,z0ðdÞ,yðdÞ,j9a,bÞ ¼ pðKðdÞ9UÞpðyðdÞr 9arÞ
YK
j ¼ 1

pðjt0
j
9bjÞ

�
Ys

i ¼ 1

pðyðdÞti
9ai,K

ðdÞ
Þ
YNd

t ¼ 1

ðpðzt9y
ðdÞ
r Þpðz

0
t9y
ðdÞ
zt
Þpðwt9jz0t

ÞÞ
Table 2
Generation process for Labeled Four-Level Pachinko Allocation Model.

1. For each label t0j , jAf1, . . . ,Kg

(a) Generate multinomial distribution over words jt0
j
�Dirð:9bjÞ

2. For each document d

(a) For each label t0k , kAf1, . . . ,Kg, sample lðdÞk Af0;1g � Bernoullið:9FkÞ

(b) Sample yðdÞr from the root grðarÞ, where yðdÞr is a multinomial distribution

over super-labels

(c) For each super-label ti, sample yðdÞti
from giðai9L

ðdÞ
Þ, where yðdÞti

is a

multinomial distribution over labels that appear in the document d

3. For each token word wt in the document d

(a) Sample a super-label zt from yðdÞr

(b) Sample a label z0t from yðdÞzt

(c) Sample word wt from jz0t

                                   |D|
                   |w(d)|

K

         s

β

αi
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Fig. 2. The graphical model of L-F-L-PAM.
And the likelihood of the document d is obtained by integrat-
ing over yðdÞ, j and summing over zðdÞ, z0ðdÞ as follows:

pðd9a,bÞ ¼
ZZ

pðKðdÞ9UÞpðyðdÞr 9arÞ
YK
j ¼ 1

pðjt0
j
9bjÞ

Ys

i ¼ 1

pðyðdÞti
9ai,K

ðdÞ
Þ

�
YNd

t ¼ 1

X
zt ,z0t

ðpðzt9y
ðdÞ
r Þ � pðz0t9y

ðdÞ
zt
Þpðwt9jz0t

ÞÞ dyðdÞ dj

Finally, the probability of generating a whole corpus is the
product of the probability for every document:

pðD9a,bÞ ¼
Y

d

pðd9a,bÞ ð1Þ

In the rest of the section, we will discuss the inference
algorithm and parameter estimation method for L-F-L-PAM.

3.1. Inference

Inferring the multinomial distribution parameters y and j
by directly and exactly maximizing the likelihood of the whole
data collection in Eq. (1) is intractable. Fortunately, we find that
the Bernoulli prior parameter F is d-separated from the rest
of the model given KðdÞ since the labels KðdÞ of the document are
observed. As a result, the L-F-L-PAM is the same as Four-Level
Pachinko Allocation Model, except for the constraint that the label
proportions hðdÞti

are limited to the labels of the document d. We
can also use collapsed Gibbs sampling [29] to perform inference.
For each token word in each document d, we just need to jointly
sample the super-labels and label assignments because of the
same root in all assignment paths [21]. For each position p in the
labeled document d, wp ¼ nk, the sampling probability for each
super-label and label pair is as follows:

Pðzp ¼ ti,z
0
p ¼ t0j9D,z�p,z0�p,a,bÞpPðw,zp,z0p9D�p,z�p,z0�p;a,bÞ

¼
nðdÞri þari

nðdÞr þ
Ps

i ¼ 1 ari

�
nðdÞij þaij

nðdÞi þ
PK

j ¼ 1 aij

�
njkþbjk

njþ
PV

t ¼ 1 bjt

where the subscript �p indicates all the observations or assign-
ments except the current position p. Excluding the current token,
nðdÞij contains the number of times the label t0j is assigned to some
word tokens under super-label ti in document d; nd

i is the number
of occurrences of the super label ti in document d; nj is the
number of occurrences of label t0j in the whole corpus; njk is the
count of word nk in the label t0j. The three parts at the right hand
side of the equation affect the super-label and label pair assign-
ment for a particular word token in each document. Among them,
the left two parts are the probability of super-label ti and the
probability of the label t0j under super-label ti in the document d;
the right part is the probability of word wp under label t0j in the
whole corpus. It is worth noting that the sampled labels t0j for each
multi-labeled document d is restricted to be d0s (observed)
label set.

