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a b s t r a c t

We study the single-device Dynamic Storage Allocation (DSA) problem and the multi-
device Balancing DSA problem in this paper. The goal is to dynamically allocate the job
into memory to minimize the usage of space without concurrency. The SRF problem is just
a variant of the DSA problem. Our results are as follows.

• The NP-completeness for the 2-SRF problem, 3-DSA problem, and DSA problem for jobs
with agreeable deadlines.

• An improved 3-competitive algorithm for jobs with agreeable deadlines on single-
device DSA problems. A 4-competitive algorithm for jobs with agreeable deadlines on
multi-device Balancing DSA problems.

• Lower bounds for jobs with agreeable deadlines: any non-clairvoyant algorithm cannot
be (2−ϵ)-competitive and any clairvoyant algorithm cannot be (1.54−ϵ)-competitive.

• The firstO(log L)-competitive algorithm for general jobs onmulti-device Balancing DSA
problems without any assumption.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

This paper studies the Dynamic Storage Allocation (DSA) problem, which is a classic problem in computer science. The
problem description is as follows. Given a set of n jobs J, each job Ji is characterized by a size si, an arrival time ri, and a
departure time/deadline di. Each job should be allocated in a contiguous location at its arrival time. Once placed into address
a(Ji), the job occupies the allocated space from address a(Ji) to a(Ji) + si − 1 (with size si) in the whole time interval [ri, di].
The occupied space is available for other jobs after time di. Two jobs i, j are assigned with conflict if [ri, di] ∩ [rj, dj] ≠ ∅

and [a(Ji), a(Ji) + si − 1] ∩ [a(Jj), a(Jj) + sj − 1] ≠ ∅. We need to place all the jobs into the memory without conflict at
any time. The objective is to minimize the memory space used by all jobs. Another interpretation of DSA is to consider the
following variant of the Strip Packing Problem. Packing into a strip can be interpreted as packing into a 2D geometric plane
X × Y with fixed width X . In the Strip Packing Problem, each rectangle is a (di − ri + 1) × si area. The objective is to pack
all the rectangles into a strip that has a fixed width, while minimizing the maximum height of this strip. Obviously, DSA is a
variant of the Strip Packing Problem (we would not survey the work in this field here) where the position of rectangles
in X-axis is immovable. DSA has received much attention since 1950s. Knuth proposed some basic methods in [12].
Stockmeyer proved its NP-completeness by a reduction from the 3-partition problem in 1976. He also proved DSA to be
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strongly NP-complete even when sizes of jobs are restricted to {1,2} (The proof was given in Larry Stockmeyer’s private
communicationwithDavid Johnson and included in [3]). For an offline version ofDSA, the first constant-factor approximation
algorithm—an 80-approximation first-fit mechanism was proposed by Kierstead in [10] where jobs are sorted according
to their sizes, whereafter Kierstead reduced the approximation ratio to 6 in [11]. Subsequently, Gergov presented a
5-approximation algorithm in [7] and then improved to a 3-approximation algorithm in [8]. Narayanaswamy gave another
3-approximation algorithm in [16]. The algorithm with an approximation ratio 2 + ϵ is proposed by Buchsbaum et al.
in [2]. For the special case of DSA with only two job sizes, Gergov [7] presented a 2-approximation algorithm. When job
sizes are restricted to small values, Li et al. [13] proposed a 4

3 -approximation algorithm when the sizes are {1, 2} and a
1.7-approximation algorithm when the sizes are {1, 2, 3}. For an online version of DSA, Robson [17] showed that first-fit
algorithmhad a competitive ratio ofO(log(Smax))where Smax is themaximumsize among all jobs. Then Luby et al. [14] proved
that first-fit algorithms could achieve the competitive ratio of O(min{log(Smax), log(χ)}), where χ denotes the maximum
number of concurrent jobs for all time instants. This is an improvement over Robson [17] since generally Smax and χ are
incomparable. They also studied the multi-device Balancing DSA problem (minimizing the maximum occupied space on m
devices) and gave an optimal competitive algorithmunder the assumption thatm ≤

ω∗

Smax
whereω∗ represents themaximum

total size of alive jobs at any time, which is also denoted as LOAD(J) in this paper. Gergov [7] improved the competitive ratio
of first-fit strategy of online DSA to Θ(max{1, log(Smax ·χ/ω∗)}). For cases that the live-ranges (which equals the difference
of deadline and arrival time) of jobs are knownwhen they arrive (this scenario is also referred to as clairvoyant scheduling),
Naor et al. [15] provided an online 8-competitive algorithm for jobswith agreeable deadlines (where later released jobs have
no earlier deadlines) and an O(min{(log(L), log(τ ))})-competitive algorithm for general jobs, where L is the ratio between
the longest and the shortest live-ranges of the jobs, and τ denotes the maximum number of concurrent jobs that have
different live-ranges. [9] provides a lower bound Ω(

log x
log log x )-competitive for online algorithms where x can be n, Smax, χ, τ

or log L.
DSA is investigated in many applications such as memory or register allocation in operating systems and bandwidth

allocation in communication networks etc. In operating systems, compiler algorithms should decide where to place items
(arrays or matrices etc.) in memory. To deal with register allocation problems or DSA problems, another conventional
mechanism is to use graph coloring. Graph coloring has been extensively investigated and specifically studied for register
allocation by Chaitin [4]. From [4] on, many register allocation algorithms based on graph coloring have been proposed such
as [5,1,6]. Our study of DSA is motivated by stream register file (SRF) allocation problem. SRF is a software-managed on-chip
memory. Since it is a critical resource, optimizing SRF utilization becomes crucial. Recently in [18], by dividing streams (can
be referred to as jobs here) into two types (short streams with live-ranges l ≤ 2 and long streams with live-ranges l ≥ 3),
they modeled the problem into comparability graph coloring. They considered a special case where there are at most two
long items at any time instant and gave a near-optimal solution, without showing the complexity of this problem. We will
refer to their model as 2-SRF problem.

