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With the prevalence of smart mobile devices with multiple sensors, the commercial application of intelligent
context-aware services becomes more and more attractive. However, limited by the battery capacity, the
energy efficiency of context-sensing is the bottleneck for the success of context-aware applications. Though
several previous studies for energy-efficient context-sensing have been reported, none of them can be applied
to multiple types of high-energy-consuming sensors. Moreover, applying machine learning technologies
to energy-efficient context-sensing is underexplored too. In this article, we propose to leverage machine
learning technologies for improving the energy efficiency of multiple high-energy-consuming context sensors
by trading off the sensing accuracy. To be specific, we try to infer the status of high-energy-consuming
sensors according to the outputs of software-based sensors and the physical sensors that are necessary to
work all the time for supporting the basic functions of mobile devices. If the inference indicates the high-
energy-consuming sensor is in a stable status, we avoid the unnecessary invocation and instead use the
latest invoked value as the estimation. The experimental results on real datasets show that the energy
efficiency of GPS sensing and audio-level sensing are significantly improved by the proposed approach while
the sensing accuracy is over 90%.
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1. INTRODUCTION

To enable the intelligent mobile applications of the future, it is important to under-
stand mobile users through the data collected from their mobile devices. In recent
years, more and more commercial mobile devices such as smart phones and personal
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digital assistants are equipped with multiple context sensors including optical sensors,
3D accelerometers, GPS sensors, etc., which makes it possible to bring to bear intelli-
gent context-aware applications to ordinary mobile users. Moreover, many interesting
kinds of knowledge can be discovered from the collected context data (e.g., GPS tra-
jectories and usage logs) through data mining technologies [Farrahi and Gatica-Perez
2011; Zheng and Xie 2011]. However, the battery capacity of mobile devices becomes
the bottleneck of context-aware applications because some context sensors are very
energy consuming and cannot continuously work for the sake of user experience. For
example, as stated in Abdesslem et al. [2009], the battery life of Nokia N95 GB is
more than 170 hours when all sensors are turned off. However, when the GPS sensor
is turned on, the battery life is reduced to 11.6 hours (indoor) and 7 hours (outdoor),
respectively.

Some studies have been done for improving the energy efficiency of context-sensing.
For example, Abdesslem et al. [2009] proposed to selectively invoke the GPS sensor by
recognizing the user’s movement through the 3D accelerometer. Constandache et al.
[2009] proposed to dynamically select one sensor from the GPS, the Wifi, and the cell
ID sensors to provide location information by balancing the remaining energy and
the accuracy. However, these works still need to invoke other high-energy-consuming
sensors for improving the energy efficiency of GPS sensing. Moreover, they cannot
be applied to improving the energy efficiency of other high-energy-consuming sensors
except for GPS sensors.

We argue that the outputs of different context sensors of a mobile device may be
more or less correlated since they essentially capture the same context at each time
point, even though from different perspectives. Intuitively, we may be able to selec-
tively avoid invoking high-energy-consuming sensors by inferring their statuses from
the outputs of other sensors as illustrated by the following example.

A Motivating Example. Figure 1 illustrates an example of avoiding the unnecessary
reinvocations of the GPS sensor by correctly inferring its status. Suppose that Sam’s
GPS coordinates rarely change1: (1) during work days PM2:00-6:00, (2) when his cell
ID is 2344 (indicates his workplace), and (3) he has not operated his mobile phone for
more than 40 minutes, a well-trained model based on his historical context data may be
able to infer that the GPS sensor of Sam’s mobile device is in a stable status given the
context that {(Is a work day? : Yes),(Hour : PM3:00),(cell ID : 2344), (Inactive time :
40(min))}, and thus there is no need to invoke the GPS sensor again if it has been
invoked a moment ago.

In this article, we propose to capture the relationship among context sensors
through machine learning technologies for improving the energy efficiency of multiple
high-energy-consuming context sensors by trading off the sensing accuracy. To be spe-
cific, firstly we group context sensors into three categories, namely, the basic sensors
which are necessary to continuously invoke for providing the basic functions of mo-
bile devices, the light-duty sensors which are software based and energy efficient, and
the heavy-duty sensors which are not necessary to continuously invoke and relatively
high energy consuming. Then we learn inference models to capture the relationship
between heavy-duty sensors and basic/light-duty sensors and use the model to infer
the status of a heavy-duty sensor according to the outputs of basic and light-duty sen-
sors. If the output of a heavy-duty sensor s at time point ti is same as the one at time
point ti−1, we state s is in a stable status at time point ti. Otherwise we state s is in an
unstable status at time point ti. If the model infers that the heavy-duty sensor is likely

1In this case we take the loss of GPS signal as no movement when the user is indoors.
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Fig. 1. A well-trained model may be able to infer the status of the GPS sensor and then avoid the unneces-
sary reinvocations.

in a stable status, the context-sensing system will not invoke it again and instead use
the latest invoked value.

The invocations of basic sensors do not bring additional energy consumption since
they are always on. Though the approach has a need to invoke light-duty sensors,
the amount of energy consumed by the light-duty sensors is expected to be much less
than that of the heavy-duty sensors. Moreover, the training of models for inferring the
statuses of heavy-duty sensors can be done off line, such as when the mobile device is
charging, for avoiding the additional burden on the battery capacity.

The contributions of this article are summarized as follows.
First, we propose to leverage machine learning technologies for learning inference

models from personal historical context data which can naturally fit the personalized
context-sensing environments by reducing as much energy consumption as possible
while keeping the necessary accuracy.

Second, we propose a general approach for energy-efficient context-sensing which
can be applied to improving the energy efficiency of multiple heavy-duty sensors, such
as GPS sensors, audio-level sensors, and Bluetooth sensors, etc.

Finally, we simulate several variants of the context-sensing system with different
learning models and conduct extensive experiments on real mobile context datasets
to evaluate their effectiveness for two kinds of heavy-duty sensors, namely, GPS sen-
sors and audio-level sensors. From the experimental results we have some inspiring
conclusions.

The rest of this article is organized as follows. In Section 2, we give an overview of
the idea of learning-based context-sensing. Then in Section 3, we propose two kinds
of inference models for inferring the statuses of heavy-duty sensors. In Section 4 we
propose a framework of the learning-based context-sensing system. The experimental
results on real datasets are reported and analyzed in Section 5. In Section 6, we briefly
review some related works. Last, we conclude this article and introduce our future
research plan for this problem in Section 7.