The only problem left for the inference procedure is, when we
are in the testing phase, we may not know exactly which labels
are assigned to the given document in advance. So we adopt
standard Four-Level Pachinko Allocation Model for unlabeled test
set, and also perform Gibbs Sampling. In this paper, we propose
pruned Gibbs Sampling algorithm for inferring unlabeled test
data. It is based on the idea that if a label is not assigned to any
tokens of a word in training set, then it will have low probability
to be considered for any token of this word in test documents. To
reduce the inference and learning time in the test stage, for each
word in the test set, we just consider the labels that have been
assigned to this word during training. The entire process of the
pruned Gibbs Sampling algorithm is summarized in Table 3.



Table 3
Pruned Gibbs sampling algorithm.

Input: Super labels T ¼ ft1 , . . . ,tsg

V label sets Sk ,kAf1, . . . ,Vg. Sk ¼ ft
0
j9njk 40g, where njk contains the number

of times the word nk is assigned to the label t0j in the training set

For every document d from the test documents

For every word w
p
¼ nk in document d

(1) Remove the current super-label and label pair assignment for w
p

(2) Let X ¼ T � Sk

(3) Sample the new super-label and label pair assignment for w
p

from X

1 URL: http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_

rcv1v2_README.htm.
2 URL: http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz.
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Given the test set D, let wðdÞ, zðdÞ and z 0ðdÞ be the vectors of all
words, their super-label assignments and label assignments of the
test document d. For each super-label and label pair assignment
for each token word w

p
¼ nk in test document d, the sampling

probability depends on the current assignment of all the other
words in the test set and the assignments of all words in the
training set as follows:

Pðz
p
¼ ti,z

0

p
¼ t0j9D,z

�p
,z 0�p,D,z,a,bÞ

¼
n
ðdÞ

ri þari

n
ðdÞ
r þ

Ps
i ¼ 1 ari

�
n
ðdÞ

ij þaij

n
ðdÞ

i þ
PK

j ¼ 1 aij

�
n

jk
þnjkþbjk

n
j
þnjþ

PV
t ¼ 1 bjt

where the new notation n
jk

indicates the number of times that
the word nk is assigned to the label t0j and n

j
is the number of

times the label t0j is sampled in the test documents D.

After sampling, the label distribution of the document d is

WðdÞ ¼ fW
ðdÞ

t0
1

, . . . ,W
ðdÞ

t0
K
g, each distribution component of which denotes

the confidence score of assigning the corresponding label to docu-

ment d, and is computed as follows:

W
ðdÞ

t0
j
¼
Xs

i ¼ 1

n
ðdÞ

ri þari

n
ðdÞ
r þ

Ps
i ¼ 1 ari

�
n
ðdÞ

ij þaij

n
ðdÞ

i þ
PK

j ¼ 1 aij

ð2Þ

3.2. Parameter estimation

In L-F-L-PAM, the Dirichlet parameter ari can be interpreted as a
prior observation count for the number of times super-label ti is
sampled for a document. The hyperparameter bjk can be interpreted
as the prior observation count on the number of times the word nk is
sampled from the label t0j before any word from the document
collection is observed. In this paper, we assume a fixed symmetric
Dirichlet distribution for the root such that ar1 ¼ � � � ¼ ars, and
similarly for bjkðj¼ 1, . . . ,K; k¼ 1, . . . ,VÞ.