We study both the complexities and algorithms for theDSAproblemand its variants. Note that the SRF allocation problem
studied in [18] can be transformed into DSA notation. When considering the duration of the jobs, one interesting question
is that how large the value L should be in order to make the problem hard. We will refer to the problem where every job
has live-range at most L as L-DSA problem. For the general DSA problem, we improve the performance for the single-device
DSA problem studied in [15] and give the first competitive algorithm for the multi-device Balancing DSA problem without
any assumption. We start by investigating the jobs with agreeable deadlines, which was also studied in [15]. This kind of
jobs has received much attention in other domains of scheduling problems. We derive the complexity for this type of jobs
for completeness. Moreover, although our method leads to the same performance as [15] for the offline setting, it is proved
more extendable to the online setting both for single-device and multi-device. Our results are as follows,

• The NP-completeness for 2-SRF problem, 3-DSA problem, and DSA problem for jobs with agreeable deadlines.
• An improved 3-competitive algorithm over [15] for jobs with agreeable deadlines on single-device DSA problem. A

4-competitive algorithm for jobs with agreeable deadlines on multi-device Balancing DSA problem.
• Lower bounds for jobs with agreeable deadlines: any non-clairvoyant algorithm cannot be (2 − ϵ)-competitive and any

clairvoyant algorithm cannot be (1.54 − ϵ)-competitive.
• The first O(log L)-competitive algorithm for general jobs on multi-device Balancing DSA problem without any

assumption.

The rest of the paper is organized as follows. In Section 2, we review the model for DSA problem and multi-device
Balancing DSA problem. In Section 3, we settle the complexities for L-DSA problem and 2-SRF problem. In Section 4, we
investigate the single-device DSA problem. We propose the laminar decomposition for jobs with agreeable deadlines. The
complexity for jobs with agreeable deadlines is settled. We have a simple 2-approximation algorithm through laminar
decomposition. This decomposition can be used to design an improved 3-competitive algorithm (for jobs with agreeable
deadlines). We also show some lower bounds for both clairvoyant and non-clairvoyant online algorithms. In Section 5, we
design competitive algorithms for multi-device Balancing DSA problem. A 4-competitive algorithm for jobs with agreeable
deadlines is proposed and also an O(log L)-competitive algorithm for general jobs. To make the paper smooth, some proof
is put in the Appendix.
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2. Preliminaries

In operating systems,memory allocation algorithms need to considerwhere to place a set of items (often arrays, matrices
etc.) so that the overall usage of memory is minimized. In DSA (Dynamic Storage Allocation) notation, we are given jobs J
where each job i (or Ji) has a size si and a live-range/length starting from the arrival time ri and departing at deadline di, i.e.
Ji = (ri, di, si). A job i is said alive at time t if t ∈ [ri, di]. The time is partitioned into units. For each unit of time t , if we
say i has arrival time t , we mean job i is released at the beginning of time t . Correspondingly, if we say i has deadline t , we
mean job i expires at the end of time t . Upon arrival of each job, we need to allocate a contiguous memory location for it. We
assume that the memory is starting from address 1 instead of address 0. By a(Ji) we denote that Ji is assigned or allocated to
address a(Ji) throughout its live-range. Once placed into address a(Ji), Ji occupies the space from address a(Ji) to a(Ji)+ si −1
(with size si) in the whole time interval [ri, di]. The occupied space is available for other jobs after time di. Two jobs i, j are
assignedwith conflict if [ri, di]∩[rj, dj] ≠ ∅ and [a(Ji), a(Ji)+ si −1]∩[a(Jj), a(Jj)+ sj −1] ≠ ∅. We need to place all the jobs
into the memory without conflict at any time. Once allocated, the job cannot be moved or deleted until its deadline. Only
when the job leaves, its occupied memory location can be available for other jobs. The objective is to minimize the overall
used memory size. For the multi-device Balancing DSA problem, we are givenm devices and the goal is to allocate the job in
a balanced manner such that the maximum occupied space on them devices is minimum. By Smax we denote the maximum
size over all jobs. Let LOAD(t) be the total size of alive jobs at time t . We use LOAD(J) to represent the maximum total size
over all time t . Obviouslymax{LOAD(J), Smax} is a lower bound for the optimal solution for single-device DSA problem,while
multi-device Balancing DSA problem has a lower boundmax{ LOAD(J)

m , Smax}.
Observing that in the applications such as SRF problem each item usually has a short live-range, we use L-DSA problem to

denote the restricted DSA problemwhere all jobs have live-ranges atmost L. The jobs with agreeable deadlineswhich receive
much attention in scheduling literature are defined to be jobs where later released jobs always have no earlier deadlines.

We use OPT (J) to denote the optimal memory space occupied by the optimal solution for jobs J. An offline algorithm is
said to be c-approximation if it outputs a solution which occupies memory space at most c · OPT (J). In the online setting,
the algorithm should make decision upon the arrival of jobs. There are two versions. In the clairvoyant scheduling, the
algorithm knows the deadline when a job is released, while in the non-clairvoyant scheduling the algorithm does not know
this information. We say an online algorithm is c-competitive if it always outputs a solution within c times the optimal
offline solution.

