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Abstract—Mining the frequently visited places of single mobile
users, i.e., significant places, is crucial for supporting personalized
location-based services. Most of existing works for significance
place mining have a need to take advantage the GPS trajectories
of users. However, it is difficult to encourage mobile users to
contribute GPS trajectories because of the high power consump-
tion of GPS. In this demonstration, we propose a geo-grid based
approach for mining significant places from cell ID trajectories.
In our approach, the mined significant places are represented
as sets of geo-grids which are much smaller than the coverage
areas of cell-sites. To be specific, we firstly extract the stay areas
where the mobile user used to stay and map them to many geo-
grids. Then we mine significant places from the geo-grids by
considering their significance.

I. INTRODUCTION

In recent years, location-based services such as Google Lat-
itude (www.google.com/latitude) and Foursquare (foursquare.
com) have been more and more popular with the rapid popu-
larization of smart mobile devices. A type of interesting and
promising location-based services is to provide personalized
location-based services by not only considering the current
locations of users but also the places which they frequently
visit, i.e., significant places [1]. For example, the nearby deals
can be recommended to mobile users by considering their
significant places.

The GPS trajectories and cell ID trajectories of mobile users
are two major source for mining significant places. Although
several prior works have been done for mining significant
places from the GPS trajectories of mobile users (e.g., [2], [6]),
it is usually difficult to encourage mobile users to contribute
GPS trajectories because the continuous GPS sensing is very
power-consuming [3] and thus will dramatically hurt user
experience. In contrast, cell ID trajectories are logs in mobile
devices which record the IDs of serving cell-sites with a pre-
defined time interval and are much easier to be collected since
the power consumption of recording the IDs of serving cell-
sites is trivial. Moreover, the approaches for mining significant
places from cell ID trajectories can be applied to low end
mobile devices without GPS sensors and thus make it possible
to run significant place based services for a larger user base.
However, although several prior works (e.g., [5], [4]) propose
some approaches for mining significant places from cell ID
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Fig. 1. The Demonstration System Architecture.

trajectories by clustering cell IDs, the accuracy of the results
are not acceptable for many practical applications because
several cell-sites usually cover a too large area.

To this end, in this demonstration we propose to mine the ar-
eas which consist of several geo-grids from cell ID trajectories
as significant places, where a geo-grid is an area divided by
particular longitudes and latitudes and usually much smaller
than the coverage area of a cell-site. Figure 1 depicts the
system architecture. Given the mobile phone generated cell ID
data, our approach has two stages to mine the significant places
as follows. In the first stage, we extract the stay areas where
users used to stay from cell ID trajectories by leveraging the
coverage areas of cell-sites and map the stay areas into geo-
grids in a proper scale. Each geo-grid in the extracted stay
areas are candidate significant places. In the second stage, we
firstly calculate the significance of each geo-grid and then use
a recursively pruning algorithm to separate the areas which
consist of many geo-grids by removing the geo-grids with low
significance. Finally, the maintained areas which are smaller
than a predefined maximum area are taken as significant places
and we show them on the web map interface. In this way, we
can obtain significant places from cell ID trajectories with
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lower power consumption and much higher accuracy than the
state-of-the-art works.

II. EXTRACTING STAY AREAS

Ideally, we can firstly detect the places where a given
user used to stay but not only pass by as stay points and
then mine significant places from them. However, the real
stay points in the form of geographical coordinates cannot
be directly inferred from cell ID trajectories because we
can only roughly estimate the areas which the user used to
visit through the coverage areas of recorded cell-sites, which
can be estimated from the locations and serving radiuses
of cell-sites provided by some public Web Services such
as Google Geocoding API (http://code.google.com/apis/maps/
documentation/geocoding/). To this end, we firstly try to find
the stay areas where the user used to stay and then mine
significant places from the discovered stay areas. Obviously,
stay areas are estimations of stay points. The smaller the stay
areas, the more precise they are for estimating real stay points.
In this section, we present the details of our approach for
discovering the stay areas of mobile users from their cell ID
trajectories.

A. Stay Session Discovery

To extract stay areas, we firstly find the segments of cell
IDs whose coverage areas may contain a stay point from the
cell ID trajectory of a mobile user, which are referred as stay
sessions for simplicity, and then take the overlapped coverage
area of all cell-sites in a stay session as a stay area. The method
of discovering stay sessions is motivated from the observation
as follows.