The parameter ai can be interpreted as the number of times one
label is sampled for a document under the super-label ti. It captures
different correlations among labels, so it is necessary to estimate the
Dirichlet parameter ai for each super-label ti. Following the choice of
the Four-Level Pachinko Allocation Model, smoothing moment
matching [30] is exploited to learn the super-label Dirichlet para-
meters. In each iteration of Gibbs sampling, aij, the jth component in
ai, is updated according to the following rules:

meanij ¼
1

Ni
�
X

dADj

nðdÞij

nðdÞi

varij ¼
1

Ni
�
X

dADj

nðdÞij

nðdÞi

�meanij

 !2

mij ¼
meanij � ð1�meanijÞ

varij
�1
aij ¼
meanij

exp

PK

j ¼ 1
logðmijÞ

K�1

 !

where d is from the collection Dj instead of D, since just word tokens
from document collection Dj can be assigned to label t0j.
4. Experiment evaluation

In this section, we will apply our proposed approach for multi-
label learning problem on the Rcv1_v2 as well as 8 Yahoo! data sets
and evaluate it based on evaluation metrics of class ranking,
comparing with several state-of-the-art multi-label learning meth-
ods, including Ranking by pairwise comparison (PRC) [31], BP-MLL
[10], and L-LDA. The only factor that causes difference between our
model and L-LDA is that our model has an additional level that can
formulate the correlation of several labels. The comparison based on
these two models can illustrate the significance of incorporating the
correlation of multiple labels in multi-label learning.
4.1. Data preparation

Rcv1_v2: Rcv1_v2 [32] text data set1 is news stories collected
by Reuters and organized by three different category sets: Topics,
Industries, and Regions. It has been widely used as a benchmark
data set to evaluate text classification [1]. We choose the first
6000 documents with document IDs from 2286 to 8584 and
consider the Topics category set in our experiments. In this paper,
the first 3000 documents with their labels are used as the training
set and the rest as the test set.

Eight Yahoo data sets: Each data set contains web pages collected
from one of Yahoo!’s top-level categories, and each page is labeled
with one or more second level sub-categories. More details about the
Yahoo! multi-label web page categorization data set2 are given in
[7,33,34]. The eight data sets used in our experiment are Computers
& Internet, Education, Entertainment, Health, Recreation, Reference,
Science, Society. In our experiments, we use the original training and
test subsets provided in the releases of the eight data sets.

The details of the nine data sets are given in Table 4. Note that
labels that appear in the test set but not in the training set are
ignored. ‘‘LC’’ (Label cardinality) is the average number of labels of
the examples in training set and is used to quantify the number of
alternative labels that characterize the examples of a multi-label
training data set.
4.2. Evaluation metrics

Since our approach only produces a ranked list of class labels
for a test document, four ranking measures are employed for all
the algorithms in this paper. They are specially designed for
multi-label learning and proposed in [9]. Given a multi-label test
set D, the details of the four metrics are as below. Here, the set of
labels Pd are called relevant for the given instance d, the set Nd

are the irrelevant labels; tðd,lÞ denotes the rank of the label l in
the predicted ranking for a given instance d, t�1ðd,kÞ is a label that
is assigned to rank k.
(1)
 Average precision (avgprec) evaluates the average fraction of
labels ranked above a particular label lAPd which actually is

http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm
http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm
http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz
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in Pd ; the bigger the value, the better the performance:

avgprecðtÞ ¼ 1

9D9

X
d AD

1

9Pd 9

X
lAPd

9fl0APd 9tðd,l0Þrtðd,lÞg9
tðd,lÞ

ð3Þ
(2)
 Ranking loss (rloss) evaluates the average fraction of pairs of
relevant label and irrelevant label that are not correctly
ordered; the smaller the value, the better the performance:

rlossðtÞ ¼ 1

9D9

X
d AD

9fðl,l0ÞAPd � Nd : tðd,lÞ4tðd,l0Þg9

9Pd 9 � 9Nd 9
ð4Þ
(3)
 One-error computes how many times the top-ranked label is
not relevant for the instance; the smaller the value, the better
the performance.

one-errorðtÞ ¼ 1

9D9

X
d AD

t�1ðd,1Þ =2 Pd ð5Þ

Here p equals 1 if p holds and 0 otherwise.