2. LEARNING-BASED CONTEXT-SENSING

To support different context-aware applications, a mobile device usually invokes mul-
tiple context sensors for providing multiple types of context information, which is re-
ferred as context-sensing. It is worth noting that the term of “context sensor” does not
only indicate the physical sensors such as GPS sensors and 3D accelerameters, but
also indicates software-based sensors such as a program monitoring the inactive time
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Fig. 2. Energy consumption of invoking several typical light-duty sensors including (a) running process
monitor, (b) front application monitor, and (c) system inactive timer (to calculate the inactive time of the
device).

Fig. 3. Energy consumption of invoking several typical heavy-duty sensors including (a) GPS sensor, (b) 3D
accelerameter, and (c) audio-level sensor.

of the mobile device. The context sensors of mobile devices can be grouped into three
categories as follows.

Basic Sensor. The first category includes the context sensors which have to work all
the time for supporting the basic functions of mobile devices, such as Cell ID sensors
and time sensors (clock). We refer to this kind of context sensors as basic sensors. The
improvement of energy efficiency for basic sensors mainly relies on the progress of
electronic and material technologies.

Light-Duty Sensor. The second category includes all software-based sensors which do
not have too much energy consumption. We refer to this kind of sensors as light-duty
sensors.

Heavy-Duty Sensor. The last category includes the remaining context sensors which
have relatively high energy consumption and are not necessarily always on, such as
GPS sensors and audio-level sensors (microphone). We refer to these sensors as heavy-
duty sensors. In this article, we focus on reducing the energy cost of heavy-duty sensors
to achieve an energy-efficient strategy for context-sensing.

Figure 2 and Figure 3 show the energy consumptions of invoking several typical
light-duty sensors and heavy-duty sensors, respectively. The experimental device is
a Nokia N97 smart phone with 128M main memory. The experimental results are
recorded by a professional Symbian platform-based energy monitoring software called
Nokia Energy Profile. From the figures we can intuitively see that the energy con-
sumption of light-duty sensors is much less than that of heavy-duty sensors.

Essentially, at each time point, the different context sensors of a mobile device cap-
ture the same context from different perspectives. It implies that the outputs of dif-
ferent context sensors at the same time point may be more or less correlated. As
illustrated by the example in Figure 1, this assumption is usually true in practice.
Therefore, we may be able train a model from the historical context-sensing data of
a mobile user and use it for inferring the status of a particular heavy-duty sensor
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according to the outputs of basic and light-duty sensors. For simplicity, we refer to
such a model as a Stable Status Inference (SSI) model.

With an SSI model, we can selectively invoke a heavy-duty sensor if the model in-
fers that it is probably in an unstable status at ti time point by considering the outputs
of basic and light-duty sensors at ti time point. Commonly, the output of the invoked
heavy-duty sensor after the inference step can be regarded the same as the real value
at ti time point because the time cost of inference is usually trivial (less than 10 ms in
our experiments). Otherwise, if the model infers that the heavy-duty sensor is prob-
ably in a stable status, we can avoid invoking the heavy-duty sensor and instead just
use its output at ti−1 time point. Therefore, the total energy consumption of context-
sensing will be dramatically reduced if there are a lot of stable statuses practically and
many of them are inferred correctly.

In practice, we determine whether a heavy-duty sensor s is in a stable status by
taking into account the requirement on the accuracy of the outputs. For example,
suppose the system requires the accuracy of GPS coordinates be at ten meters. If
the GPS coordinate indicates that the user has moved less than ten meters from the
previous sampled GPS coordinate, the system will determine that the GPS sensor is
still on a stable status.

One may argue for a model of inferring the exact output of a heavy-duty sensor
according to the outputs of basic and light-duty sensors. With such a model we can
avoid invoking the heavy-duty sensor forever and reduce more energy consumption.
However, training such a model is very challenging in practice. The training data of
such a model should contain enough cases for each possible output of the heavy-duty
sensor. Though this requirement may be feasible to be satisfied for some heavy-duty
sensors which have limited different outputs (e.g., audio-level sensors), there are still
many heavy-duty sensors with a big quantity of, even infinite, different possible out-
puts (e.g., GPS sensors). It is difficult to collect a comprehensive set of training data for
a model to infer the exact outputs of these heavy-duty sensors. In contrast, SSI models
provide a more practical solution for most heavy-duty sensors. The collection of a good
training set for SSI models is much simpler because they only need learning to infer
two statuses for all heavy-duty sensors. The experimental results in this article also
show that SSI models outperform exact inference models.

3. STABLE STATUS INFERENCE MODELS

The SSI model is a key component in the learning-based context-sensing approach. In
this section, we explore two kinds of SSI models, namely, the Current Status In-
ference (CSI) model and the Status Interval Inference (SII) model. To be specific,
for each model, we firstly introduce the basic idea and then propose some typical
implementations.

3.1. Current Status Inference Models

3.1.1. Overview of CSI Models. For the outputs of basic and light-duty sensors at one
time point, we can build a feature vector x. First, we divide all basic and light-duty
sensors into two categories. One category has numeric outputs, such as audio-level
sensors. The other category has nonnumeric outputs, such as Cell ID sensors. For the
sensors with numeric outputs, we directly take one sensor as a feature and take the
particular output as the corresponding feature value. However, for the sensors with
nonnumeric outputs, this method is not applicable because the different outputs of
one sensor are difficult to be quantized. Instead, we take each particular output of
such basic and light-duty sensors as a feature and take the occurrence of the output
as a boolean feature value, that is, 1 indicates the feature appears and 0 indicates the
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opposite case. Then, given K features extracted from the training data, we can build a
K-dimension feature vector from the outputs of basic and light-duty sensors.

Given a status variable y for the heavy-duty sensor s and a feature vector extracted
from the outputs of basic and light-duty sensors x, a CSI model F s can be formally
defined as a mapping function y = Fs(x), where y ∈ [−1, 1] indicates whether s is in
a stable status (y = 1) or not (y = −1). A CSI model infers the status of a heavy-duty
sensor s at time point ti according to the outputs of basic and light-duty sensors at the
same time point. Obviously, building a CSI model Fs for the heavy-duty sensor s can be
transformed to the problem of training a binary classifier. The trained classifier will
take the outputs of basic and light-duty sensors as observed features and classify the
status of a heavy-duty sensor s into the stable status category or the unstable status
category. Therefore, we need a training dataset which contains sufficient samples of
stable statuses and unstable statuses for s with the according outputs of basic and
light-duty sensors. To prepare such a training dataset, we firstly transform the raw
context records to a context record sequence by sorting them in order of timestamps.
Then we assign each context record a status label for s by checking whether the output
of s is different from the one in the previous context record. Finally, for each labeled
context record we extract the corresponding feature vector and the status label for s to
build a training sample.