3. Settling the complexity for special cases of DSA/SRF problem

The decision version of Partition problem is as follows. Given finite set U = {u1, u2, . . . , un} with
n

i=1 ui = 2B. The
question is to find a subset U ′

⊂ U such that the sum of the elements in U ′ is exactly B. In the following we will show that
the 2-SRF problem and L-DSA problem are NP-complete. The construction is reduced from Partition problem.

The problem defined in [18] is referred to as 2-SRF problem in this paper. After transforming their paradigm to the DSA
notation, the problem can be considered equivalently as follows. There are two kinds of jobs, short jobs and long jobs. All
the short jobs have live-ranges at most 2. The long jobs have live-ranges larger than 2, but each time there are at most two
such long alive jobs. The justification of such a problem is simple because we can split the long live-range stream (job) into
streams with short live-ranges by live-range splitting technique. This allows us to break long jobs into jobs limited to some
constant length L. They discussed this problem by five sub-cases, among which four of these cases can be solved optimally
by their proposed algorithm, while the fifth case is shown to be within the optimal solution plus 2 times the maximum size
of the long jobs. Thus the complexity of this problem still remains open. The following theorem answers this question.

Theorem 1. The decision version of 2-SRF problem is NP-complete even when all jobs have live-ranges at most L = 3.

Proof. Given any instance (n items) of Partition problem, we construct an instance of the 2-SRF problem with n + 8 jobs.
Moreover, all the long jobs we construct have live-ranges L = 3 and at any time at most two long jobs are alive.

The jobs we construct are as follows. We set B =
n

i=1 ui/2.

Ji = (3, 3, ui) for all 1 ≤ i ≤ n;
Jn+1 = (1, 3, B), Jn+2 = (3, 4, 2B), Jn+3 = (4, 4, 8B),
Jn+4 = (2, 4, 2B), Jn+5 = (1, 1, 8B), Jn+6 = (1, 2, 3B), Jn+7 = (2, 2, B), Jn+8 = (2, 3, 5B).

In this instance, the decision version of the 2-SRF problem is to find a solution with memory size M ≤ 12B. We will show
that computing a solution with memory size M ≤ 12B (namely we need to pack the jobs into a 4 × 12B box) is equivalent
to partitioning the items into two sets with the same size B =

n
i=1 ui/2. We discuss by cases.

Case 1: Jn+1 is placed between Jn+5 and Jn+6.
W.l.o.g we assume that Jn+6 is placed on the top, as shown in Fig. 1(a). This makes Jn+4 impossible to be placed on the top.

Two sub-cases should be considered. If Jn+2 is on top, then Jn+3 is forced to be placed between Jn+2 and Jn+4. In this situation,
no matter what order Jn+7 and Jn+8 are placed, there are two separated gaps with size B at time 3. The remaining n short
jobs can be packed into the box if and only if we could partition their job sizes (ui where 1 ≤ i ≤ n) into two sets each
with size exactly B. We already complete the proof in this case and will show contradiction for other cases. If Jn+3 is on top,
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Fig. 1. Reduction 1.

then obviously there are two orders for Jn+2 and Jn+4 to be placed at the bottom. One natural way is to place Jn+2 above Jn+4.
But then no matter what orders Jn+7 and Jn+8 are placed, Jn+8 will conflict with Jn+2. Also, if Jn+4 is above Jn+2, then Jn+8 will
conflict with Jn+4.

Case 2: Jn+1 is placed above Jn+5 and Jn+6.
In this case, both Jn+2 and Jn+4 can only be placed below Jn+3. Clearly this forces Jn+5 to be placed below Jn+6 or otherwise

Jn+6 will conflict with Jn+4. We should discuss the two sub-cases that Jn+2 is above Jn+4 or not. Careful discussions will show
that Jn+8 will conflict with at least one of Jn+2 and Jn+4, as shown in Fig. 1(b).

Thus our construction only allows the latter 8 jobs to be arranged as shown in Fig. 1(a). To further place the first n jobs
at time 3, we need to partition them into two sets each with size exactly B. This finishes our reduction. �

Note that the reduction in Theorem 1 uses jobs that have live-ranges at most 3, thus 3-DSA problem is also NP-complete.
Simple extension of this construction can show the NP-completeness for every L ≥ 3.

Corollary 1. The decision version of L-DSA problem is NP-complete for L ≥ 3.

4. Better online algorithms for DSA problem

In this section, we start by studying jobs that have agreeable deadlines. In this setting, all the later released jobs will
have no earlier deadlines. This kind of jobs has also received much attention in other domains of scheduling problems.
We will first show that the problem (with agreeable deadlines) is still NP-complete in the offline setting. Then we design a
2-approximation algorithm for jobswith agreeable deadlines in the offline version. Thismatches the result in [15]. However,
we will show that the concept we use is more extendable to the online problem both in single-device and multi-device
setting.

4.1. Approximation algorithm through laminar decomposition

The following reduction shows that the problem is still NP-complete for jobs with agreeable deadlines. The reduction
uses a symmetric structure of the jobs.

Theorem 2. DSA problem for jobs with agreeable deadlines is NP-complete.