(4)
 Coverage evaluates how many steps are need, on average, to

move down the label list in order to cover all the relevant
labels of the instance; the smaller the value, the better the
performance:

coverageðtÞ ¼ 1

9D9

X
d AD

max
lAPd

tðd,lÞ�1 ð6Þ
e 4
acteristics of data sets. ‘‘#Training set’’ indicates the number of instances in

training set; ‘‘#Test set’’ indicates the number of instances of the test set;

bel’’ indicates the number of labels in the training set.

ta set #Training set #Test set #Label LC

v1_v2 3000 3000 95 3.27

mputers 6270 6170 32 1.52

ucation 6030 6000 33 1.46

tertainment 6356 6374 21 1.41

alth 4557 4648 29 1.64

creation 6471 6357 22 1.43

ference 4027 3999 32 1.66

ience 3214 3214 39 1.47

ciety 7273 7239 26 1.68

3. Class Perplexity on the number of super-labels. The left panel illustrates the perplexit

o! data sets.
Here the coverage metric is normalized according to [14] so
that all the four metrics vary between ½0;1�.
The four evaluation metrics defined above measure the ranking
performance of multi-label learning approach from different aspects.
In general, it is difficult for one multi-label learning algorithm to
outperform another algorithm in terms of all the four measures.

4.3. Experimental results and discussion

4.3.1. The parameters setting

We use the same settings of Dirichlet parameters for the root
and label as discussed in [21]. For the root, each component of the
Dirichlet parameter vector is 0.01. The multinomial distributions
for labels are sampled once for the whole corpus from a given
Dirichlet with parameter 0.01. The estimation process for the
super-label Dirichlet parameters is depicted in Section 3.2.

We employ the class perplexity to estimate the effect of the
number of super-label factors. Class perplexity is used by con-
vention in language modeling and can be thought as the inverse
of the geometric mean per-class likelihood, a better general-
ization capability is indicated by a lower class perplexity over
the held-out testing samples [6]. For a test set D, the perplexity is
as follows:

perplexityðDÞ ¼ exp
�
P

d AD

P
t0

j
APd

log pðt0j9w
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d AD Pd

8<
:
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As is well known, the common method to evaluate perplexity
in topic models is to hold out test data from the corpus to be
trained and then test the estimated model on the held-out data.
Here, for each data set, we first ordered the original training set
by document ID, then held out the last 25% for test purposes and
trained the model on the remaining 75%. In the cases where there
are some labels not present in the remaining 75%, for each of
these labels, we move one sample containing the label from the
held-out test set to the training set. Fig. 3 shows the class perplexity
with different number of super-labels in all data sets. In the following
experiments, we will pick the number of super-labels that produces
the best result.

In order to make the comparison more meaningful, we also
learn the hyperparameters in L-LDA. Minka’s fixed-point iteration
y on the RCV1_v2 data set and the right panel illustrates the perplexity on the



Table 7
Performance of each algorithm in terms of ranking loss on the all data sets.

Data set Algorithm

L-F-L-PAM L-LDA RPC BP-MLL

Rcv1_v2 0.087(2) 0.795(4) 0.305(3) 0.057(1)

Computers 0.084(2) 0.330(4) 0.168(3) 0.072(1)

Education 0.082(2) 0.354(4) 0.169(3) 0.074(1)

Entertainment 0.060(1) 0.061(2) 0.063(3) 0.082(4)

Health 0.054(1) 0.285(4) 0.089(3) 0.056(2)

Recreation 0.079(1) 0.169(4) 0.121(3) 0.111(2)

Reference 0.068(2) 0.270(4) 0.075(3) 0.067(1)

Science 0.117(2) 0.350(4) 0.177(3) 0.098(1)

Society 0.107(1) 0.213(4) 0.186(3) 0.115(2)

Average rank 1.556 3.778 3.000 1.667

Table 8
Performance of each algorithm in terms of one-error on all the data sets.

Data set Algorithm

L-F-L-PAM L-LDA RPC BP-MLL

Rcv1_v2 0.116(1.5) 0.392(3) 0.116(1.5) 0.434(4)

Computers 0.374(2) 0.523(4) 0.368(1) 0.473(3)

Education 0.528(2) 0.612(3) 0.457(1) 0.672(4)

Entertainment 0.375(2) 0.466(4) 0.372(1) 0.384(3)

Health 0.255(2) 0.384(3) 0.241(1) 0.478(4)

Recreation 0.405(1) 0.446(3) 0.412(2) 0.450(4)

Reference 0.390(2) 0.508(3) 0.303(1) 0.529(4)

