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On-demandbroadcast is awidely accepted approach for dynamic and scalablewireless information
dissemination systems. With the proliferation of real-time applications, minimizing the request
deadline miss ratio in schedulingmulti-item requests has become an important task in the current
architecture. In this paper, we prove the NP-hardness of broadcast scheduling of real-time multi-
item requests in both single- and multi-channel environments. Furthermore, we propose two
profit-based scheduling algorithms, PVC and SSA, for single- andmulti-channel scheduling, respec-
tively, both of which utilize our new concept “profit” of pending items and “opportunity cost” of
pending requests. To the best of our knowledge, it is also the first time to introduce opportunity
cost, which is derived from economics, into on-demand broadcast scheduling. Based on the sched-
uling result of PVC for pending requests, SSA is proposed to allocate selected items of scheduled re-
quests to available channels. Finally, simulation results show great improvement in comparison
with traditional algorithms. In general, PVC for single channel scheduling is superior to the best
of other algorithms in terms of request deadline miss ratio. For multi-channel scheduling, SSA
has larger advantage with increasing number of channels in terms of request deadline miss ratio
than the best of other algorithms.
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1. Introduction

With the rapid proliferation of software and hardware technology in mobile computing, information acquisition [1] has become
increasingly important for emerging mobile applications. There are three major approaches to disseminating information: P2P,
push-based data broadcast, and pull-based data broadcast. Recently, data broadcast approaches have attracted much attention due
to their potential of satisfying all outstanding requests for the same data item with a single response.

The two principal data broadcast approaches, namely push-based and pull-based, are efficient in information dissemination under
their respective application scenarios. The push-based approach periodically broadcasts a set of predetermined data items in a static
manner. The broadcast program is based on some prior knowledge of the data access pattern of a community, regardless of individual
information needs. As a result, it is suitable for certain applications with a relatively static data access behavior and small databases
which admit short broadcast periods. In contrast, pull-based broadcast, also known as on-demandbroadcast, is preferable for dynamic
and large-scale data dissemination. However, on-demand broadcast requires an online scheduling algorithmwhich is hard to get op-
timal or near-optimal performance. As amatter of fact, on-demand broadcast schedulingwith objective functions, such asminimizing
average and maximum response time, is proved to be an NP-hard problem [2].

With the rapid development of real-timemobile applications and increasing population of mobile users, it can be envisioned that
interactive information services have becomepopular. People submit time-critical requests for one ormore dependent data items at a
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time. A time-critical request is associatedwith a deadline imposed by either the application or the user. The result of a request is useful
only if all the requested data items can be received before the deadline. As a result, the primary goal is to minimize the number of
requests missing their deadlines. For example, in a vehicular network application, drivers may want to know the traffic condition
of multiple roads ahead in order to choose a route before arriving at the intersection. In a modern mobile application, users may
also require multimedia data to support location-based services. To timely satisfy such multi-item requests for common data items
in bandwidth-limited wireless environment, real-time on-demand data broadcast systems should be well designed, especially in
terms of data scheduling algorithms.

In this study, we first show the NP-hardness of single channel broadcast scheduling of real-timemulti-item requests. Then we pro-
pose an item level scheduling algorithm called Profit Versus Cost (PVC), which integrates three concepts in making scheduling deci-
sions, namely “profit”, “opportunity cost” and slack time. To evaluate the effectiveness of single channel scheduling of real-time
multi-item requests, we design groups of simulation experiments for comparison with several traditional scheduling algorithms.

Formulti-channel environments, we also prove NP-hardness of broadcast scheduling of real-timemulti-item requests. Then, we uti-
lize scheduling weights PVC proposed in single channel scheduling to support scheduling of real-time multi-item requests in multi-
channel environment. Based on the scheduling part, we propose an allocation algorithm called SSA (Single Slot Allocation) to allocate
some selected items from scheduled requests to available channels for one time slot. The allocation mainly utilizes three sets, namely,
WaitingQ, ServiceQ and ShelvedQ, to perform iterative partitioning process for the pending requests with grouping process. After each it-
erative partitioning, an item can be selected and allocated to an available channel from a scheduled request based on the scheduling al-
gorithm PVC. As shown by the simulation results, Algorithm SSA greatly outperforms other traditional algorithms.

The remainder of the paper is organized as follows. In Section 2, related work is reviewed. Section 3 shows the systemmodel and
somepreliminaries. Section 4 focuses on single channel scheduling. NP-hardness of single channel scheduling is proved in Section 4.1.
Twonew concepts “profit” and “opportunity cost” are introduced in Section4.2, followed by theproposedprofit-based algorithmPVC.
Section 4.3 analyzes the simulation results. Section 5 extends the single channel scheduling to multi-channel scheduling. The NP-
hardness proof, theproposed algorithmSSA and its evaluation, are discussed in Sections 5.1, 5.2 and 5.3, respectively. Finally, Section6
concludes the paper.

2. Related work

In data dissemination system environments, there are two main popular approaches to broadcasting information, namely,
push-based broadcast and pull-based broadcast, also known as on-demand broadcast.

As push-based broadcast can utilize additional offline apriori information [3], it makesmuchmore progress at an early time. Broad-
cast disk [4] is an efficient implementation for its hierarchical architecture to disseminate skewed data in accordance with the Square
Root Rule (SRR), in comparisonwith the naive flat scheduling. In [5], a complementary approach is proposed to reduce empty slots in a
broadcast cycle such that average access time is shorter than broadcast disk. As skewed scheduling can have better average access la-
tency, it is applied to scheduling inmulti-channel environments [6,7,8,9].Motivated by its objective function of Average ExpectedDelay
(AED), [6] and [9] utilize greedy strategies to partition data items into multiple channels, and the latter additionally applies dynamic
programming techniques to the partition process. Recently, P. Yu et al. [9] extended SRR and proposed a new rule for near-optimal
multi-channel scheduling, called Multi-channel Square Root Rule (MSRR) for non-uniform item size and non-uniform channel band-
widths. However, this approach is not scalable and not adaptable to dynamic system workloads and personal asymmetric demands.

On-demand broadcast is another well-known approach for data dissemination especially for scalable and dynamic broadcast
[10]. RxW [11] is an effective on-demand scheduling algorithm for large-scale data broadcast, which integrates strengths of FCFS
[12] and MRF [13], namely, waiting time and data access frequency. It approximates but is better than LWF [13] as it utilizes two
corresponding queues to reduce running time. For reducing the average data access time, a Lazy Data Request (LDR) strategy [14]
is proposed for message saving such that indexing can be used to reduce messages to help scheduling.

As both push-based and pull-based approaches have their own strengths and drawbacks [15,16], hybrid scheduling is
regarded as a prospective approach to better scheduling. N. Saxena et al. [17] proposed a probabilistic hybrid scheduling,
which probabilistically selects push operation or pull operation based on the present system statistics. Their results show that hy-
brid scheduling generally outperforms other purely push-based or pull-based algorithms in terms of access time. However, the
above are all non-real-time scheduling.