Proof. Given any instance (n items and total value u1 + u2 + · · · + un = 2B) of Partition problem, we construct an instance
with 2n + 7 jobs. Distinguishing with the previous reduction, an important observation of this construction is that all the
constructed jobs form a symmetric structure w.r.t time 3. All the jobs we construct have agreeable deadlines. Wewill define
two groups of small jobs that have live-ranges 1. The first group is jobs {Ji : Ji = (1, 1, ui), 1 ≤ i ≤ n} while the second
group is jobs {Ji : Ji = (5, 5, ui), n + 8 ≤ i ≤ 2n + 7}. The remaining seven jobs we construct are as follows.

Jn+1 = (1, 2, 3B), Jn+2 = (1, 3, B), Jn+3 = (2, 3, B),
Jn+4 = (2, 4, B), Jn+5 = (3, 4, B), Jn+6 = (3, 5, B), Jn+7 = (4, 5, 3B).

We will show that there is a solution no larger than 6B for our instance if and only if either the first group or the second
group of jobs can be equally divided into two sub-sets each with equal size B. Equivalently, we need to pack the jobs into a
5×6B box. Thus we focus on creating two equal gaps each with size B either at time 1 or time 5 in the following. We discuss
by cases.

Case 1: Jn+1 is placed at address B + 1.
The simple case is that Jn+2 is at address 4B+ 1 or 5B+ 1, then we successfully obtain two equal gaps at time 1. If Jn+2 is

at the bottom (address 1), then Jn+3, Jn+4 should occupy the 2B space on the top at time 3 and Jn+5, Jn+6 should occupy the
3B space in the middle at time 3. This makes Jn+7 impossible to be placed without conflict.

Case 2: Jn+1 is placed at the bottom (at address 1).
Job Jn+2, Jn+3, Jn+4 should occupy the 3B space on the top at time 2. If Jn+2 is at address 4B+ 1, then we already have two

equal gaps at time 1. If Jn+2 is at address 3B+ 1, then there are two sub-cases. For the first one, if Jn+4 is on top, then job Jn+7
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Fig. 2. Reduction 2.

could only be at address 2B + 1 (Such an allocation can be demonstrated by rotating Fig. 2 180◦ clockwise and renaming
job Jn+i to be Jn+8−i where 1 ≤ i ≤ 7 since it is a symmetric structure). No matter how Jn+5, Jn+6 are placed, we have two
equal gaps at time 5 in this situation. For the second case, if Jn+3 is on top, then at least one of Jn+5, Jn+6, Jn+7 will concurrent
with Jn+4. It remains to show the case that Jn+2 is at address 5B + 1. Again in this situation, at least one of Jn+5, Jn+6, Jn+7 is
concurrent with Jn+4.

Case 3: Jn+1 is placed at address 2B + 1 or 3B + 1.
Note that the space excluding Jn+1 in Case 2 is 6B−3B = 3B. Thus the case that Jn+1 is placed at address 3B+1 (or 2B+1)

is the same as Case 2 (or Case 1).
In all cases we have shown that the constructed instance has a solution 6B if and only if either there are two equal gaps

at time 1 or time 5. Namely, we have a solution 6B if and only if Partition problem can be solved. �

To design an approximation algorithm, we introduce the laminar jobs. Laminar jobs at time t is composed of jobs
laminar(t) = {j : t ∈ [rj, dj]}. The concept for our algorithm is to first decompose the original jobs into several small job sets,
with jobs in the same set forming laminar jobs. These sets are then divided into two groups. Moreover, our decomposition
and grouping ensure that jobs in different sets but the same group are never concurrent with each other. Thus this allows
us to concentrate on the separated single set of laminar jobs. The decomposition step loops as follows:

(1) Set t = d1. Let S1 = laminar(t).
(2) Assume that j to be the first job in the remaining jobs. Let t = dj and S2 = laminar(t).
(3) Update j to be the first job in the remaining jobs and repeat to find all sets S3, S4, . . . , Sb until no jobs are left.
For the grouping step, we group the sets with odd index into group G1 = {S1, S3, S5, . . . , } while the others form group

G2. Note that both the decomposition and grouping can be operated in online manner since we know both the release times
and deadlines of the jobs when they arrive. An offline 2-approximation algorithm can be easily obtained.

Lemma 1. The DSA problem for agreeable jobs has a 2-approximation algorithm.

Proof. An important observation of such a grouping strategy is that the sets in the same group are pairwise non-concurrent
at any time. Take the first three sets S1, S2, S3 for example. Let j be the first job in S2. Let ta be the largest deadline of jobs in S1
and tb be the smallest arrival time of jobs in S3. We note that dj ≥ ta according to the decomposition step (2). Moreover, the
first job in S3 has release time larger than dj because otherwise this job would be grouped into S2, hence tb > dj. Therefore
we have ta < tb and S1, S3 are not concurrent. Similarly this can be extended to every two sets in the same group.

Getting this, for all sets in G1 (or G2), we can solve each set optimally by FirstFit policy since laminar jobs is crossing at
least one common time. The jobs in group G1 (or G2) can also be solved optimally due to the pairwise independence property
of the sets. Finally, by applying OrderedFit(·) to G1 ∪ G2 and Lemma 2, the new algorithm framework uses memory at most
2OPT (J). �

Algorithm 1 OrderedFit(STR,J)
for each round r = 1, 2, . . . , k do
1. Simulate STR(Gr) in virtual device r . Denote the maximum occupied address on device r to be Mr .
2. Assign all jobs in the practical memory as if they are combined by the allocations in k virtual devices. Instead of
starting from address 1 on the virtual device, device r (r ≥ 2) starts its allocation from address

r
i=2 Mi−1 + 1 in the

practical single memory.
end for

Lemma 2 (Technical Lemma). If a job set J is decomposed into k disjoint subsets G1, . . . ,Gk, and every set Gi can be solved
within r · OPT (Gi) by some strategy STR (i.e for each i we have STR(Gi) ≤ r · OPT (Gi)), then by applying OrderedFit to J we have
OrderedFit(STR, J) ≤ rk · OPT (J).