Science 0.453(2) 0.554(3) 0.425(1) 0.631(4)

Society 0.470(2) 0.609(4) 0.386(1) 0.482(3)

Average rank 1.833 3.333 1.167 3.667

Table 9
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technique, which is most widely used for learning hyperpara-
meters in LDA, is applied here. In this paper, each step of fixed-
point iteration is formalized as follows:

an’
a
PK

k ¼ 1

P
dADk
½CðnðdÞk þaÞ�CðaÞ�
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It is slightly different from that used in LDA [35]. Since in
Labeled LDA each label k is just sampled in document collection
Dk. We initialize the hyperparameters as a¼ 1:0, b¼ 0:01 and
turn on Minka’s updates after 20 loops. The best hyperparameter
settings based on the training set are in Table 5.

In Gibbs sampling for L-F-LPAM and L-LDA, we use 800 burn-in
iterations, then draw five samples in the following 200 iterations
during training, and 100 iterations and one sample during test.
Each Gibbs sampler is initialized randomly. For BP-MLL, the
number of hidden neurons is set to 20% of the dimensionality
and the number of training epoches is set to 100 [10]. Libsvm
(with linear kernel) [36] are used as the base classifier for RPC.

4.3.2. A comparison of results

The experimental results in terms of different metrics are
reported in Tables 6–9, where the rank of each method in each
data set is shown in bold face in the parentheses, the average rank
of each method in terms of each metric is shown in the last line of
each table. In the case of a tie, ranks are added together and
divided by the number of ties. We observe that our method
improves substantially over L-LDA on the all data sets in terms of
each metric and it is not directly clear how to compare our
method with the other baselines. Following the suggestions in
[37], we compare the different methods according to their
average rank.
Table 5
Parameters selection results of L-LDA.

Data set Best a Best b

Rcv1_v2 0.002 0.011

Computer 0.001 0.088

Education 0.001 0.103

Entertainment 0.002 0.138

Health 0.002 0.082

Recreation 0.002 0.121

Reference 0.001 0.104

Science 0.001 0.078

Society 0.002 0.130

Table 6
Performance of each algorithm in terms of average precision on the all data sets.

Data set Algorithm

L-F-L-PAM L-LDA RPC BP-MLL

Rcv1_v2 0.667(2) 0.387(4) 0.783(1) 0.577(3)

Computers 0.689(1) 0.440(4) 0.667(2) 0.645(3)

Education 0.586(1) 0.380(4) 0.582(2) 0.562(3)

Entertainment 0.713(1.5) 0.576(4) 0.705(3) 0.713(1.5)

Health 0.761(2) 0.582(4) 0.766(1) 0.695(3)

Recreation 0.674(1) 0.593(4) 0.637(3) 0.657(2)

Reference 0.707(2) 0.559(4) 0.755(1) 0.637(3)

Science 0.634(1) 0.502(4) 0.625(2) 0.535(3)

Society 0.605(3) 0.484(4) 0.607(2) 0.618(1)

Average rank 1.611 4.000 1.889 2.500

Performance of each algorithm in terms of coverage on all the data sets.

Data set Algorithm

L-F-L-PAM L-LDA RPC BP-MLL

Rcv1_v2 0.226(3) 0.479(4) 0.178(2) 0.147(1)

Computers 0.127(2) 0.408(4) 0.193(3) 0.113(1)

Education 0.107(2) 0.418(4) 0.183(3) 0.101(1)

Entertainment 0.130(3) 0.329(4) 0.124(2) 0.116(1)

Health 0.107(2) 0.426(4) 0.138(3) 0.100(1)

Recreation 0.154(2) 0.294(4) 0.206(3) 0.152(1)

Reference 0.078(1) 0.274(4) 0.085(3) 0.083(2)

Science 0.126(1) 0.319(4) 0.171(3) 0.135(2)

Society 0.194(2) 0.339(4) 0.284(3) 0.181(1)

Average rank 2.000 4.000 2.778 1.222
The average rank on all the comparing algorithms in terms of
different evaluation criterions is summarized in Table 10, along
with the average rank of each method. We observe that L-F-L-PAM
exhibits the highest average rank in the average precision and rank
loss measures, the second best average rank in terms of one-error
and coverage. Over all metrics, L-F-L-PAM has the highest
average rank.