For real-time on-demand scheduling, SIN [18] introduced the EDF strategy [19] to the traditional on-demand scheduling MRF [13],
such that urgency and temperature of an item canbe traded off for scheduling decisions. And for variable-length items (pages), X.Wuet
al. [20] took item size (page size) into consideration for calculation of item level weights for preemptive scheduling. In addition to the
above firm deadline scheduling, R. Dewri et al. [21] studied soft deadline scheduling using the evolution strategy which is a common
method in artificial intelligence. About the hardness of such problems, J. Chang et al. [2] proved that broadcast schedulingwithwindows
for single-item requests (firm deadline) is NP-hard.

Additionally, with the rapid development of complex applications [22,23],multi-item requests are becoming increasingly popular in
data broadcast environments. QEM [24] opens up a newperspective in this field for non-real-time on-demand scheduling. It proposes a
measure called Query Distance (QD), which shows the coherence degree of a request's data set in a schedule and indicates the access
time of the request. AndW. Sun et al. [25] have further added data replication to broadcast schedule ofmulti-item requests. Apart from
the above non-real-time scheduling of multi-item requests, J. Chen et al. [26] focus on preemptive real-time on-demand scheduling of
multi-item requests which, as amatter of fact, integrates urgency, item productivity (item access frequency) and request serving status
factors into the scheduling. K. Lam et al. [27] studied the case of ordered data items in a mobile transaction (namely, a request) and
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proposed a concurrency control method OUFO (Ordered Update First with Order) to solve the problem of post-updating consistency
[28] and currency of data items. Besides this problem, they also used client caches to reduce data access delay. Note that the work
above is for single channel scheduling.

For multi-channel scheduling of multi-item requests, K. Liu et al. [29] propose a client oriented scheduling algorithm COS to
improve bandwidth utilization in on-demand broadcast. However, it is for non-real-time applications. C. Chen et al. [30] give
the theoretical minimum number of channels (namely, bandwidth) for scheduling all given time-constrained multi-item requests
and also propose a transformation-based data allocation algorithm to generate a periodic broadcast programme. However, as the
pre-declared requests are obtained offline and the multi-item requests are assumed to be disjointed, namely, no overlap, the pro-
posed algorithm is not suitable for online scheduling of on-demand requests.

Indexing is another important technique for client power saving by reducing client tuning time in on-demand broadcast
scheduling. On-demand broadcast indexing was first discussed in [31] which mainly uses the estimation of broadcast times of
data items. To adapt to the change of system workload, an adaptive on-demand broadcast indexing method [32] by dynamically
adjusting the index and data organization is introduced and studied to reduce client power consumption at the cost of average
access time. For the organizations of index segments and data segments, a global index model is depicted in [33], where two
index schemes are discussed. The first index scheme is to separate index segments and data segments into index channels and
data channels, respectively. The second index scheme interleaves index segments with data segments in the same channels.
Indexing is orthogonal to our study, which focuses on data scheduling.

3. System architecture

The system consists of a number of clients and a single server (Fig. 1). Clients retrieve data items maintained by the server by
sending requests through an uplink channel. One or more than one independent downlink channel is available to broadcast data
items. The downlink channels typically have much greater communication capacity than the uplink channel, which is known as
asymmetric communication [13,4,17]. A data item can be considered as a fixed-size page in the database; all data items share the
same size. Given a single downlink channel with a fixed data transmission rate, namely, bandwidth b=1, the time taken to broad-
cast a data item of a unit size is called a broadcast tick or a time slot. In this study, the size of an item is set as a unit size, namely, 1,
and a time slot is regarded as a unit time. For multiple downlink channels, bandwidth of all channels is assumed to be the same.

Each client may request more than one data item at a time and each request has a release time and a deadline. A request is
valid only if its deadline has not expired. Outstanding requests are queued up in the pending queue upon arrival at the server.
The server, based on a certain scheduling algorithm, selects and retrieves the requested data items from the database for broad-
casting. One broadcast data item has the potential to serve all requests pending for it. However, each client can retrieve a data
item from only one of the channels at a time [34,35].

Fig. 1. System model.
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The primary goal of the scheduling algorithm is to minimize the request deadline miss ratio or to maximize the number of re-
quests that meet their deadlines. Lastly, a request can be satisfied only when all its required data items are received before its
deadline. For details of notations used in this paper, please refer to Table 1.

4. Single channel scheduling

4.1. Hardness

In this section, we prove NP-hardness of real-time multi-item request scheduling. Although J. Chang [2] proved that broadcast
scheduling of single-item requests with windows is NP-hard, which is similar to our problem, we use an easier way to prove it as
our scheduling is for multi-item requests. First, we give the problem description, as follows.

Instance 1. Uniform multi-item single channel case: given m requests Q1, Q2, …, Qm, where each request Qi has ni data items of
uniform size (size 1), and arrival time and deadline for each request are denoted as integers ATi and Dli, respectively, and band-
width of the only channel is b=1. Now given a bound C∈Z+, denote the case as 〈m; ni;ATi;Dlið Þf ji ¼ 1;…;mg;C〉. We ask if there
is a schedule that satisfies at least C requests before their respective deadlines.

We show the NP-hardness of this problem by Theorem 1 and provide its proof.

Theorem 1. Broadcast scheduling of multi-item requests with deadline constraint in single channel environment is NP-hard.

Proof. We construct a polynomial time reduction from an instance of clique 〈G, k〉 to an instance of target special case
〈m; 2;0; kð Þf ji ¼ 1;…;mg; k k−1ð Þ

2 〉. Here, k is the size of the clique we want to find.
For a given undirected graph G= 〈V, E〉, the vertices in V={A, B, …} are mapped to data items dA, dB,…, respectively, and each

edge (such as e1) between any two vertices (such as A and B) is mapped to one request (Q1) for the corresponding two data items
(dA and dB). Arrival times and deadlines for all requests Q1, Q2,… are set to AT=0 and Dl=k. A simple example of the above trans-
formation is shown in Fig. 2. In the examples presented in this paper, a request Q, which arrives at time AT with deadline Dl and
requires an item set S, is represented as S|[AT, Dl).