Note that our new algorithm matches the current best algorithm in [15]. However, our decomposition step not only
simplifies the structure of the jobs, butwill also be provedmore extendable to online single-device andmulti-device setting.
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4.2. Better online algorithm through laminar decomposition

Online algorithm: We note that our decomposition step can be performed in an online manner. We will show how to
achieve the 3-competitive clairvoyant online algorithm by using laminar decomposition. This improves the 8-competitive
algorithms in [15].

Our strategy is to assign the second decomposed group pessimistically to ensure that we waste at most one gap in the
memory, which is shown in Algorithm 2. Let Si be generated by laminar jobs at time ti, i.e. Si = laminar(ti). We have
LOAD(Si) ≤ LOAD(ti) by the decomposition step.

Algorithm 2 PessiOnline
1. Jobs are decomposed into two groups G1 = {S1, S3, S5, . . .},G2 = {S2, S4, S6, . . .} online by laminar property. For all
jobs in the same set, the job that is earlier released will be allocated to lower address (ties are broken by assigning jobs
with earlier deadline to lower address). We apply different strategies for the two groups as follows.
for each round i = 1, 2, 3, . . . do
2. For set S2i−1 in G1, upon arrival of the jobs, it will be placed on the lowest feasible address (FirstFit). Let the maximum
address used by this set beM2i−1.
3. For set S2i in G2, we pessimistically assign the first one to addressM2i−1 + 1. All the later jobs in the same set will be
assigned one by one to the address immediately (consecutively) after the prior one, without violating the rule in Step 1.

end for

Theorem 3. There is a 3-competitive algorithm for the single-device DSA problem where jobs have agreeable deadlines.

Proof. Obviously the occupied space is maximized at some time ti. The analysis is based on discussing the possible cases
of placing job set S2k−1 where k = 1, 2, . . . . Three observations are the key advantages of such an allocation strategy.
First, when we consider jobs in S2k−1 (determine the allocation upon the arrival of a job), the determination should never
worry about the possible conflict with S2k−3, since these two sets are separated by time t2k−2 and thus never concurrent.
Second, because of the pessimistic allocation in Step 3 and the rule in Step 1, the jobs in S2k−2 is consecutively allocated and
only leave at most one gap (it can only be the empty space starting from address 1) at every time in interval [t2k−2, t2k−1]

(before jobs S2k−1 are released). Third, because we apply the FirstFit policy to set S2k−1 and also the two former observations,
the jobs in S2k−1 can be placed in at most two contiguous memory spaces (namely, divided by a gap of empty space). For
example, S3, S7 are assigned to two contiguous memory spaces, while S5 is assigned to one contiguous memory space.
Furthermore, the gap is generated only because there is a job with larger size being released. For the case that S2k−1 is
separately allocated, the gap is created because the space of the gap (let the size be sg ) is less than the job (let its size be
sj) attempting to fit into this space. Namely, we have sg < sj < LOAD(t2k−1). The occupied space at time t2k−1 is at most
LOAD(t2k−1) + sg ≤ 2LOAD(t2k−1) ≤ 2LOAD(J) ≤ 2OPT (J). Since we assign the later set S2k pessimistically, the space used
at time t2k is atmost LOAD(t2k−1)+sg+LOAD(t2k) ≤ 3OPT (J). For the case that S2k−1 is not separately allocated, the occupied
space by assigning S2k−1 at time t2k−1 is LOAD(S2k−1) ≤ LOAD(t2k−1). S2k will not conflict with S2k−2 and is then consecutively
allocated after S2k−1, thus at time t2k the occupied space is at most LOAD(t2k−1) + LOAD(t2k) ≤ 2LOAD(J) ≤ 2OPT (J).
Combining these two cases, the algorithm is 3-competitive. �

Lower bounds on online algorithms: For jobs with agreeable deadlines, we show the following lower bounds of an online
algorithm.

Theorem 4. Any non-clairvoyant online algorithm for the DSA problem with agreeable jobs cannot be (2 − ϵ)-competitive. Any
online clairvoyant algorithm for the DSA problem with agreeable deadlines cannot be (1.54 − ϵ)-competitive.

Proof. We construct instances showing that nomatter what the online algorithm ONLINE (non-clairvoyant and clairvoyant
scheduling) determines, the adversary ADV can make its performance bad. In the non-clairvoyant scheduling, ONLINE does
not know the job’s deadline when a job is released, while in the clairvoyant scheduling it knows this information.