In addition, the Wilcoxon signed-rank test (two-tailed at
p¼5%) was applied in order to examine if L-F-L-PAM is statisti-
cally significant over the rest of the methods in terms of different
metrics. Over all data sets, whenever L-F-L-PAM achieves sig-
nificantly better/similar/worse performance than the competing
algorithm, a win/tie/loss is counted. The resulting win/tie/loss
counts for L-F-L-PAM against the competing algorithms are sum-
marized in Table 11. We can observe that L-F-L-PAM performs



Table 11
The win/tie/loss results for L-F-L-PAM against the compared algorithms in terms

of different evaluation metrics.

Metric L-F-L-PAM against

L-LDA RPC BP-MLL

Avgprec 1/0/0 0/1/0 1/0/0

Rank loss 1/0/0 1/0/0 0/1/0

One-error 1/0/0 0/0/1 1/0/0

Coverage 1/0/0 1/0/0 0/1/0

In total 4/0/0 2/1/1 2/2/0

Table 12
The computational time including the training phase and test phase of each multi-

label learning algorithm on all the data sets, measured in hours.

Data set Algorithm

L-F-L-PAM L-LDA RPC BP-MLL

Rcv1_v2 1.01 0.14 2.35 13.54

Computers 1.79 0.45 9.12 26.24

Education 1.57 0.31 7.96 25.21

Entertainment 1.66 0.50 5.91 26.29

Health 0.98 0.30 3.62 19.05

Recreation 1.41 0.59 8.53 30.23

Reference 1.44 0.54 3.44 17.61

Science 1.43 0.48 4.59 13.47

Society 2.46 0.85 13.43 30.39

Table 10
The average rank of each method in each evaluation metric, along with the

average rank of each method.

Metric Algorithm

L-F-L-PAM L-LDA RPC BP-MLL

Avgprec 1.611 4.000 1.778 2.611

Rank loss 1.556 3.778 3.000 1.667

One-error 1.833 3.333 1.167 3.667

Coverage 2.000 4.000 2.778 1.222

Average rank 1.750 3.778 2.208 2.264
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significantly better than BP-MLL and L-LDA in terms of average rank
and one-error, significantly better than RPC and L-LDA in terms of
rank loss and coverage, and just significantly worse than RPC in
terms of one-error.

Table 12 reports the computational costs consumed by each
multi-label learning algorithm on the all data sets. As shown in
Table 12, L-F-L-PAM consumes much less time than BP-MLL and
RPC on all data sets while being slower than L-LDA.
5. Conclusion

In this paper, we try to address data mining for document
classification with a special treatment from multi-label learning
perspective. To this end, we propose a generative model, called
Labeled Four-Level Pachinko Allocation Model (L-F-L-PAM), which
has a latent correlation level to formulate the latent relations of
multiple labels. Furthermore, we propose a pruned Gibbs Sam-
pling algorithm in the test stage to reduce the inference time. The
empirical results show that the proposed method outperforms
other state-of-the-art baselines in terms of effectiveness. This
shows the evidences that it is necessary to consider the relations
of multiple labels in the multi-label learning problem. In addition,
our method is superior in terms of computational efficiency
compared with some other high-performing multi-label learning
methods.

Indeed, our model can be generalized to other multi-label
learning problems, not narrowly restricted to text data. For example,
scene categorization in image processing and gene function annota-
tion in bioinformatics, where the objects of scenes or genes can be
treated as documents in multi-label document classification, the
features representing the objects correspond to the words at the
bottom, and class labels in images or functional classes in genes work
as labels at the third level, respectively. In this way, the correlations
among multiple labels can be captured by the super-labels in the
second level.

Finally, real-world applications of multi-label learning often
feature a large number of classes and a relatively small size of
training data. All the multi-label learning approaches exploiting
relations between labels may suffer from the problem that the
learned relations among labels are not consistent with the actual
situation. Thus, we will also try to use large scale external data
sources for learning the structures of multi-label relations offline.
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