Given a set of training samples, multiple existing classification approaches can be
applied to building a CSI model. In this article, we explore two typical classification
approaches, namely, support vector machine [Cortes and Vapnik 1995] and decision
tree [Quinlan 1993].

3.1.2. Support Vector Machine-Based CSI Model. The basic idea of the support vector
machine is to map the training samples into a high-dimension space as training data
points, and then find out a set of hyperplanes to divide the training data points of
several categories. Given K features and n training samples with category labels 1
(unstable status) or -1 (stable status), we map each training sample into a training
data point in a K-dimension space. To be specific, if a training sample has the value v
for the k-th feature, the corresponding mapped data point has the value v in the k-th
dimension. Then the objective is to learn a hyperplane y = w · x − b , where w denotes
a K-dimension vector and x indicates a K-dimension data point. The optimization
problem is as follows. We have

min
w,ξ

{
1
2

‖w‖2 + C
n∑

i=1

ξi

}
,

subject to

ci(w · xi − b ) ≥ 1 − ξi,

where C is a constant value, ξi denotes the degree of misclassification of the i-th train-
ing data point xi, and ci indicates the category label of xi.

There exist several specialized algorithms for quickly solving the optimization prob-
lem, mostly reliant on heuristics for breaking the problem down into smaller, more
manageable chunks. In our work, we use the SMO-type decomposition methods [Fan
et al. 2005] to build CSI models.

3.1.3. Decision Tree-Based CSI Model. It is desirable to build SSI models for mobile
users in their mobile devices instead of a remote server for the sake of privacy control.
In this case, we have to take into account the complexity of training an SSI model
because the computation resources of mobile device are usually limited. Therefore, we
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also explore to build CSI models with decision trees, which are also successfully applied
to classification but have less computation cost than the support vector machine. In our
problem, we need a decision tree to determine the mostly possible status of a heavy-
duty sensor according to the outputs of basic and light-duty sensors where each node
of the tree is a decision rule to determine the mostly possible status of the heavy-duty
sensor’s output by taking into account one feature.

There exist several specialized algorithms for building decision trees. In our imple-
mentation, we use CART [Breiman et al. 1984] and adopt a binary recursive parti-
tioning technology. Our experiments on real datasets show that the trained decision
trees have limited degrees and can be stored in mobile devices with a proper threshold
of the target accuracy.

3.2. Status Interval Inference Models

3.2.1. Overview of SII Models. Given a variable y for the heavy-duty sensor s and a
feature vector x extracted from the outputs of basic and light-duty sensors, an SII
model Fs can be formally defined as a function y = Fs(x), where y indicates the number
of intervals before the next unstable status of s. An SII model Fs infers the possible
intervals between the current time point and the time point when the next unstable
status of s occurs according to the current outputs of basic and light-duty sensors.
Specially, if Fs infers s will be most likely in an unstable status after n time points, the
system will continuously use the latest invoked real output of s to estimate the output
of s until ti+n time point. Then the system invokes s and uses Fs to infer the number of
intervals before the next unstable status again. The advantage of SSI models is that
they don’t need to infer at each time point and then reduce the system computation
cost. For example, considering the motivating example that Sam’s cell ID is 2344
(indicates his office) and the time is near PM3:00, a well-trained SII model may be
able to infer that his GPS coordinate will change after two hours (the time of going off
work) and the model can idle until that time.

The training of an SII model Fs can be transformed to training a regression model
from a training dataset where each training sample contains a number of intervals be-
fore the next unstable status for s with a feature vector extracted from the outputs of
basic and light-duty sensors. To prepare such a training dataset, similar to preparing
the training data for CSI models, we firstly transform the raw context records to a con-
text record sequence by sorting them in the order of timestamps. Then we assign each
context record a stable status interval number for s by checking the output sequence
of s. Finally, for each context record, we extract the feature vector from the outputs of
basic and light-duty sensors and the stable status interval number to build a training
sample.

3.2.2. Multiple Linear Regression-Based SII Model. By extracting K features from the
training samples as explanatory variables, we can implement an SII model by training
a multiple linear regression [Williamus 2002] model in the following form. We have

y = Xw + ε, (1)

where y = (y1, y2, ..., yn) denotes the vector of stable status intervals for each training
sample, X = (xT

1 , xT
2 , ..., xT

n ) denotes a matrix which consists of n mapped K-dimension
training vectors xi (1 ≤ i ≤ n), w denotes a K-dimension vector, and ε = (ε1, ε2, ..., εn)
denotes the error term vector.

Generally speaking, given X, ε is assumed to follow a normal distribution with the
zero mean, that is, ε|X ∼ N[0, σ 2I], and the objective is to estimate w and σ . It is easy
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to prove that ω = (XTX)−1XTy is an unbiased estimation of w. Moreover, an unbiased
estimator of σ is

s =

√
eTe

n − K
, (2)

where e = y − Xω.
Given a new feature vector x0, the inferred stable status interval of s must fall in

the following range with a confidence α. We have

xT
0 ω ± δ,

where δ = tα/2,n−K s
√

xT
0 (XTX)−1x0.

The inferred interval range may be not bounded by integers. Thus, to map the
interval into the discrete time points, we determine the practical interval range as
[�xT

0 ω − δ�, 	xT
0 ω − δ
].

3.2.3. Principle Component Regression-Based SII Model. As is well known, the gen-
eral multiple linear regression approach may encounter the multicollinearity problem
[Jolliffe 2002] which means that some explanatory variables are highly correlated.
Consequently, the estimation of regression coefficients will be unstable and may mis-
lead the estimation of the regression formulas. There are two widely used approaches
for solving the multicollinearity problem. The first one is the stepwise regression
[Derksen and Keselman 1992] which selects a subset of explanatory variables which
are not highly correlated for the regression analysis and then avoid the multicollinear-
ity problem. The drawback of this approach is that it may miss some useful information
captured by the omitted explanatory variables. The second one is the Principle Compo-
nents Regression (PCR) [Jolliffe 2002] which uses the principle components of explana-
tory variables instead of the raw explanatory variables for the regression analysis. As
principle components are uncorrelated, the multicollinearity problem can be avoided
while all related information for regression are maintained as much as possible. Our
implementation takes advantage of the PCR approach to solve the multicollinearity
problem. To be specific, we first express the training samples in the form of weighted
vectors of principle components by the matrix Z as follows. We have

Z = XA,

where the (i, k)-th element of Z indicates the weight of the i-th training sample for
the k-th principle components, A is a K × K matrix whose k-th column is the k-th
eigenvector of XTX, that is, a principle component. Therefore, the new form of the
regression problem becomes

y = Zγ + ε,

where γ is a K-dimension vector and one of its unbiased estimations is
γ̂ = (ZTZ)−1ZTy.