Apparently, the above transformation can be completed in polynomial time. Now, we show the graph has a clique of size k if
and only if there is a schedule that can satisfy at least k k−1ð Þ

2 requests for the single channel scheduling.
Suppose G has a clique V′pV with size |V′|=k, then, there exist k corresponding data items that completely cover k k−1ð Þ

2 ¼ C
different corresponding requests each of which is composed of any two out of the k data items based on the above transformation.
In other words, given bound C ¼ k k−1ð Þ

2 , there exists a schedule that satisfies at least C different requests.
Conversely, suppose given boundC ¼ Dl Dl−1ð Þ

2 . There exists a schedule that satisfies at least C different requests before the dead-
line Dl. That is to say, Dl data items can satisfy C different requests before the deadline. Based on the transformation, k=Dl cor-
responding vertices completely coverC ¼ Dl Dl−1ð Þ

2 ¼ k k−1ð Þ
2 edges. Since any two different vertices from k different vertices can form

at most k
2

� �
¼ k k−1ð Þ

2 ¼ C different edges only when the vertices and the edges form a complete graph. So, the corresponding k

vertices and the corresponding C edges form a complete sub-graph of the undirected graph G. Namely, the undirected graph G
has a clique of size k.

As finding a clique is NP-hard, Theorem 1 is proved. □

Table 1
Summary of notations.

Notation Description

N Number of data items in the database
K Number of channels
m Number of requests in the pending queue
f Request arrival rate scaling factor
θ Zipf distribution parameter
c Number of clients
M Total number of requests submitted by clients
k Number of unserved data items in a request
s Slack time of a request
Q/Qj A request or set of its unserved data items
n/ni Number of data items in some request
nP Average number of items for all requests
b Number of data items that can be broadcast within a time slot in single channel environment
bi Number of data items that can be broadcast within a time slot on channel i in K-channel environment
ATi Arrival time of a request
Dli Deadline of a request
LAX _MIN Lower bound of range of request deadline scaling factor
LAX _MAX Upper bound of range of request deadline scaling factor
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4.2. A profit-based algorithm

Since the scheduling problem is NP-hard, we propose a heuristic scheduling algorithm in this section. This algorithm integrates
two new concepts, namely, profit and opportunity cost, for making scheduling decisions. An earlier version of this algorithm can
be found in our previous work [36].

4.2.1. Profit
Previous research works have shown the effectiveness of item access frequency, also known as item productivity, in scheduling

single-item requests in on-demandbroadcast environments. Access frequency of a data itemdenotes the number of pending requests
for it. It is obvious that broadcasting a data item with a higher access frequency can serve more requests in a single transmission.

However, in multi-item request environments, item access frequency exaggerates the contribution of broadcasting a data item
to system performance as a request may not be satisfied by one data item. A request is satisfied when it receives all its required
data items.

So it is insufficient to consider only the number of requests served in making a scheduling decision. Instead, we should consider the
contributionof a pendingdata item to the systemperformance. Specifically, it ismore profitable to broadcast a data itemwhich can satisfy
more requests or bring requests closer to completion. To quantify this idea, we propose a new concept, called “profit” to characterize the
potential contribution of a pending item to system performance.

We first give definitions of some related concepts, as follows.

Definition 1. Slack time: the remaining time before the deadline of a request is said to be the slack time of the request. Notation s
denotes the number of remaining time slots before the deadline of a request.

A request can meet its deadline only if the slack time is enough for broadcasting all its unserved data items. We define such a
request as a live request. Note that in a data broadcast environment, a data item of a request may be served due to broadcast of the
same data item of another request.

Definition 2. Live request: consider a request Q(s, k), which consists of k unserved data items with slack time s. Q(s, k) is said to
be live if s≥kN0. Otherwise it is dead. When k=0, the request is said to be complete as it has no unserved data item.

It is a routine task for the server to remove any complete or dead requests to ensure that all pending requests are live. Nowwe
formally define “profit”.

Definition 3. Relative profit: with respect to a request Q for n items with an unserved item set of cardinality k, the relative profit
of an item di is defined as follows.

profit dið jQÞ ¼
n−kþ 1

n
; if di∈Q

0 ; otherwise

8<
:

The relative profit denotes the contribution to one request via broadcasting of an item. In addition, the relative profit actually takes
past scheduling decisions into account as (n−k) is the number of items served to the request due to past scheduling decisions. Since a
broadcast data item can serve all requests pending for it simultaneously, we can define an absolute profit for a data item as follows.

Fig. 2. An example of reduction process on Instance 1.
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Definition 4. Absolute profit: the sum of relative profits of an item di with respect to all m requests in the pending queue is the
absolute profit of di.

profit dið Þ ¼ ∑
m

j¼1
profit dið jQjÞ

Absolute profit reflects the potential contribution to system performance via broadcasting of an item. See Example 1. Note that
in the examples presented in this paper, a request Q, which arrives at time ATwith deadline Dl and requires an item set S, is repre-
sented as S|[AT, Dl).

Example 1. Q1: (d1, d2)|[0, ∞), Q2: (d1, d3)|[0, ∞), Q3: (d4, d5, d6, d7)|[0, ∞), Q4: (d4, d8, d9, d10)|[0, ∞) and Q5: (d4, d11, d12, d13)|[0, ∞).

Although access frequency of item d4 is higher than that of item d1, it is more profitable to broadcast item d1 as it can bring
requests (Q1 and Q2) closer to completion. So the contribution of broadcasting item d1 to system performance is larger than d4.
Table 2 gives a more detailed comparison of item access frequency with absolute profit for Example 1.

Accordingly, the expected profit, or the average profit, for broadcasting one of the unserved data items in a request can be de-
fined as follows. It can be observed that this metric can faithfully represent the contribution of serving a request to system per-
formance. A request has a high average profit when its unserved data items are profitable. A data item is profitable if it is popular
(hot) and its broadcast can satisfy more requests or bring more requests closer to completion.

Definition 5. Average profit: given a requestQwith an unserved item set of cardinality k, the average profit for serving this request is
defined as follows.

avgprofit Qð Þ ¼
∑
di∈Q

profit dið Þ

k

4.2.2. Opportunity cost
We have defined the average profit for serving a request. However, like investment in economics, there is risk involved in serving

any request. That is, the time investment on one request implies risk of missing the opportunity of serving other potential requests.
This risk is called opportunity cost in economics. See Example 2.1

Example 2. Q1~Q6: (d1, d2, d3)|[0, 5), Q7: (d4)|[0, 3) and Q8:(d5, d6)|[0, 2).

If the scheduling decision is to broadcast a hot item, such as item d1, to serve requests Q1~Q6, the deadline of request Q8 will be
missed immediately and request Q7 may lose the opportunity to get service as requests Q1~Q6 may be served until satisfaction. How-
ever, if the scheduling decision is to broadcast item d5 to serve request Q8, the deadlines of other requests will not be missed until re-
quest Q8 is satisfied if it is always in service before satisfaction.

To address this issue, we introduce the concept of opportunity cost in scheduling, which can interpret the above phenomenon.
First we cite one definition of Opportunity Cost (OC) from [37]:“Opportunity cost is the value forgone by not using the transferred
product in its next best alternative”. Here, the next best alternative forgone implies that the decisions to choose different products
are exclusive to each other. That means if two decisions are compatible with each other, neither has opportunity cost.