Observation: if we take no account of the errors for
the estimated coverage areas of cell-sites, we will have the
following observation: suppose a user has stayed in a location
for a while, the corresponding cell ID trajectory may consist
of a) several duplicate occurrences of the same cell ID,
or b) several different cell IDs whose coverage areas are
mutually overlapped with each other. The first case is easy
to understand. The second case usually occurs when the user
is staying in the overlapped area of the coverage areas of
several adjacent cell-sites. In such an area, the serving cell-
site of the mobile user may be any of the group of adjacent
cell-sites according to their signal quality. Consequently, the
recorded cell IDs of serving cell-sites may change even though
the user is not moving. Figure 2 shows an example of the
second case that a group of cell IDs whose coverage areas
mutually are overlapped implies a stay point. In the example
the sampling rate of cell-sites in service is one minute. From
this figure, we can see that when the user stays in the point P1

for several minutes, the coverage areas of the corresponding
cell IDs {c1, c2, c3} are mutually overlapped. When the user
moves from point P1 to point P2, the coverage areas of the
sampled cell IDs are not overlapped with all cell IDs in
{c1, c2, c3}. When the user arrives in point P2 and stay for a
while, the coverage areas of the recorded cell IDs {c7, c8, c9}

Algorithm 1 Stay Session Detection
Input 1: a cell ID trajectory C = c1c2...cn;
Input 2: a minimum staying time Tmin;
Output: a set of stay sessions S;

1: S ← ∅;
2: s← {c1};
3: for i = 1; i < n; i+ + do
4: if ci 6= ci+1 then
5: Movment← false;
6: for eachc ∈ s do
7: if Distance(c, ci+1) ≥ c.Radius + ci+1.Radius

then
8: Movment← true;
9: if TimeRange(s) ≥ Tmin then

10: S ← S ∪ s;
11: s← {ci+1};
12: if Movment = false then
13: s← s+ ci+1;//append ci+1 to the tail of s
14: return S;

are mutually overlapped again, which clearly implies the user
is in a stay point.
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Fig. 2. An example of cell ID trajectory which implies that the user moves
from a stay point to another stay point. Each circle denotes the coverage area
of a corresponding cell-site.

Based on the above observation, we can easily detect the
segments of cell IDs whose coverage areas may contain a stay
point from the cell ID trajectories of mobile users, which are
referred as stay sessions for simplicity. The notion of stay
sessions are formally defined as follows.

Definition 1 (Closed Cell ID Segment): Given a cell ID
trajectory C = c1c2...cn, where ci(1 ≤ i ≤ n) denotes a
cell ID, for a segment of C denoted as s = cjcj+1...cj+k(1 ≤
j ≤ n − k), s is called a closed cell ID segment of C iff
∀j≤a,b≤(j+k)ca.A∩cb.A 6= φ, where c.A denotes the coverage
area of the cell-site with ID c.

Definition 2 (Stay Session): Given a predefined threshold
of minimum time range Tmin, for a closed cell segment
s = cici+1...ci+n, s is called a stay session iif (a)
(ci+n.timestamp − ci+1.timestamp) ≥ Tmin and (b) 6
∃s′(s ⊂ s′) ∧ (s′ is a closed segment of C).

According to notions we can detect stay sessions by scan-
ning the cell ID trajectory and iteratively discover the closed
cell-ID sequences and check whether they are stay sessions.
Algorithm 1 illustrates the method of stay session extraction.
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Herein the variable Movement is used to record the recogni-
tion of a closed cell ID sequence and c.Radius indicates the
coverage radius of the cell-site c. The parameter of Tmin is
set to 30 minutes in our experiments. Moreover, the distance
between the cell-site with ID ci and another one with ID cj
is calculated as follows.

Distance(ci, cj) = R× arcsin√
sin2 (

∆Lat

2
) + cos (cA.Lat) cos (cB .Lat) sin2 (

∆Long

2
),

where c.Lat and c.Long indicates the latitude and longitude
of the cell-site c respectively, R denotes the radius of equator1,
∆Lat = |cA.Lat − cB .Lat| and ∆Long = |cA.Long −
cB .Long|.

B. Estimating Stay Areas by Geo-grids

Given a stay session s = cici+1...ci+n, we can estimate the
stay area of the user by As =

⋂
c∈s c.A, where c.A indicates

the coverage area of the cell-site c. A stay area As indicates
that the user’s movement is limited in the area during the
according time range, which implies it may contain a stay
point of the user. The longer the time range and the smaller
the stay area, the more likely the user is in a stay status and
the stay point is covered by As.

Since the coverage areas of cell-sites are usually represented
by areas of circles, stay areas are essentially irregular areas
bounded by curves. However, it is inefficient to represent a
stay area by a group of boundaries in the form of sphere
curves. Moreover, too accurate estimations of stay areas are
meaningless because the information of the coverage areas for
cell-sites usually contain errors. Therefore, we use a simple
and efficient geo-grid based method to estimate the stay area.
The basic idea of the approach is as follows. Firstly, we
partition the surface of the earth into many geo-grids by
latitude and longitude. Then we can use a group of geo-grids
to represent the coverage area of a cell-site c by enumerating
the geo-grids whose centers are covered by c.A. Finally, we
can quickly calculate the overlapped area among the coverage
areas of several cell-sites by enumerating the joining geo-
grids among their covered geo-grids as shown in Figure 3.
Obviously, the smaller scale we use to partition the earth,
the more accurate the estimation can be. But as mentioned
above, we do not need too accurate estimations because of
the inherent errors of the cell-site information. In practice, we
partition the surface of the earth in the scale of 0.001 latitude
× 0.001 longitude.