In the inference stage, the principle component regression-based SII model also
needs to transform the feature vector generated from the outputs of basic and light-
duty sensors x0 to z0, where zT

0 = xT
0 A. Then the stable status interval is inferred to

fall into the following range with a confidence α.

zT
0 γ̂ ± tα/2,n−K s

√
zT

0 (ZTZ)−1z0

Similar to the inference of a general multiple regression-based SII model, the inferred
range of stable status intervals should also be mapped into discrete time points.
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Fig. 4. The framework of a learning-based context-sensing system.

4. LEARNING-BASED CONTEXT-SENSING SYSTEMS

4.1. Framework

The context-sensing system is a middleware in mobile devices which provides unified
APIs of context information to context-aware applications. We have three assumptions
for a learning-based context-sensing system as follows. First, the sampling intervals of
all light-duty sensors and basic sensors are the same. Second, the sampling intervals
of heavy-duty sensors are integer multiples of that of the light-duty sensors and basic
sensors. Last, the first invocations for all context sensors are synchronous when the
system starts. These assumptions are reasonable for a learning context-sensing sys-
tem because it needs as many outputs of basic and light-duty sensors as possible at a
particular time point to infer the status of a heavy-duty sensor. It is worth noting that
a context-aware application can avoid using the context-sensing system and directly
invoke a context sensor with different sampling intervals if it has a special need. But
it is beyond the scope of the context-sensing system so we do not discuss more details
for this problem.

The framework of a learning-based context-sensing system is shown in Figure 4.
The figure only illustrates the case of one heavy-duty sensor, but the framework can be
easily generalized to the case of multiple heavy-duty sensors. From the figure we can
see that the system includes two components, namely, the context learning component
and the context-sensing component. The former is used for learning an SSI model and
the latter is used to control context-sensing with the guidance of the learnt model.

The learning-based context-sensing system works as follows. Firstly, for each heavy-
duty sensor s, the system collects the outputs of all context sensors with the sampling
interval of s spanning for a predefined period, such as one week. The collected data
are organized as a set of context records with timestamps where each context record
contains the outputs of both s and basic and light-duty sensors.

Secondly, for each heavy-duty sensor s, the context learning component learns an
SSI model Fs from the collected context records of the mobile user. The model Fs
reflects the relationship between s and basic/light-duty sensors for the particular user.
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Fig. 5. An example of the error accumulation caused by a false positive inference. The system selectively
invokes the audio-level sensor and reads the real output (filled bar) according to the inference that that
sensor is probably in an unstable status (−1). Otherwise (1), it uses the latest invoked output of the audio-
level sensor (blank bar).

Last, the context-sensing component selectively invokes the heavy-duty sensor s if
the model Fs infers that s is in an unstable status according to the outputs of basic
and light-duty sensors. Otherwise, it provides the latest updated real output of s to
context-aware applications as the estimation of s’s output at the current time point.

4.2. Reducing the Errors of Estimations

A learning-based context-sensing system may have two kinds of inference errors. One
is falsely inferring that a heavy-duty sensor s is in an unstable status, which is denoted
as false negative inference for short. The other one is falsely inferring that a heavy-
duty sensor s is in a stable status, which is denoted as false positive inference for short.
If the system makes a false negative inference for a heavy-duty sensor s, we won’t lose
the real output of s at that time point. The only penalty is the unnecessary energy
consumption which could be avoided by a correct inference on the status of s. However,
if the system makes a false positive inference for s, the real output of s at that time
point will be lost. What is worse, the errors of the estimated outputs may accumulate
and thus cause more contextual information loss.

For example, Figure 5 illustrates the error accumulation caused by a false positive
inference on an audio-level sensor. The outputs of the audio-level sensor fall into the
range of [1,5] where the higher the background audio level, the larger the output.
In the figure, both the sequence of real outputs (denoted as O) and the sequence of
estimated outputs (denoted as O ′) are shown. The corresponding real stable status
sequence (denoted as S) and the inferred stable status sequence (denoted as S′) are
also shown for the ease of understanding how the system works. From the figure we
can see that the false positive inference occurring at the ninth time point causes five
errors of the estimated outputs.

To this end, we introduce the maximum update interval Tmax to control the time how
long the system invokes the heavy-duty sensors mandatorily for reducing the probable
accumulated errors in their estimations. To be specific, if the system has not invoked a
heavy-duty sensor s within Tmax, it will mandatorily invoke s and read the real output
to reduce the risk of accumulated errors. Take the case in Figure 5 for example, if we
set Tmax to be three sampling intervals, when the false positive inference happens, the
system does not always estimate the output of s by the value read at the seventh time
point. Instead, it mandatorily invokes the audio-level sensor when it has not invoked
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Fig. 6. An example of reducing the accumulated errors of the estimated outputs through Tmax where
Tmax = 3.

the sensor within three sampling intervals. Thus, four accumulated errors are avoided.
Figure 6 illustrates how Tmax reduces the accumulated errors of the estimated outputs.

5. EXPERIMENTS

To evaluate the effectiveness and efficiency of the proposed approach for context-
sensing, we conduct extensive experiments on real datasets for the GPS and audio-
level sensors. In this section, the detailed experimental results are reported and
discussed.

5.1. GPS Sensing

GPS sensors are major high energy-consuming context sensors and widely used by
many context-aware applications. In this section, we evaluate several implementa-
tions of the proposed learning-based context-sensing approach for GPS sensing.

The evaluation is conducted on the context data collected from mobile devices but
not directly conducted on mobile devices. It is because the main objective of this arti-
cle is to explore the feasibility of applying machine learning technologies to energy-
efficient context-sensing and comprehensively evaluate the performance of varying
implementations in terms of complexity, sensing accuracy, and energy efficiency. Con-
ducting the evaluation on benchmark datasets but not on real mobile devices makes
our experiments repeatable.