Now, we formally define “exclusive” and “compatible” as follows.

Definition 6. Relative compatible or exclusive requests: requestQj(sj, kj) is exclusive to requestQ(s, k) if k+kj−|Q∩Qj|Nsj, otherwise
Qj is compatible with Q.

In other words, if Qj is exclusive to Q, Qj will be lost if Q is selected to be served until satisfaction. Note that if Qj is exclusive to Q
it does not imply that Q is also exclusive to Qj.

In order to quantify values of other alternatives with respect to a scheduling decision, we introduce the request expected revenue
and the item expected revenue. First, we define the request expected revenuewhich can be interpreted as the gain due to a requestQj if
the scheduling decision of serving request Q would be abandoned in favor of Qj.

1 Recall that a request Q, which arrives at time AT with deadline Dl and requires an item set S, is represented as S|[AT,DI).
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Definition 7. Request expected revenue: given a request Qj(sj, kj), its expected revenue with respect to request Q(s, k) is defined
as follows.

EðQjjQÞ ¼
k
kj

; if Qj is exclusive to Q

0 ; otherwise

8<
:

Note that the request expected revenue not only captures the relationship between two requests (a request and another re-
quest exclusive to it), but also reflects their relative serving status. For instance, expected revenue of a request close to completion
with respect to a request far from completion is higher than the vice versa. Next, we define item expected revenue as follows.

Definition 8. Item expected revenue: given an item di, its expected revenue with respect to request Q(s, k) is the summation of
expected revenue of all requests for di with respect to Q. That is:

E dið jQÞ ¼ ∑
Qj;di∈Qj

EðQjjQÞ

Item expected revenue E(di|Q) can be interpreted as the gain due to the requests requiring an item di if the scheduling decision
of serving request Qwould be abandoned in favor of di. And the maximum item expected revenue of all items not required by Q is
the opportunity cost of the scheduling decision of serving Q. Note that only items in those requests exclusive to Q can generate
non-zero revenue. Accordingly, the next best alternative forgone is the item with the maximum expected revenue, which is
the opportunity cost of Q, as defined below.

Definition 9. Opportunity cost: given a request Q(s, k), the opportunity cost is defined as the maximum expected revenue with
respect to Q of all items not requested by Q. That is:

C Qð Þ ¼ max
di∉Q

E dið jQf Þg

According to the above definitions, a comparison of item access frequency with opportunity cost for Example 2 is shown in
Table 3. Based on the comparison, we can see that requests Q1~Q6, including hot items, have higher opportunity cost while re-
quests Q7 and Q8, including cold items, have lower opportunity cost. So a considerate scheduling decision should avoid high op-
portunity cost.

In economics or accounting, given the profit and cost, net profit which is equal to the (gross) profit minus cost, is a common
measure of profitability. In line with our proposed concepts, we borrow this interpretation to construct the numerator of the
scheduling weight. Intuitively, it should be more profitable to schedule a request with higher profit and lower opportunity
cost. In addition, it is known that a request with less slack time (a closer deadline) should be scheduled with higher priority as
it is more urgent [18,19]. So, we put slack time (s) in the denominator of the scheduling weight to reflect this relationship.

Based on the above discussion, we integrate the two newly proposed concepts and slack time into a scheduling weight as de-
fined below.

Definition 10. Scheduling weight: the scheduling weight of a request Q(s, k) is defined as follows.

PVC Qð Þ ¼ avgprofit Qð Þ−C Qð Þ
s Qð Þ

Table 3
A comparison of item access frequency with opportunity cost for Example 2.

Q Avg. item access frequency C(Q)

Q1∼Q6 6 3
Q7 1 1

2
Q8 1 0

Table 2
A comparison of item access frequency with absolute profit for Example 1.

di Item access frequency profit(di)

d1 2 1
d2, d3 1 1

2
d4 3 3

4
d5∼d13 1 1

4
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This PVCweight is used in our proposed item level scheduling algorithm, called Profit Versus Cost (PVC), as shown in Algorithm1.
The basic idea of AlgorithmPVC is to first choose the request with the largest schedulingweight and then broadcast the itemwith the
largest absolute profit in the selected request. The algorithm mainly includes three parts. The first part is to queue and preprocess
newly arrived requests. The secondpart is to select an item and broadcast it. The third part is to update the pending queue constructed
in the first part after broadcasting.

As the main part of the algorithm is Part 2, item selection and broadcast, we analyze the time complexity of this part as follows.
The first sub-part of removing infeasible requests for lines 16–19 can be completed in time O(m), where m is the number of re-
quests in the pending queue. For the second sub-part of calculations of scheduling weights PVC for lines 21–42, the outer for loops
of line 23 and line 38 are repeated at most m times in total and the inner for loops can be finished in time at most O n⋅mð Þ. So the
second sub-part can be completed in time O n⋅m2

� � ¼ O m2
� �

. The following sub-part of item selection can be completed in time
O nð Þ. To conclude, the time complexity of the algorithm is O(m2).

To reduce the running timeof PVC, an efficient implementation is presented inAlgorithm1. Two simple data structures and a pruning
technique are introduced to reduce the searching space. In otherwords, the number of requests to be examinedwhile finding the request
with the highest schedulingweight (PVCvalue) can be greatly reduced. Themain idea is to avoid the computationof the opportunity cost
of a request, C(Q), which is the most computational expensive part in the formula of scheduling weight indicated in Definition 10. We
need to compute the opportunity cost of a request only if its avgprofit Qð Þ

s Qð Þ value is larger than the currentmaximum PVC value. Otherwise, it
is impossible for the request to have a PVC value larger than the current maximum. Thus, there is no need to compute its PVC value con-
sisting of the opportunity cost. The details of our proposed efficient implementation of PVC are described below.

Two data structures, a ProfitQ and a SlackQ, are used to index the requests in the pending queue. In the ProfitQ, requests are
sorted in descending order of average profit. In the SlackQ, requests are sorted in ascending order of deadline. These two data
structures are updated incrementally upon arrival of a new request or broadcasting of a selected item. The searching is done
by sequentially traversing ProfitQ and SlackQ once each. To prune the searching space, two values, Pmax and Smin, are maintained
in ProfitQ and SlackQ, respectively. Pmax is the current maximum average profit of unexamined requests in ProfitQ and Smin is the
current minimum slack time of unexamined requests in SlackQ. Let T denote the current maximum PVC value which is initialized
to zero. ProfitQ is searched first. It is possible for the current request to have a PVC value larger than T only if its average profit
exceeds MinP=T·Smin. Only in this case we need to compute its PVC value. If the PVC value is larger than T, T is updated to the
new PVC value. The searching of ProfitQ continues until all requests are searched or the condition indicated by MinP is violated
(i.e., average profit of current request ≤MinP). Next, SlackQ is searched. Similarly, it is possible for the current request to have
a PVC value larger than T only if its slack time is less than MaxS ¼ Pmax

T . Only in this case we need to compute its PVC value. If
the PVC value is larger than T, T is updated to the new PVC value. The searching of SlackQ continues until all requests are searched
or the condition indicated byMaxS is violated (i.e., slack time of current request≥MaxS). At the end, the requestwith themaximum
PVC value can be identified accordingly. In practice, the number of requests that have to be examined ismuch lower than the number of
requests in the pending queue (i.e.m) because the value ofMinP is increasing and that ofMaxS is decreasing as the searching proceeds.