In the non-clairvoyant scheduling, let ϵ1 → 0 and p be the minimum value larger than 1 that makes n =
2p
ϵ1

− 1 an
integer. Assume that ADV releases n jobs 1, 2, . . . , n at time 1. Each of these jobs has equivalent size 1. Since it is non-
clairvoyant, the online algorithm does not know the deadline until the job is finished. Obviously, no matter how ONLINE
assigns these jobs, the occupied size at time 1 is at least n · 1 and all jobs should be assigned a position at time 1. Let job j
be assigned on the top with largest memory address aj by ONLINE. We have aj > n · 1 − 1. For ADV, all the jobs except j
are finished at some time t > 1. Moreover, ADV releases a job n + 1 with size M = aj that has the same deadline with j.
Since j is still alive at time t , ONLINE has to assign this job to an+1 > aj, and thus has solution at least 2M . Clearly ADV can
schedule these jobs with maximum occupied address M + 1. Therefore, the competitive ratio of any online algorithm is at
least 2M

M+1 ≥ 2 −
2

n+1 = 2 −
ϵ1
p ≈ 2.

Nowwe turn to the clairvoyant scheduling. Assume that l, ϵ1, ϵ2 are constant integers and l ≫ ϵ1, l ≫ ϵ2. Let the first job
with size l be released at time 0 and finished at time 2. Wewill introduce constants u, v, v′ and set their values later. W.l.o.g
assume that algorithm ONLINE allocates it at address x. If x ≥ ul, then the adversary ADV terminates. The competitive ratio
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of this case is at least x+l−1
l ≥ 1 +

ul−1
l which is approximately 1 + u by setting l to be a large integer. If x < ul, then ADV

releases the second job at time 1 with size x+ ϵ1 and deadline 4. Obviously, ONLINE has to assign job 2 with address at least
x+ l. Let this job be allocated at address x+ l+ y. If y ≥ vl− x, then ADV terminates. The competitive ratio of this case is at
least x+y+l+x+ϵ1−1

l+x+ϵ1
. This value is at least 1 +

x+y−1
x+l+ϵ1

> 1 +
v−1/l

1+u+ϵ1/l
≈ 1 +

v
1+u . If y < vl − x, then ADV will release the third

job at time 3 with size x + l + y + ϵ2 and deadline 4. ONLINE has to allocate this job with address at least l + y + 2x + ϵ1.
Thus the competitive ratio is at least l+y+2x+ϵ1+(x+l+y+ϵ2)−1

x+l+y+ϵ2+(x+ϵ1)
= 1+

x+l+y−1
2x+y+l+ϵ1+ϵ2

. Since x < ul, x+y < vl, this value is at least

1+
x+l+y−1

ul+l+vl+ϵ1+ϵ2
. Furthermore, by setting v′ < v, the value is larger than 1+

1+v′

1+u+v
when x+y > v′l, and at least 1+

1
1+u+v′

when x + y ≤ v′l. Therefore, any online clairvoyant algorithm is at least min{1 + u, 1 +
v

1+u , 1 +
1+v′

u+1+v
, 1 +

1
1+u+v′ }-

competitive. Setting u = 0.54, v = 0.832, v′
= 0.281, we obtain lower bound 1.54-competitive. Our construction uses

at most three jobs that have agreeable deadlines. Clearly the case with two jobs can be solved optimally by using FirstFit
strategy, while releasing one more job can greatly deteriorate the performance of online algorithms. �

Extending to general jobs: [15] gave a 16⌈log(L)⌉-competitive online algorithm for general jobs by calling/extending the
algorithm for agreeable jobs. We note that the applications in an SRF problem (register) usually have small value L, thus
we will further improve the performance for this situation (accurately L ≤ 112) in the following. The idea is to extend the
concept used in Section 4.2.

Theorem 5. For general jobs, there is amin{16⌈log L⌉, 2⌈ L
2⌉}-competitive algorithm with known maximum duration L.

5. Multi-device Balancing DSA problem

In this section, we settle themulti-device Balancing DSA problem for both agreeable jobs and general jobs. In this setting,
there are m devices and the objective is to balance the usage of the memories. Accurately, we aim at minimizing the
maximum memory size used in the m memories. We observed that [14] studied this problem under the assumption that
‘‘m ≤

ω∗

Smax
’’.With their assumption, [14] showed that their algorithm is online optimal competitive.We restudy this problem

by dropping their assumption. For themulti-device DSA problem, we give a 4-competitive algorithm for jobs with agreeable
deadlines and an O(log L)-competitive algorithm for general jobs. The method of the online algorithm is still based on the
laminar decomposition.

We also start by designing a O(1)-competitive algorithm for jobs with agreeable deadlines.

5.1. Balancing DSA problem for jobs with agreeable deadlines

Assume that we decompose the jobs J to G1 = {S1, S3, S5, . . .},G2 = {S2, S4, S6, . . .} where Si = laminar(ti) through
laminar decomposition in an online manner as in Section 4.2. The new algorithm for multi-device is shown in Algorithm 3.

Algorithm 3MultiOnline
1. Jobs are decomposed into two groups G1 = {S1, S3, S5, . . .},G2 = {S2, S4, S6, . . .} online by laminar property. We apply
different strategies for the two groups. For all jobs in the same set, the job that is earlier releasedwill be allocated to lower
address (ties are broken by assigning jobs with earlier deadline to lower address). In the following, by top address at time
t we denote the maximum occupied address at time t that is allocated in the current round.
for each round i = 1, 2, 3, . . . do
2. For set S2i−1 in G1, upon arrival of the jobs j, we simulate on every device by assigning j to the lowest feasible address
(FirstFit policy). If j can be allocated to the empty space that is below the top address of the device l, then we assign j to
l. If not, then we assign j to the device with minimum top address. Assign j to the selected device by FirstFit policy.
3. For set S2i in G2, we assign the jobs pessimistically. Upon the arrival of job j ∈ S2i, we suppose that l is the current
device that has the minimum top address (let the address be Ml). Assign j to address Ml + 1. All the later jobs in the
same set that is allocated to l will be assigned consecutively without violating the rule in Step 1.

end for

Theorem 6. Algorithm MultiOnline is 4-competitive for multi-device Balancing DSA problem on jobs with agreeable deadlines.