5.1.1. Datasets. We collect 10 college volunteers’ context data through their smart
phones spanning for one month. The collected data include both indoor data and out-
door data, and the geographical area of the data collection basically covers the three
campuses of the university. All of the smart phones are installed with the Symbian60v3
operating system and equipped with multiple sensors such as GPS sensors, applica-
tion monitoring sensors, and 3D accelerometers. The collected data include rich types
of context data listed in Table I. Among the basic and light-duty sensors used in the
experiments, only the battery-level sensor and the inactive time sensor have numeric
outputs. However, we convert outputs of the time sensor to numeric values for re-
flecting the continuity property of the time information though their raw format are
strings. Specially, we convert the time hh : mm to an integer as hh × 60 + mm.

In the data collection, the sampling intervals of all sensors are set to be one minute.
It is worth noting that although we set a unified sampling interval, the numbers of
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Table I. The Collected Context Data

Sensor type Context Value range

Basic

Day name Monday, Tuesday, ... , Sunday
Time AM0:00, AM0:01,..., PM24:00
Battery level Percentage
Profile type General, Silent, Meeting, Outdoor
Cell ID Strings.
Area ID Strings.

light-duty
Inactive time Integers (minute).
Running Apps Web, Message, Music, ..., Game

heavy-duty
GPS coordinate Pair of longitude and latitude.
Accelerometer Triple of accelerating parameters.

Table II. The Details of Each Dataset

Owner ID #Context records #Features Unstable ratio
A 8846 180 0.0797

B 27787 848 0.1776
C 25365 799 0.3560

D 23166 530 0.1530
E 30700 90 0.1045

F 19976 270 0.1398
G 25873 817 0.1054

H 25626 183 0.0795
I 21293 198 0.0840
J 22239 77 0.0403

context records collected from each volunteer may be different because volunteers can
manually turn off the context data collection software in the case of low battery level.
Moreover, some context records lack the GPS coordinates because the GPS sensor can-
not find the satellite signal when the user is indoors. For such context records, we use
the GPS coordinates occurring in the nearest context record as its GPS coordinates.
This approach is reasonable because in this way SSI models take the indoor status as
a stable status for the GPS sensor and do not invoke it in this case.

Table II shows the details of each volunteer’s context dataset, where the Owner ID
indicates the owner of the dataset, #Context records indicates the number of context
records the dataset contains, #Features indicates the number of features extracted
from the dataset by the method mentioned in Section 3, and Unstable ratio indicates
the ratio of unstable statuses of the GPS sensor. We determine a GPS sensor is in an
unstable status if and only if its output denotes the user has moved more than ten
meters compared with the last GPS coordinates. Otherwise, we determine the GPS
sensor is in a stable status.

5.1.2. Evaluation. The measurements of learning-based context-sensing systems for a
heavy-duty sensor s should at least take into account two aspects, namely, the sens-
ing accuracy and the energy efficiency. The sensing accuracy for s means the ratio of
correct system outputs. The energy efficiency for s can be measured by the Ratio of
Reduced Invocations (RRI) of s. The RRI of s is calculated by N−Ni

N , where Ni denotes
the number of invocations of s and N denotes the number of test cases. Furthermore,
for the sake of privacy protection, it is desirable to learn SSI models in device for
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Fig. 7. Spherical comparison for GPS sensing accuracy with (a) Tmax = 30min, (b) Tmax = 60min, and
(c) Tmax = ∞.

avoiding the leak of the historical context data of mobile users. In this case, the com-
putation cost of learning an SSI model is also taken into account as a measurement for
learning-based context-sensing systems since the computation power of mobile devices
is relatively limited compared with PCs.

We evaluate several implementations of the learning-based context-sensing ap-
proach with varying SSI models in terms of GPS sensing accuracy, energy efficiency,
and the cost of training and storage. For CSI models, we implement the Support Vec-
tor Machine-based CSI (SVM-CSI) model and the Decision-Tree-based CSI (DT-CSI)
model. For SII models, we implement the Multiple Linear Regression-based SII (MLR-
SII) model and the Principle Component Regression-based SII (PCR-SII) model. More-
over, for each volunteer’s dataset, we use the data of the first three weeks as the train-
ing set and use the data of the last week as the test set.

The first baseline is Continuous GPS (CGPS) sensing which always invokes the
GPS sensor with the same sampling interval. Since there is nonlearning-based en-
ergy context-sensing strategy reported by previous works, we use a nonlearning-based
approach proposed in Abdesslem et al. [2009] as another baseline. The basic idea of
this approach is to invoke the GPS sensor only when the 3D accelerometer indicates
the mobile device is moving. For simplicity, we denote it as Accelerometer-based GPS
(AGPS) sensing.

Accuracy. Similar to determining the unstable status, we take the estimated GPS
coordinates correct if the distance error is less than ten meters. Figure 7 compares
the GPS sensing accuracy of varying SSI models for each volunteer. From this figure
we can see that with a proper Tmax, the performance of all models for GPS sensing
accuracy are comparable. For each volunteer’s context data, the GPS sensing accuracy
of any SSI model is bigger than 90%, which implies that all SSI models are effective
for GPS sensing. However, when the Tmax is set to be ∞, which means that there
is no threshold of the continuous estimations to reduce the accumulated estimation
errors, the performance of the DT-CSI model for GPS sensing accuracy significantly
drops while other SSI models still keep good performance. It implies that the DT-CSI
model is more sensitive to the accumulated estimation errors. In other words, it is
less robust than other models. We conduct experiments with other Tmax settings. The
experimental results show the GPS sensing accuracy of the DT-CSI is always good with
a wide range of Tmax settings (from tens to hundreds). The accuracy of both baselines
is 100% for each volunteer because there is no uncertain factor for them. Learning-
based approaches underperform the rule-based approach and the naive approach in
terms of GPS sensing accuracy, but the difference is not big. Since the accuracies of
the two baselines are same for each volunteers, we do not show their accuracy curves
in Figure 7 for keeping its clarity.
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Fig. 8. Spherical comparison for GPS sensing accuracy when users are moving with (a) Tmax = 30min,
(b) Tmax = 60min, and (c) Tmax = ∞.

We also evaluate the GPS sensing accuracy of exact inference models. To be specific,
we take advantage of the support vector machine to build a GPS coordinates classifier.
As expected, the best accuracy on each dataset is less than 10%. It may be because
the outputs of GPS are too diverse to be inferred according to the outputs of basic and
light-duty sensors.