4.3. Performance evaluation

4.3.1. Algorithms and grouping
To better understand the characteristics of our proposed newconcept “profit”, we implement two other variations, PROFIT andPXW,

to study its effectiveness. In addition, we implement several existing best-performing algorithms for comparison with our proposed
scheduling algorithm PVC which also incorporates another new concept “opportunity cost” in making scheduling decisions. Based on
factors considered in making scheduling decisions, the algorithms are categorized into 3 groups for better comparison and analysis.

Group A: MRF [13] and PROFIT. MRF schedules the item with the largest number of pending requests to ensure item productivity.
PROFIT schedules the itemwith the largest absolute profit (see Definition 4). This group considers neither the deadline nor thewaiting
time of a request.

Group B: FCFS [12], RXW [11], LWF [13] and PXW. This group of algorithms considers request waiting time in making scheduling
decisions. FCFS serves the request which has been waiting the longest time. In other words, requests are served in the same order as
their arrival. Both RXW and LWF integrate item productivity and request waiting time into scheduling. LWF schedules the data item
with the longest total waiting time, which is the sum ofwaiting time of all pending requests. RXW calculates the product of thewaiting
time of the oldest pending request for a data item and its item productivity. The data item with the largest value is scheduled. PXW
simply replaces the item productivity in RXW by the absolute profit of a data item in calculating the product.

Group C: EDF [19], SIN [18] and PVC. All algorithms in this group consider request deadline. EDF is awell-known real-time scheduling
algorithm. Its basic idea is to serve the most urgent request first, i.e. the request with the earliest deadline. SIN considers both request
urgency and item productivity. The data item with the smallest SIN-value is scheduled first; SIN-value of an item is defined as the
ratio of slack time of its parent request to its item productivity.

PVC is our proposed scheduling algorithm.

4.3.2. Experimental setup
Next, we describe our simulation model for performance evaluation. The model is based on the system architecture described in

Section 3 and is implemented by CSIM19 [38]. The model includes a single server and a number of clients (c). It is an open system in
which all clients continually issue requests. The inter-arrival time, namely, the difference between arrival time of two consecutive re-
quests, is exponentially distributed. The mean is set to be a constant divided by f, which is actually a scaling factor of the request arrival
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rate. In our simulations, themean request inter-arrival time for each client is set to be 10
f time units, and hence the overall mean request

inter-arrival time of the system is 10
c∗f time units, where c is the number of clients.

The number of items in a request follows the Uniform distribution in �n−1;�nþ 1½ � with expectation�n when�nN1. When�n ¼ 1,
all requests are single-item requests. Deadline Dli of a request Qi is set according to the following formula, where ni is the initial
number of items in the request and uniform produces a random number selected uniformly from the range of request deadline
scaling factor LAX _MIN∼LAX _MAX.

Dli ¼ ATi þ 1þ uniform LAX�MIN; LAX�MAXð Þð Þ·ni
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Note that each item has a unit size. The data access pattern is shaped with the Zipf distribution [39] according to widely accepted
research on human behavior patterns, with skewness parameter θ, where 0≤θ≤1. The smaller the value of skewness parameter is,
the less different are item access frequencies among all items in the database. When θ=0, the distribution becomes the Uniform distri-
bution, while the Zipf distribution becomes strict if θ increases to 1. In response to requests in the pending queue, the server continually
retrieves data items from the database of size N for broadcasting while clients listen to the single channel to retrieve their data items of
interest. The parameters and their default setting can be found in Table 4.

4.3.3. Performance metrics
We now introduce the following performance metrics.

①Request Deadline Miss Ratio ¼ TotalMissedNum
TotalNum

②Ratio of Ineffective Service Over Effective Service ¼ TotalIneffectiveNum
TotalSatisfiedNum

As the primary performance metric, request deadline miss ratio shown in Metric① is the percentage of missing requests in all
requests during the time span of a whole simulation. Correspondingly, in Metric ①, TotalMissedNum represents the total number
of deadline-missed requests, and TotalNum represents the total number of submitted requests. A low request deadline miss ratio
reflects a better real-time performance in terms of satisfying requests with time constraints.

Ratio of ineffective service over effective service shown in② is another auxiliary performance metric to interpret variations of re-
quest deadlinemiss ratios of different algorithms in simulations. Ineffective servicemeans the service for the requests that are served
partially and whose deadlines are missed finally. Effective service means the service for the requests satisfied finally. In Metric ②,
TotalIneffectiveNum is the number of requests that are served partially and whose deadlines are missed finally, TotalSatisfiedNum is
the number of requests satisfied finally. Note that TotalSatisfiedNum=TotalNum−TotalMissedNum. A lower ratio of ineffective service
over effective service means fewer instances of ineffective service provided for satisfying requests with time constraints.

4.3.4. Result analysis
For performance evaluation, we adopt the primary performance metric in real-time systems, namely, the request deadline

miss ratio, which reflects the capability of the system to meet request deadlines. The prime objective of scheduling algorithms
is to improve real-time performance of the system by minimizing the request deadline miss ratio. The ratio of ineffective service
over effective service is another auxiliary performance metric that reflects the number of instances of ineffective service being
provided by different algorithms. Note that the simulation results were obtained until a confidence interval of 0.95 with half-
widths of less than 5% about the mean was achieved.

Before discussing the ratio of ineffective service over effective service, we focus on request deadline miss ratio in Figs. 3–8.
After that, simulation results on the ratio of ineffective service over effective service are given in Fig. 9.

Fig. 3 shows simulation results for different request arrival rates scaling factor f. On the whole, we can see that all our profit-
based algorithms outperform other algorithms in their respective groups. The advantage of Algorithm PVC over other algorithms
increases with increase of f.

Fig. 4 shows simulation results for different skewness parameters of Zipf distribution θ. As a high skewness parameter is favorable
for satisfaction of requests that include hot items, request deadlinemiss ratio decreases when θ increases for each algorithm. Algorithm
PVChas larger advantage over other algorithmswhen θ is smaller. In addition, Algorithm FCFS outperforms other algorithms of Group B
when θ increases to 1.