Proof. Through laminar decomposition, one advantage is that the load of set of laminar jobs Si at time ti is exactly the
summation of sizes over all its jobs. We first note that the lower bounds for the multi-device Balancing DSA problem are
OPT ≥

LOAD(J)

m and OPT ≥ Smax. Observing this, our allocation strategy in Algorithm 3 tries to balance the allocation for jobs
in the same set Si. Assume that the minimum (maximum) occupied address in the m devices is Mmin (Mmax), the allocation
strategy in Step 2 and Step 3 ensures that Mmax − Mmin ≤ Smax. First, when allocating S1, the load at time t1 is allocated
in a balanced manner to the m devices. The maximum address used in the m devices is at most LOAD(t1)

m + Smax since the
minimum address used in the m devices is at most LOAD(t1)

m and the difference of every two devices is at most Smax. When
we allocate S2, the jobs are pessimistically assigned to the current top address on the selected device (which is the device
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that has the minimum occupied address). The total space occupied in t2 is exactly LOAD(S1) + LOAD(S2) which is at most
LOAD(t1)+LOAD(t2) since assigning S1 did not generate any empty space at time t1. Because we assign S2 in a balancedway,
the device with maximum occupied address at time t2 is at most LOAD(t1)+LOAD(t2)

m + Smax. Note that the optimal solution OPT
uses at leastmax{ LOAD(t1)

m ,
LOAD(t2)

m , Smax}. Thus the occupied space at time t2 is at most 3 · OPT (J).
We will prove that the occupied address is at most 3 · OPT (J) at time t2i−1 and at most 4 · OPT (J) at time t2i. As in the

proof of Theorem 3, we discuss the possible cases of allocation for set S2i−1 where i ≥ 2. Note that we allocate set S2i−1 by
FirstFit for selected device. Consider the case that the current job has size larger than the remaining empty space that is
below the selected device’s top address. The allocation creates at most one gap (empty space) that has size less than Smax.
This property holds because the strategy on a single device is the same as what we used in Algorithm 2. This job will be
allocated to the top address of the selected device.

We start by the simple case that every device is at least assigned one job of S2i−1 to its top address (denote such a device
as saturated-device). That is, each gap generated on the m devices is at most Smax. After assigning S2i−1, the total occupied
space in these devices at time t2i−1 is at most LOAD(t2i−1) + m · Smax. In this case, we have Mmin ≤

LOAD(t2i−1)
m + Smax. Thus

Mmax ≤ Mmin +Smax ≤ 3 ·OPT (J). Whenwe assign S2i later, we need not worry about the possible conflict with S2i−2. Due to
the pessimistic strategy in Step 3, the jobs in S2i are assigned to the top address consecutively and no space is wasted. Thus
after assigning S2i, the total occupied space in these devices at time t2i is at most LOAD(t2i−1) + LOAD(t2i) +m · Smax. Hence,
in this case we haveMmax ≤ Mmin + Smax ≤

LOAD(t2i−1)+LOAD(t2i)
m + Smax + Smax ≤ 4 · OPT (J).

We say a device is saturated (or unsaturated) if the current job is (or not) infeasible to be assigned to the empty space
that is below the top address of the selected device at Step 2. Now we consider the case that some devices are saturated
while others are not when assigning S2i−1. The existence of saturated device implies that the current job is infeasible to be
allocated to the empty space on the unsaturated devices according to Step 2. Thus the empty space both on the unsaturated
devices and the saturated devices has size less than Smax. The total occupied space at time t2i−1 is still LOAD(t2i−1)+m · Smax.
Thus Mmax ≤

LOAD(t2i−1)
m + 2Smax ≤ 3OPT (J). Similarly at time t2i, we have Mmax ≤

LOAD(t2i−1)+LOAD(t2i)
m + 2Smax ≤ 4OPT (J).

It remains to consider the case that all devices are unsaturated after assigning S2i−1. All the jobs of S2i−1 are assigned below
their top addresses of the selected devices. Note that the occupied top address for these unsaturated-devices is generated at
time t2i−2. This value can be bounded by 4OPT (J) by the analysis above. Thus the maximum occupied space at time t2i−1 is
at most 4 · OPT (J) in this situation. Now consider the assignment for jobs in S2i. All jobs in S2i−2 have departed at this time
by the independence property of laminar decomposition. Thus we need not worry about the possible conflict between S2i
and S2i−2, since every load is assigned from address 0 consecutively at time t2i−1. The total occupied space at time t2i will
be LOAD(S2i−1) + LOAD(S2i) which is at most LOAD(t2i−1) + LOAD(t2i). Thus we have Mmax ≤

LOAD(t2i−1)+LOAD(t2i)
m + Smax ≤

3 · OPT (J) at time t2i in this situation. Therefore, the competitive ratio of Algorithm 3 is at most 4. �

5.2. Extending to general jobs

Now we are ready for the competitive algorithm on multi-devices for general jobs. The extension will follow some
extending procedure for single-devices in [15] with further modifications. We will derive a O(logL)-competitive algorithm
without aiming at reducing its constant factor. Every job with length (2i−1, 2i