Sometimes the general GPS sensing accuracy cannot reflect the real effectiveness
of GPS sensing due to the data imbalance. Extremely, when a user rarely moves, a
model which always infers stable statuses can achieve a good accuracy though actually
it has no ability of inference. Therefore, we also evaluate varying SSI models with
respect to GPS sensing accuracy when users are moving, that is, the users’ positions
are continuously changing. In this case, the GPS sensor is always in an unstable
status and it is more difficult to achieve a good accuracy. Figure 8 compares the GPS
sensing accuracy of varying SSI models for each volunteer when users are moving.
From this figure we can see that with proper Tmax, SVM-CSI achieves the best GPS
sensing accuracy and DT-CSI underperforms it a little. For each volunteer’s context
data, the GPS sensing accuracy of any SSI model is bigger than 70%. For SVM-CSI
and DT-CSI, the index is even over 80% for most datasets.

We do not show the GPS sensing accuracy when the user stays at a location, that is,
the GPS sensor is always in a stable status. It is because there will be no information
loss if a stable status is not inferred correctly since the correct GPS result will still be
output. The only effect is that the sensing system will need additional unnecessary
invocations of the GPS sensor and consume more energy.

One may argue for another metric which evaluates the SSI models by comparing
their ROC curves. Indeed, among the four proposed SSI models, it is only possible to
generate ROC curves to evaluate the performances of SVM-CSI and DT-CSI for stable
status inference since they are both classifiers of stable status. However, for the other
two SII models, which are essentially regression models, it may not make sense to
generate ROC curves. The reason is that these two SII models are not directly used
for classifying the stable status of each test case. Instead, they are used for estimating
the time interval T between two output changes of a heavy-duty sensor. Then, T is
used for segmenting the sequence of test cases. In other words, all test cases during
T time intervals are classified as stable status. Since the relationship between the
precision of T and the precision of the classifying results is not clearly modeled, the
ROC curves for T may not be proper to be used for evaluating the performance of these
two SII models for stable status inference. As a result, we do not compare the ROC
curves of four SSI models for evaluating their effectiveness for GPS sensing.

Energy Efficiency. The energy efficiency of GPS sensing is measured by the Ratio of
Reduced Invocations (RRI) of the GPS sensor. Notice that in our experiments “invoca-
tion” is simulated by reading the real data of the test data. Obviously, the bigger the
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Fig. 9. Spherical comparison for energy efficiency in terms of RRI with (a) Tmax = 30min, (b) Tmax = 60min,
and (c) Tmax = ∞.

Fig. 10. Energy consumption of inference for (a) DT-CSI, (b) MLR-SII, and (c) PCR-SII.

RRI, the better the performance of the system in terms of energy efficiency. However,
for the AGPS, we also need to take into account the energy consumption from the con-
tinuous invocations of the 3D accelerometer since its energy consumption more than
25% of that of the GPS sensor [Abdesslem et al. 2009] and cannot be omitted. There-
fore, we calculate the RRI of AGPS by α − 25% to reflect its additional energy cost of
GPS sensing, where α is the raw RRI of AGPS.

Figure 9 compares the RRI of the two baselines and varying SSI models for each
volunteer. From this figure we can see that the SVM-CSI model and the DT-CSI model
consistently outperform other SSI models and the two baselines in terms of energy
efficiency. Specially, they averagely reduce more than 70% invocations of GPS sensors
for all volunteers.

One may argue that the reduction of invocations for heavy-duty sensors may not
reduce the whole energy consumption because the inferences of SSI models need ad-
ditional energy. Figure 10 shows the energy consumption of inference for varying SSI
models in a Nokia N97 smart phone with 128M main memory. We do not show the en-
ergy consumption of inference for SVM-CSI because it needs too much memory to run.
From the figure we can see that the energy consumption of inference for varying SSI
models is very trivial compared with the invocations of heavy-duty sensors (Figure 3).

We also show the energy consumption of the same smart phone when no process
is running (standby mode) in Figure 11. We can see that the energy consumption of
inference for SSI models is comparable to standby mode.

Training Cost. Because the two baselines have no training cost, we only evaluate the
cost of training varying SSI models. Figure 12(a) compares the time cost for train-
ing varying SSI models on a Core 2 × 2.0G CPU, 2G main memory PC. The training
algorithm of SVM-CSI is implemented by C++ based on a widely used SVM imple-
mentation libSVM [Chang and Lin 2001]. The training algorithm of DT-CSI is imple-
mented by C++ based on CART [Steinberg and Colla 1997]. The training algorithms of
MLR-SII and PCR-SII are implemented by MATLAB7.0. From the figure we can see
that the time cost of training an SVM-CSI model is much larger than those of other
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Fig. 11. The energy consumption of standby mode.

Fig. 12. Spherical comparison for (a) time cost of training, (b) memory requirement of training, and
(c) storage cost.

SSI models. Considering in practice it needs to train multiple SVM-CSI models with
different parameter settings, that is, C and then perform the model selection, the com-
putation cost of training an SVM-CSI model is almost unacceptable for mobile devices.
In contrast, the training of the MLR-SII model and the PCR-SII model is very efficient.
The DT-CSI is also a good alternative since the training time is usually less than ten
seconds.

Figure 12(b) compares the memory cost for training varying SSI models. From this
figure we can see that the memory costs for training DT-CSI and PCR-SII are remark-
ably smaller than other SSI models, while the memory cost for training SVM-CSI is
biggest.

Figure 12(c) compares the storage cost for varying SSI models. From this figure we
can see that the storage costs of DT-CSI and PCR-SII are remarkably smaller than
other SSI models. Furthermore, the SVM-CSI model needs the most space of storage.

We do not show the time cost of inference for varying SSI models because the com-
putation cost of the inference stage is very trivial. All of the implemented SSI models
can output the inference result less than 10 ms.

To comprehensively compare the performance of different SSI models and two base-
lines for GPS sensing, we list their performance in terms of different measurements
in the Table III. For each method, the performance in terms of each measurement is
categorized to “Good”, “OK”, or “Bad” by taking into account the comparison with oth-
ers. It is worth noting that the two baselines are not considered in the comparisons
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Table III. The Comprehensive Evaluation of Varying SSI Models for
GPS Sensing

Method Accuracy RRI Training cost Storage cost

SVM-CSI Good Good Bad Bad
DT-CSI Good Good Good Good

MLR-SII Good Ok Good Ok
PCR-SII Good Ok Good Good

AGPS Good Ok - -
CGPS Good Bad - -

of training cost and storage cost because they are not learning-based approaches. The
evaluation is conducted in the case that a proper Tmax is set. From the table we
can see that the performance of the DT-CSI model is best by taking into account all
measurements.

5.2. Audio-Level Sensing

To study the generality of the proposed approach, we also evaluate it for another kind
of heavy-duty sensors, that is, audio-level sensors. Audio-level sensors are used to
provide the audio level of the background noise to some noisy-sensitive applications
and its average energy consumption is more than 80% of the GPS sensor [Abdesslem
et al. 2009].