Fig. 5 shows simulation results for different average numbers of items in a request under fixed default workloads. On the
whole, PVC always outperforms other algorithms.

Table 4
Parameters and default setting.

Parameter Default Range

f 40 10–80
θ 0.5 0.0–1.0
c 30 –

M 6×104 –
�n 4 1–8
ni 3–5 1–9
N 200 200–3200
b 1.0 0.7–1.3
LAX _MIN 15 5–25
LAX _MAX 25 15–35
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For Group A and Group B, we can see that PROFIT is always better than MRF and PxW is always better than RxW. This result
reflects that the concept profit is more effective than item access frequency under the same condition, namely with or without the
factor of waiting time. However, FCFS changes to be better than RxW and PxW when average number of items in a request in-
creases to more than 4.

For Group C, SIN changes to be worse than EDF when average number of items in requests increases to more than 4. This re-
flects that under the condition of same deadlines of requests, EDF is more adaptable than SIN to scheduling requests requiring
more items. In other words, EDF keeps good performance even when average number of items in requests increases. In compar-
ison to EDF, PVC keeps better performance with the increasing average number of items in requests. It shows that PVC is more
adaptable than EDF to scheduling requests requiring more items when deadlines are the same for all requests. A direct reason
for this result is that PVC prefers to satisfy requests closer to completion.

Fig. 6 shows simulation results for different data transmission rates, i.e. different bandwidths. Generally, the proposed profit-
based algorithms always outperform other algorithms in their respective groups. In addition, performance curves of all algorithms
are descending with increase of bandwidth. This indicates that increasing data transmission rate improves the real-time performance
in terms of request deadline miss ratio.

Fig. 7 shows simulation results for different ranges of request deadline scaling factor (LAX _MIN~LAX _MAX). When the mean
value of the range of request deadline scaling factor increases, request deadline miss ratio decreases. Algorithm PVC has larger
advantage over other algorithms when the mean value of the range of request deadline scaling factor is smaller.

Fig. 8 shows the simulation results for different numbers of data items in the database. With the increasing number of data
items in the database, profit-based algorithms have increasing performance superiority in comparison with non-profit-based al-
gorithms in their respective groups. PROFIT shows great performance robustness when the number of data items in the database
is larger than 400. PROFIT is even better than EDF, SIN of Group C when the number of data items in the database increases to
3200. PxW of Group B changes to be better than SIN of Group C when the number of data items in the database increases to
more than 800. Overall, profit-based algorithms have better scalability to large database than non-profit-based algorithms.

Fig. 3. Request deadline miss ratio under different request arrival rates.

Fig. 4. Request deadline miss ratio under different skewness parameters of Zipf distribution.
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Fig. 9 shows the ratio of ineffective service over effective service under different request arrival rates. In general, the ratio of
ineffective service over effective service of all algorithms increases linearly with increase of request arrival rate scaling factor. Spe-
cifically, profit-based algorithms outperform other algorithms in their respective groups. This indicates that fewer excess requests
have been served partially and their deadlines are missed finally in case of profit-based algorithm than other algorithms in their
respective groups. In contrast with Fig. 3, Fig. 9 also indicates that resources saved by reducing ineffective service improves the
real-time performance in terms of request deadline miss ratio.

To conclude, Algorithm PVC outperforms other algorithms in the three groups for different request arrival rates, different skew-
ness parameters of data access pattern, different average numbers of items in a request, different bandwidths, different deadline
ranges and different database sizes. In addition, our simulation results show that EDF and FCFS have preferable performance with
respect to low complexity algorithms for lighter workloads, larger skewness of data access pattern and larger average number of
items in a request. Our simulation results also show that PROFIT and PxW are preferable algorithms in their respective groups.

5. Multi-channel scheduling

5.1. Hardness

The hardness of multi-channel scheduling cannot be directly derived from the proof for single channel environment. As shown
in the following theorem, multi-channel scheduling is also NP-hard.

Theorem 2. Broadcast scheduling of multi-item requests with deadline constraint in multi-channel environment is NP-hard.

Proof. Suppose there areK channels that have the samebandwidth 1.We construct a polynomial time reduction fromgiven Instance 1
〈m, {(ni, ATi,Dli)|i=1,…,m}, C〉 of single channel scheduling to an instance ofmulti-channel scheduling, called Instance 2. The problem is
to ask if this instance has a schedule that can satisfy at least C+m·(K−1)·Δt requests, whereΔt is the scheduling period for all requests
in Instance 1.

Fig. 5. Request deadline miss ratio under different average numbers of items in a request (workloads, i.e. c⋅f ⋅n� , are fixed to default).

Fig. 6. Request deadline miss ratio under different bandwidths.
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For Instance 1, we map all m requests directly to Instance 2. We call these directly mapped requests ordinary requests. Addi-
tionally, we add (K−1) groups of single-item requests. For group i, m requests requiring a unique same item Xi are released for
every time slot within the scheduling periodΔt. That is, there are totally |ΔR|=m·(K−1)·Δt special requests added to Instance 2.

A simple example of the above transformation is shown in Fig. 10. This reduction process can be completed in polynomial
time. Next, we prove the correctness of this reduction.

Fig. 7. Request deadline miss ratio under different ranges of request deadline scaling factor.

Fig. 8. Request deadline miss ratio under different numbers of data items in the database.

Fig. 9. Ratio of ineffective service over effective service under different request arrival rates.
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Suppose Instance 1 has a schedule that satisfies C requests within the scheduling period Δt. Then, for each time slot, the other
(K−1) channels can satisfy (K−1) groups of special requests, i.e. m·(K−1) requests. So for scheduling period Δt, (K−1) chan-
nels can satisfy allm·(K−1)·Δt special requests. Plus the C ordinary requests that the remaining one channel can satisfy, there is
a schedule that can satisfy C+m·(K−1)·Δt requests.

Conversely, suppose the constructed Instance 2 can satisfy C+m·(K−1)·Δt requests within the scheduling period Δt. Then,
as indicated before, the optimal solution should make (K−1) channels occupied by the different (K−1) data items form·(K−1)
special requests for each time slot. Otherwise, the deadlines of at leastm special requests for item Xi will be missed for some time
slot. Then the schedule can satisfy at most m·(K−1)·Δt−m special requests. As the schedule can satisfy at most m ordinary re-
quests, the total number of satisfied requests will be less than or equal to m·(K−1)·Δt. This contradicts the premise. Therefore,
the (K−1) channels should be utilized to satisfy all |ΔR|=m·(K−1)·Δt special requests. So the remaining one channel can sat-
isfy C+m·(K−1)·Δt−|ΔR|=C requests, i.e. Instance 1 can satisfy C requests within the scheduling period Δt.