] is rounded to length 2i. Then the rounded
jobs with length 2i can be grouped into a set of type i. We will make a loss of factor 2 in this step. All the jobs in the same
group has the nice property that they have agreeable deadlines. Let J′ be all the jobs that are already released at current
time t and correspondingly S ′

max be the largest job size until time t . Let lower bound LB(t) = max{ LOAD(J′)

m , S
′

max}. According
to the proof in Theorem 6, we only need to assign a slot with size 4 · LB(t) for the set of type iwhich ensures the feasibility to
allocate jobs J′. There are O(log L) such sets of different types.We only need to open a new slot (starting from themaximum
occupied address thus far) if the arrival job cannot be matched to a slot for its type. Note that the value LB(t) will change
over time, thus we need to update the slot size as follows. For the current value LB(t), we allocate a slot with size 8LB(t) for
each type i. When this value (the lower bound over time LB(t)) is doubled due to later released jobs, we then double the slot
size that is newly opened for jobs of type i. The doubling procedure will ensure that the total size of slot that is allocated is
O(log L · LB(t)). Thus finally the competitive ratio is O(log L).
Theorem 7. There is an O(log L)-competitive algorithm for multi-device Balancing DSA problem for general jobs.

6. Conclusion

In this paper, we improve the algorithms for DSA problem(s) by introducing the online laminar decomposition. It not
only simplified the analysis, but also proved more extendable for both single-device and multi-device setting.
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Fig. 3. Extending the pessimistic strategy of allocation.

Appendix

Proof of Theorem 5: Improved Algorithm for L ≤ 112 Proof. Define r(l, k) to be all the jobs that arrive at time kL+lwhere
1 ≤ l ≤ L and 0 ≤ L ≤ K − 1. This definition can decompose the original jobs into L groups in an online manner (for fixed
l, each group is composed of K disjoint sets). We note that directly extending the concept of assigning jobs pessimistically
in Section 4.2 can only obtain competitive ratio 2L − 1. This is because we need to pessimistically allocate the L − 1 groups
and thus may lead to L − 1 gaps (instead of 1 gap in Section 4.2) when we allocate the future groups, which guarantees a
competitive ratio L + L − 1 (instead of ratio 2 + 1). To derive the 2⌈ L

2⌉ competitive algorithm, we should incorporate other
ideas to allocate the jobs carefully. The allocation procedure is described in Algorithm 4.

Algorithm 4 PessiALG
1. Jobs are decomposed into r(l, k) in an online manner.
2. For fixed k, group every two sets of r(l, k) as follows: r(1, k) and r(2, k) form sg(1, k); r(3, k) and r(4, k) form sg(2, k);
repeat the same procedure, we get ⌈

L
2⌉ such groups. For every sg(w, k) with fixed k, we apply different strategies to its

two sub-sets. For jobs in r(2w −1, k), we assign jobs with larger deadline to lower address. While for jobs in r(2w, k), we
assign jobs with earlier deadline to lower address.
for upon arrival of the jobs do

3. For jobs in sg(1, k), all the later jobs in the same group will be assigned one by one to the address immediately
(consecutively) after the prior one (the job is allocated in the upper available address if its size is larger than the empty
space), without violating the rule in Step 2. Let the maximum address used by this set beM1,k.
4. For jobs in sg(w, k) where 2 ≤ w ≤ ⌈

L
2⌉, we pessimistically assign the first one to address Mw−1,k + 1. All the

later jobs in the same group will be assigned one by one to the address immediately (consecutively) after the prior one,
without violating the rule in Step 2.

end for

For fixed k, there are L sub-setswhich are possibly concurrent. Let super_group sg(w, k) be r(2w−1, k)∪r(2w, k). In Step
2, we obtain ⌈

L
2⌉ such groups. We apply different strategies to the two sub-sets in sg(w, k) for fixed w, k. While Step 3 and

Step 4 apply different strategies to sg(w, k) where 1 ≤ w ≤ ⌈
L
2⌉ for fixed k. The analysis is also based on the discussion of

possible number of gaps and different allocation manners for sg(1, k). Fig. 3 demonstrates the allocation for the case L = 4.
We first note that our strategy in Step 2 ensures that there is no empty space (gap) left at time kL + 2w between the two
sets r(2w − 1, k) and r(2w, k) that form sg(w, k). Thus the space used by each super_group sg(w, k) is at most 1 times
the optimal solution. Moreover, every super_group (with the same value k) may create at most one gap after time Lk + 2w.
When we consider sg(1, k), we need not worry about the possible conflict with r(1, k − 1). When we allocate sg(1, k), this
group may be separately allocated due to the ⌈

L
2⌉ gaps created by the former sg(w, k − 1) where 1 ≤ w ≤ ⌈

L
2⌉. Thus at

most ⌈
L
2⌉ gaps are left at time Lk + 1 or Lk + 2 when assigning sg(1, k). Note that every gap is at most Smax because the

gap is generated when the arrival job is infeasible to be allocated in the empty space. Thus the allocation of group sg(1, k)
uses memory size at most ⌈ L

2⌉+ 1 times the optimal solution. Furthermore, since we pessimistically allocate the remaining
sg(w, k) where 2 ≤ w ≤ ⌈

L
2⌉, we use memory size at most ⌈

L
2⌉ + 1 + ⌈

L
2⌉ − 1 times the optimal solution. Finally, the

algorithm is 2⌈ L
2⌉-competitive. �
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