5.2.1. Dataset. We use a public dataset named NokiaContextData [2004] as the ex-
perimental data for audio-level sensing. The data consists of rich type of context data
of a volunteer spanning for 21 days including the time information, the running appli-
cations, the Cell ID, the area ID, and the environmental information such as pressure,
humidity, audio level, and temperature. The context data collection is conducted by a
smart phone, a sensor box, and a laptop PC when the user goes to his workplace or
goes back home.

The audio level is expressed by 1–5 scores to differentiate the background noise
level. In the experiments, we use the outputs of basic sensors including the time infor-
mation and the Cell ID, and the area ID, and the output of the light-duty sensor, that
is, the running applications to infer the status of the audio-level sensor. We extract
148 features from 127,698 context records for training SSI models and use the context
data of the first two weeks as the training set. The remaining context data is used as
the test set.

5.2.2. Evaluation. Similar to the experiments for GPS sensing, we evaluate the
context-sensing system with varying SSI models in terms of sensing accuracy, energy
efficiency (RRI), and training cost. Since there is no previous works for the strate-
gies of energy-efficient audio-level sensing, we only use Continuous invocations of the
Audio-Level (CAL) sensor as the baseline.

Accuracy. Figure 13 compares the audio-level sensing accuracy of varying SSI mod-
els. From this figure we can see that with a proper setting of the Tmax, the performance
of all models for audio-level sensing accuracy are acceptable since each SSI model’s ac-
curacy is over 85%. DT-CSI and SVM-CSI clearly outperform others with a proper Tmax
but underperform others without the constraint of Tmax. The accuracy of the baseline
CAL is obviously 100% so we do not show it in the figure.

Similar to the experiments for GPS sensing, we also evaluate the audio-level sens-
ing accuracy of exact inference models. We build a support vector machine-based

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 2, Article 35, Publication date: February 2012.



35:18 X. Li et al.

Fig. 13. The audio-level sensing accuracy of varying SSI models.

Fig. 14. The audio-level sensing accuracy of varying SSI models when the audio level changes.

Fig. 15. The energy efficiency of the systems in terms of RRI for audio-level sensing with varying SSI
models.

audio-level classifier and find that the best accuracy on each dataset is less than 4%,
which implies that exact inference models are not proper for audio-level sensing.

Figure 14 compares the audio-level sensing accuracy of varying SSI models when
the audio level really changes. From this figure we can see that with a proper setting
of the Tmax, the performance of all models for audio-level sensing accuracy are over
60% while DT-CSI and SVM-CSI’s accuracy can reach 80%.

Energy Efficiency. The energy efficiency for audio-level sensing is also measured by
RRI. Figure 15 compares the RRI of varying SSI models for each volunteer. From
this figure we can see that the SVM-CSI model and the DT-CSI model dramatically
outperform other SSI models in terms of energy efficiency. Both of them reduce more
than 60% invocations of the audio-level sensor with varying Tmax in the experiment.
Moreover, all models at least reduce 50% real invocations of the audio-level sensor.
The RRI of the baseline CAL is always zero so the figure does not show the value.

Training Cost. Because there is no additional training cost for the baseline, we only
evaluate the cost of training varying SSI models. Figures 16(a), (b), and (c) compare
varying SSI models for audio-level sensing in terms of training time cost, training
memory requirements, and storage space, respectively. Similar to the experiments
for GPS sensing, we can see that SVM-CSI needs the most computation cost and the
largest storage space. DT-CSI outperforms the two SII models in terms of main mem-
ory requirements and space cost but underperforms them in terms of training time
cost.

Table IV lists the performance of varying SSI models and the baseline on the audio-
level sensor in terms of different measurements. The evaluation is conducted in the
case a proper Tmax is set. From the table we can see that the performance of the DT-
CSI model is best by taking into account all measurements, similar to the conclusion
in the experiments for GPS sensing.
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Fig. 16. (a) The training time cost, (b) the training memory requirement, and (c) the storage space of varying
SSI models for audio-level sensing.

Table IV. The Comprehensive Evaluation of Varying SSI Models for
Audio-Level Sensing

Method Accuracy RRI Training cost Storage cost
SVM-CSI Good Good Bad Bad

DT-CSI Good Good Ok Good
MLR-SII Ok Ok Good Ok

PCR-SII Ok Ok Good Good
CAL Good Bad - -

5.3. Discussion

The extensive experimental results of the proposed approach on GPS sensing and
audio-level sensing show that learning-based context-sensing approaches, if properly
used, can dramatically reduce the energy consumption of continuous sensing for multi-
ple heavy-duty context sensors while keeping acceptable accuracies. Specially, for GPS
sensing, we evaluate four learning-based context-sensing models, namely, SVM-CSI,
DT-CSI, MLR-SII, and PCR-SII and find that they can more or less reduce the energy
consumption of continuous GPS sensing with reasonable sensing accuracy. Moreover,
among these approaches, SVM-CSI and DT-CSI dramatically outperform the other two
and a baseline method with respect to saving the energy consumption of continuous
GPS sensing. In fact, they averagely reduce more than 70% invocations of GPS sensors
for all volunteers. However, the experimental results also show that the training and
storage cost of SVM-CSI is expensive for mobile devices. To this end, DT-CSI can be re-
garded as the target method for continuous GPS sensing. For audio-level sensing, the
experimental results show similar facts, in that SVM-CSI and DT-CSI dramatically
outperform the other two learning-based context-sensing approaches with respect to
saving the energy consumption of continuous audio-level sensing. Both of them reduce
more than 60% invocations of the audio-level sensor in the experiment. Meanwhile,
DT-CSI dramatically outperforms SVM-CSI with respect to training and storage cost.

6. RELATED WORK

6.1. Energy-Efficient Context-Sensing

The most related subject of this article is energy-efficient context-sensing. The prob-
lem of mobile context-aware computing has been studied for more than a decade. For
example, Schilit et al. [1994] defined the problem of context-aware computing and in-
troduced four categories of context-aware applications. Abowd et al. [1997] presented
the Cyberguide project, in which prototypes of a mobile context-aware tour guide were
built. Knowledge of the user’s current location, as well as the history of past loca-
tions, were used to provide several kinds of services expected from a real tour guide.
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Lemlouma and Layaı̈da [2004] discussed the problem of content adaption for the
mobile devices of clients, that is, client context-aware content adaption. The energy
efficiency of context-sensing is crucial for the practical application of context-aware
computing systems because the battery capacity has been become a bottleneck com-
pared with the fast evolution of the computation ability of mobile devices. Unfortu-
nately, though the improvement of energy efficiency of sensors can directly address
the problem, the technology of low-power sensors has not made significant progress in
recent years.