As shown in Theorem 1, single channel scheduling is NP-hard. Theorem 2 is proved. □

5.2. Proposed algorithm SSA (Single Slot Allocation)

In the system model of Section 3, we know that every un-satisfied request can obtain one item from only one channel during
one time slot. That is, for the current time slot, requests/clients are either partitioned and allocated to one of the given multiple
channels for receiving required item or put aside for the next time slot. Therefore, after a request/client is allocated to one channel
for receiving one required item, it cannot simultaneously receive another required item on another channel. We call this phenom-
enon conflict of inter-channel allocation. An effective algorithm for multi-channel scheduling should reduce this conflict [29].

For example, suppose there are four newly arrived requests at time 02:

Example 3. Q1: (d1, d2)|[0, 2), Q2: (d2, d3)|[0, 2), Q3: (d1, d4)|[0, 2) and Q4: (d3, d5)|[0, 2).

2 Recall that a request Q, which arrives at time AT with deadline Dl and requires an item set S, is represented as S|[AT,DI).

Fig. 10. An example of reduction process on Instance 2 for 3 channels.
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As items d1, d2 and d3 have the same popularity, a possible schedule will be d1→d2 on channel 1 and d2→d3 on channel 2. This
schedule will satisfy 2 requests. The problem is that the client submitting Q1 can only listen to one channel at one time, i.e. either
channel 1 or channel 2. So if it listens to channel 1, item d2 on channel 2 will only serve request Q2. However, if we move Q1 in the
pending queue to a group for channel 1, we can easily find that item d3 becomes themost popular item to be scheduled on channel 2.
Then a better schedule will be d1→d4 on channel 1 and d3→d2 on channel 2 which can satisfy 3 requests. It is not hard to see that
grouping is a feasible method to reduce the conflict of inter-channel allocation.

Considering the need to keep conflict of inter-channel allocation low, a direct way to improve real-time performance is to
serve as many requests as possible during one time slot. However, it does not mean that all requests ever getting served before
are satisfied finally. Therefore, requests selected for allocation to multiple channels should be representative of all requests. We
should not only serve as many requests as possible but also satisfy as many requests ever getting served before as possible.

Based on the above observation, we propose a single slot allocation Algorithm SSA. The algorithm can be partitioned into two
parts, scheduling part and allocation part.

The scheduling part is to serve as many requests as possible during one time slot. We utilize PVC values of requests to measure
the value of “representative” (representativeness) for all requests. Within a representative request, we select and broadcast the
item with the largest value of absolute profit of unserved items, which is called the “characteristic item” of the request. The
above task is completed by scheduling algorithm PVC.

The allocation part is to reduce the conflict of inter-channel allocation and to satisfy as many requests ever served before as
possible. The basic process of the allocation part is to allocate K different items on K available channels, if possible. The process
is implemented by at most K iterative partitioning as follows. Originally, all requests aremoved from a set PendingQ to a setWaitingQ
for scheduling. At the beginning of each iterative partitioning, a most representative request fromWaitingQwith the largest PVC value
and its characteristic item are selected to be allocated to an available channel. The characteristic item is, therefore, to be broadcast on
one available channel. Next, all requests fromWaitingQ requiring the characteristic item aremoved to a set ServiceQ. That is, the clients
and their submitted requests requiring the characteristic item form a group on the available channel waiting for service. In addition, the
remaining requests ofWaitingQ requiring any other item (in contrast to the characteristic item) of the representative request aremoved
to a set ShelvedQ. Requests in ShelvedQ are put aside until they aremoved toWaitingQwhenWaitingQ is empty andan available channel
exists. So after each iterative partitioning, some new clients and their submitted requests are grouped together on a new available
channel waiting for service. The above tasks are completed after at most K iterative partitioning with grouping process by utilizing
three sets, namelyWaitingQ, ServiceQ and ShelvedQ. Details of the algorithm are shown in Algorithm 2.
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For the time complexity of the algorithm, we argue that the algorithm can be completed in time O K2⋅n ⋅mþ K⋅m2
� �

, where n
is the average number of items for all requests. Specifically, time is mainly consumed in the iterative process for lines 8–28 (the
remaining part of the algorithm can be completed in time O(m)). Line 12 can be completed in time O(m2+m)=O(m2) as the
scheduling part of the algorithm is executed in this line. Lines 18–20 can be completed in time O n⋅mð Þ. Lines 21–23 can be com-
pleted in time O(m). Lines 24–26 can be completed in time O K⋅n ⋅mð Þ. Other lines of the iterative process can be completed in
time O nð Þ. As a result, with at most K times of iterative process, we get the time complexity O K2⋅n ⋅mþ K⋅m2

� �
.

To combine an index generation method with the scheduling in multi-channel environment, we can interleave index seg-
ments with data segments on each channel.

Specifically, series of buckets make up the broadcast sequences on the channels [32]. A bucket spanning multiple channels
contains one index segment (IS) and one data segment (DS) (Fig. 11). The index segment consists of index items linked to all
data items in the data segment of the same bucket as well as the broadcast time of the next bucket. Each index item contains
the channel identifier and broadcast time of the linked data item. Note that the index items are duplicated on each channel
such that clients listening to any channel can retrieve full index information from the index segment. By scanning the index seg-
ment, clients can switch to the corresponding channel for retrieving the desired data item. Otherwise, if no desired item is found
in the index segment, clients can wait until the next index segment arrives. To ensure enough time for clients to switch channel,
there is a preamble type field (P) at the beginning of the data segment for channel synchronization [7]. The data segment consists
of the payload type field of data items, namely the data items themselves, and some auxiliary type fields, such as the preamble
described above and forward error correction (FEC) code for possible data recovery [7]. The number of data items stored in a
bucket is called the degree of bucket, which is a multiple of the number of channels. Fig. 11 shows a 3-channel example and
the degree of bucket is 3. For each bucket, one channel stores one data item in its data segment and the index segment consists
of index items linked to all the three data items in the same bucket.

As there may be more than one data item requested by a client, it is possible that different data items requested by the same
client are broadcast on different channels. To resolve this issue, the index items can be stored in descending order of absolute
profit of the corresponding data items. Therefore, the earliest index item scanned by a client will link to the desired data item
of the client. For example, we assume profit(d3)Nprofit(d2)Nprofit(d1) in Fig. 11 and the index items are stored in order of I3, I2
and I1. Therefore, a client requesting both d3 and d2 will be directed to d3 by the sorted index segment.

5.3. Performance evaluation

5.3.1. Experimental preparation and setup
As simulations of scheduling of real-time multi-item requests were performed in multi-channel environment, we introduce two

traditional algorithms, SIN and EDF, for comparison and modify them to adapt to the multi-channel environment. The modifications
are as follows.

Being a scheduling algorithmbased on item level schedulingweights, SIN is changed to select K different itemswith theminimum
values of SIN and to allocate the selected items to all channels for one time slot. Being a scheduling algorithm based on request level
scheduling weights, EDF is changed to select K requests with the earliest deadlines and then to choose within each request one
unserved item to broadcast on an available channel for one time slot. In addition, the scheduler of EDF should try its best to ensure
that the selected items are different from each other, if possible.