III. MINING SIGNIFICANT PLACE FROM STAY AREAS

With the stay areas of a user, we can mine his (or her) sig-
nificant places. Intuitively, we can count the visiting frequency
of each geo-grid in the stay areas and take the top frequently
visited geo-grids as significant places. To be specific, we can
count a geo-grid to be visited once when it appears in one stay

1For simplicity, we assume the Earth is a perfect sphere.

Fig. 3. An example of estimating stay areas by geo-grids. The red area
estimates the overlapped area of two cell-sites’ coverage areas.

Algorithm 2 Significant Places Extraction
Input 1: a set of areas Λ = {A};
Input 2: a maximum area threshold Amax;
Output: a set of significant places P ;

1: P ← ∅;
2: for each A ∈ Λ do
3: if Area(A) > Amax then
4: call Separate(Λ, Amax, P );
5: else
6: P ← P ∪A;
7: return P ;

Method Separate(Λ′, A′max, P )
1: for each A′ ∈ Λ′ do
2: if Area(A′) > Amax then
3: gmin ←argming(Signicance(g)), where g ∈ A′;
4: for each g ∈ A′ do
5: if Signicance(g) ≤ Signicance(gmin) then
6: A′ ← A′ − g;
7: if A′ is split to several areas Λ∗ = {A∗} then
8: call Separate(Λ∗, Amax, P );
9: else

10: go to 3;
11: else
12: P ← P ∪A′;
13: return;

area. However, this naive approach does not take into account
the different accuracy of estimating stay points for each stay
area. Usually, the larger the stay area, the less accurate the
estimation of a real stay point. Motivated by this observation,
we should take into account the geo-grids occurring in small
stay areas more than those occurring in big ones. Moreover,
we observe that the longer the time range of a stay session,
the more likely it contains a real stay point, which implies
that we should pay more attention to the geo-grids occurring
in stay areas extracted from long stay sessions. Along this
line, for each geo-grid g occurring the extracted stay areas,
the significance is calculated as follows.
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Significance(g) =
∑

s:g∈s.A

TimeRange(s)

GridNum(s.A)
, (1)

where s denotes a stay session, s.A denotes the corresponding
stay area, GridNum(s.A) indicates the number of geo-grids
s.A contains.

It is worth noting that a geo-grid with high significance
may not correspond to one real significant place. On one
hand, when the scale of the geo-grid is relatively big, a
significant geo-grid may contain several significant places,
which is called false merging. On the other hand, when
the scale of the geo-grid is relatively small, several adjacent
significant geo-grids may imply the same significant place,
which is called false splitting. For example, the significant
place may be a big plaza which covers several geo-grids.
Another example of false splitting is that a significant place
may be in the common boundary of adjacent geo-grids. For
the false merging problem, we cannot split a geo-grid to
discover the real significant places. Thus, we should select
relatively small geo-grids in practice. For the false splitting
problem, we can assume that two adjacent significant geo-grids
may imply the same significant place. Based on the intuitive
assumption, we propose a geo-grid pruning based algorithm
for discovering the areas whose contained geo-grids have high
average significance as significant places.

The basic idea of the algorithm is as follows. Initially,
all geo-grids appearing in the extracted stay sessions are
naturally split to several areas which consist of many geo-
grids due to the connectivity among them. Firstly, we define
a maximum area threshold as Amax to limit the areas of
estimated significant places. Then for each area we recursively
remove the geo-grids with the lowest significance in the area
to split the original area by the connectivity among geo-grids.
The pseudo code the algorithm is illustrated in Algorithm 2,
where A denotes an area which consists of many geo-grids,
the method Seperate(Λ′, A′max, P ) is a recursive function for
separating areas in Λ′ and inserting the areas which are small
enough to the global set of significant places P .

IV. A PREVIEW OF THE DEMONSTRATION

We implement the demonstration with a Python Web frame-
work Django and use the MySQL database to store user Cell
ID trajectories and mined significant places. We get the real
location and cover areas of cell sites through Google Map ser-
vice API. And the mined significant places are shown through
the Google Map JavaScript API. With this demonstration,
users can select their cell ID trajectory which had stored in
the database to view the cell ID distribution or to query the
significant places. All operations are performed in the web
page interface and all the results will be shown in a web
browser. Some screen shots of the demonstration are shown in
Figure 4 and Figure 5. In Figure 4, the system shows the raw
cell ID distribution in a selected cell ID trajectory spanning for
one month. In Figure 5, the system shows the corresponding
mined significant places.

In future extension, we plan to develop a Web service
version of the demonstration which provide APIs to allow
users to post their cell ID trajectories to our server and get
the mined significant places in a predefined JSON format.

Fig. 4. The raw Cell ID distributions.

Fig. 5. The mined Significant Places.
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