Recently, some studies have been reported for improving the energy efficiency of
context-sensing by a smart sensing strategy instead of more energy-efficient sensors.
For example, for Wifi sensing, Chen et al. [2006] proposed an energy-efficient strategy
for selection access points. For GPS sensing, Abdesslem et al. [2009] proposed to se-
lectively invoke the GPS sensor by recognizing the user’s movement through the 3D
accelerometer. Constandache et al. [2009] proposed to dynamically select one sensor
from the GPS sensor, the Wifi sensor, and the Cell ID sensor to provide location in-
formation by balancing the remaining energy and the accuracy. Some systems have
integrated other heavy-duty sensors including accelerometers and Bluetooth beacons
for GPS positioning [Kjærgaard et al. 2009; Paek et al. 2010; Zhuang et al. 2010]. Gen-
erally, these works can only apply to improving the energy efficiency of single sensors.
Moreover, some of them need to invoke other heavy-duty sensors and then more or less
counteract the improvement of energy efficiency. In contrast, the approach proposed
in this article can be applied to multiple heavy-duty sensors without additional energy
consumption.

6.2. Dynamic Energy Management

Another related field is dynamic energy management. This technique reduces power
dissipation by selectively turning off (or reducing the performance of) system com-
ponents when they are idle (or partially unexploited). These works can be grouped
into two categories. One category is to study a general model of energy management.
For example, Benini et al. [1999] and Paleologo et al. [1998] proposed power-managed
systems using a finite-state, stochastic model. They took the problem of finding an op-
timal policy which maximizes the average performance level of a system, subject to a
constraint on the power consumption, as a stochastic optimization problem. Moreover,
Simunic et al. [2000] proposed the time-indexed SMDP model for deriving an optimal
policy for dynamic energy management in portable systems. The model can be applied
to portable devices, laptop hard disks and WLAN cards. Another category is to study
the dynamic policy of energy management for specific components. For example, Garg
et al. [2009] proposed a Markov-model-based disk idleness prediction scheme that can
be used for reducing disk power consumption when used with a three speed disk. Our
work borrows the idea of selectively turning off some components from these works and
studies the problem of selectively turning off some context sensors for energy saving.
However, we assume that the idleness of a heavy-duty sensor, that is, the time inter-
val between two changes of its outputs, depends on the outputs of basic and light-duty
sensors. By contrast, most works on dynamic energy management assume the idleness
of each component is independent. Consequently, the technique of our work is totally
different from the aforesaid works.

6.3. Learning-Based Sensing in Wireless Sensor Networks

The last related field is energy-saving sensing technology for wireless sensor networks.
Smart sensing strategy-based energy-saving sensing is widely studied for wireless

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 2, Article 35, Publication date: February 2012.



Learning to Infer the Status of Heavy-Duty Sensors for Energy-Efficient Context-Sensing 35:21

sensor networks. These works are inspiring for studying smart sensing strategy-based
energy-saving context-sensing approaches for mobile devices.

Since the energy consumption mainly comes from the data transmission, most of
the literature focus on energy-efficient protocols of data transmission. For example,
Heinzelman et al. [2000] proposed a clustering protocol named LEACH for periodi-
cal data gathering. LEACH is divided into rounds of two-phase operations. In the
cluster formation phase, LEACH elects some cluster heads and the rest of the sensor
nodes choose the proper cluster to join according to the signal strength from the cluster
heads. In the data transmission phase, the cluster heads aggregate the data from their
cluster members, and send the aggregated data to the base station by single-hop com-
munication. Since the energy consumption of a sensor is highly related to the distance
between the sensor and the data receiving node, the through energy consumption of
a wireless sensor network with such a clustering protocol is far less than that with a
naive “sending data to one center node” protocol. Several clustering protocols are pro-
posed after LEACH for improving the energy efficiency further, such as HEED [Younis
and Fahmy 2004], TPC [Choi et al. 2004], and ACE [Chan and Perrig 2008]. Moreover,
Campobello et al. [2008, 2009] proposed a novel approach which splits the original mes-
sages in several packets such that each node in the network will forward only small
subpackets. The simple splitting procedure is particularly helpful for those forwarding
nodes that are more solicited than others, due to their position inside the network.

Though data-transmission-centric energy-saving protocols have been demonstrated
successful in the application of wireless sensor networks, they cannot be applied to mo-
bile context sensing because the energy consumption of data transmission for mobile
context sensing is trivial compared with the energy consumption of the context sen-
sors (e.g., 3D accelerometers, GPS sensors, microphones, etc.). In recent years, some
learning-based wireless sensor network protocols have been proposed to directly con-
trol the sensors for saving energy. For example, a context-aware energy-saving sensor
controlling approach is proposed in Chong et al. [2005]. This approach firstly learns
context from the history sensor data and then controls the energy-saving functional-
ities of sensors according to the current context. Chong et al. [2008] proposed to use
adaptive rule triggers on sensors to save energy of wireless sensor networks. Associ-
ation rules between sensors are mined from the history sensor data and the outputs
of some sensors are predicted instead of sampling according to the outputs of other
sensors which are identified as highly related by the mined rules. Krause et al. [2009]
proposed to optimize the placements and active time of multiple sensors for saving
energy. These works inspire us to learn whether we can leverage machine learning
technologies to control the context sensors of mobile devices for energy saving.

7. CONCLUSION AND FUTURE WORK

In this article, we proposed learning to infer the status of heavy-duty sensors for
energy-efficient context-sensing. To be specific, we leveraged the historical context
data of mobile users to train models which were used for inferring the statuses of
heavy-duty sensors according to the outputs of basic and light-duty sensors. The ex-
perimental results on real datasets show that the proposed approach can improve the
energy efficiency of GPS sensing and audio-level sensing for more than 70% and 60%,
respectively, while the sensing accuracy is over 90%. Moreover, comprehensively con-
sidering the sensing accuracy, the energy efficiency, the training cost, and the storage
cost, the decision tree-based implementation is the best choice for both sensors.

The robustness of SSI models with respect to training data is crutial for the prac-
tical application of the proposed approach. In the future, we will further study the
sensitiveness of the proposed approach for the quality of the historical context data,
such as the time length, the sparseness of the data.
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