So the related traditional algorithms are a little different from the original ones. In the following, while not confusing the two
algorithms and their respective original versions, we directly use SIN and EDF to represent the corresponding modified versions
for multi-channel scheduling.

To fairly compare SSA with the modified traditional algorithms in multi-channel environment, we set up a simulation model
for multi-channel scheduling based on the existing model for single channel scheduling shown in Section 4.3.2. The parameters
are set as follows. The number of channels is K. The bandwidth of each channel is bi=b/K where b=1 in the single channel case.
That is, the total bandwidth of K channels is the same as the single channel in single channel environment. As a default, K=3. The
Zipf distribution parameter θ is the same as the default value of single channel scheduling. In addition, all requests in multi-

Fig. 11. Multi-channel index structure.
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channel environment are the same as the ones produced under default settings in single channel environment, including dead-
lines. Note that as parameters LAX _MIN and LAX _MAX of uniform distribution for generating deadlines of requests are large
enough in the default setting (15 and 25), all feasible requests in single channel environment are also feasible in multi-channel
environment. The only difference is that urgent requests become more urgent when a smaller bandwidth is available for each cli-
ent. For a general view of the model, please see Section 3 and Fig. 1.

5.3.2. Performance metrics
To evaluate and analyze the simulation results, we use the following performance metrics.

①Request Deadline Miss Ratio ¼ TotalMissedNum
TotalNum

②Ratio of Ineffective Service Over Effective Service ¼ TotalIneffectiveNum
TotalSatisfiedNum

③Service Efficiency ¼
∑
K

i¼1
ServedNumi

∑
K

i¼1
PendingNumi

For the first two performance metrics, please refer to Section 4.3.3. In the following, we discuss Metric ③.
Service efficiency shown inMetric③ is an auxiliary performancemetric that reflects the level of conflict of inter-channel allocation.

For a given time slot, as a client together with its submitted requests can retrieve only one required item from one channel at a time,
other required items on other channels, if any, are missed. In Metric③, for one time slot, ServedNumi is the number of requests getting
served on channel i, PendingNumi is the total number of requests requiring the broadcasted item on channel i. So the metric is actually
the percentage of accumulated sum of served items (ServedNumi on channel i) for all requests getting served at a time slot to the
accumulated sum of item access frequency (PendingNumi on channel i) for all broadcasted items on all channels during the time
slot. For a whole simulation, the metric implies the average value of the percentage for all time slots. A lower service efficiency
means on average more missed items for requests getting served during the time slot. In other words, a lower service efficiency
means high level of conflict of inter-channel allocation. Note that this metric is derived from a similar metric in a previous work
of K. Liu et al. [29].

5.3.3. Result analysis
According to the performancemetrics introduced in Section 5.3.2, we perform corresponding simulations to compare SSA with

two classical algorithms, EDF and SIN, as outlined in Section 5.3.1. Note that the simulation results were obtained until a confi-
dence interval of 0.95 with half-widths of less than 5% about the mean was achieved.

Fig. 12 shows variations of request deadline miss ratio of different algorithms with increasing number of channels. Generally,
SSA performs better than SIN while SIN is better than EDF. Specifically, when the number of channels is 5, the difference between
SSA and SIN is about 20%. From the perspective of performance variation with increasing number of channels, performance of SSA
is more steady than SIN and EDF, which means request deadline miss ratio of SSA increases more slowly than SIN and EDF, with
increasing number of channels. Note that in spite of performance of EDF being the poorest, as shown in the figure, its performance
changes more slowly than SIN when the number of channels increases to more than 2.

Fig. 13 shows the ratio of ineffective service over effective service under different numbers of channels. The increasing perfor-
mance advantage of SSA over EDF and SIN with the increasing number of channels indicates that fewer requests have been served

Fig. 12. Request deadline miss ratio under different numbers of channels.
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partially and their deadlines are missed finally for SSA than for EDF and SIN. In other words, SSA provides the least instances of
ineffective service in the aspect of satisfying requests with time constraints.

Fig. 14 shows service efficiency under different numbers of channels. SSA performs the best, EDF takes the second place, and
SIN has the worst performance. Based on discussions on performance metrics in Section 5.3.2, SSA and EDF have lower levels of
conflict of inter-channel allocation than SIN.

Fig. 15 shows variations of request deadline miss ratio of different algorithms with increasing average number of items in a
request. Generally, SSA always wins a larger performance advantage over SIN than SIN over EDF.

Fig. 16 shows variations of request deadline miss ratio of different algorithms with increasing number of items in the database.
The great performance advantage of SSA over EDF and SIN indicates that SSA has good scalability to large databases.

To conclude, SSA has the lowest level of conflict of inter-channel allocation and provides the least instances of ineffective ser-
vice. Hence, SSA has the best performance in terms of request deadline miss ratio under different numbers of channels, different
average numbers of items in a request and different database sizes.

6. Conclusion

In this paper, we first prove NP-hardness of the problem of optimization of minimizing request deadline miss ratio for both
uniform single channel case and uniform multi-channel case. Then we propose two scheduling algorithms for single channel
scheduling and multi-channel scheduling.

For single channel scheduling of multi-item requests, we introduce a new concept called absolute profit of an item to effective-
ly denote its contribution to the system's throughput. In addition, to calculate the potential opportunity cost, we classify the re-
lationship between two requests into unidirectional compatible class and unidirectional exclusive class. Based on the
classifications, we quantify opportunity cost. After that, we propose three profit-based scheduling algorithms called PROFIT,

Fig. 13. Ratio of ineffective service over effective service under different numbers of channels.

Fig. 14. Service efficiency under different numbers of channels.
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PXW and PVC. The simulations show that profit-based algorithms, especially PVC, outperform other traditional algorithms for
scheduling multi-item requests in single channel environment.

For multi-channel scheduling of multi-item requests, based on the scheduling result of single channel scheduling algorithm PVC
for pending requests, we further propose Algorithm SSA to allocate selected items of scheduled requests to available channels. The
allocations mainly use three sets, namely,WaitingQ, ServiceQ and ShelvedQ, to perform an iterative partitioning process for the pending
requests, with grouping process. After each iterative partitioning, an item from a scheduled request can be selected and allocated to an
available channel based on Algorithm PVC. Simulations verify the great effectiveness of SSA.

In the future, we propose to investigate if there exists any Polynomial-Time Approximation Scheme (PTAS) with good competitive
ratio for some special case. Additionally,weplan to further study two-dimensional scheduling formulti-channelmulti-slot environment.
Meanwhile, we will improve the Quality of Service (QoS) under the condition of balancing the system's real-time performance.
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