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Abstract—User habit mining plays an important role in user
understanding, which is critical for improving a wide range
of personalized intelligence services. Recently, some researchers
proposed to mine user behavior patterns which characterize
the habits of mobile users and account for the associations
between user interactions and context captured by mobile devices.
However, the existing approaches for mining these behavior
patterns are not practical in mobile environments due to limited
computing resources on mobile devices. To fulfill this crucial
void, we investigate optimizing strategies which can be used for
improving the efficiency of behavior pattern mining in terms of
computing and memory needs. Specifically, we examine typical
optimizing strategies for association rule mining and study the
feasibility of applying them to behavior pattern mining, since
these two problems are similar in many aspects. Moreover,
we develop an efficient algorithm, named BP-Growth, for be-
havior pattern mining by combining two promising strategies.
Finally, experimental results show that BP-Growth outperforms
benchmark methods with a significant margin in terms of both
computing and memory cost.
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I. INTRODUCTION

In recent years, the development of mobile devices pro-
gressed at an ever fastest pace to make possible supporting var-
ious applications and services beyond the traditional speech-
centric service, such as music, videos, web browsing, gaming
and camera shooting, just to name a few. The rich user inter-
action information captured by the mobile device can be used
to understand user habits, which can bring a great business
value, such as data-driven user studies for marketing, targeted
advertising and personalized recommendation. Consequently,
studying the habits of mobile users through their interactions
attracts many researchers’ attention, e.g., [1–3].

A distinct property of the user interactions with mobile
devices is that they are usually associated with volatile con-
texts, such as waiting a bus, driving a car, or doing shopping.
Intuitively, some user interactions are context-aware, that is,
the occurrences of these user interactions are influenced by
the contexts of users. For example, some users would like
to listen to music with their smart phones when taking a
bus to the workplace but rarely do the same thing on other
contexts. The context-awareness of user interactions reflects
the habits of mobile users. Therefore, Cao et al. [3] proposed
to characterize user habits by the associations between user
interaction records and the corresponding contexts.

This kind of associations is referred to as behavior patterns.
A wide range of context-aware services, such as context-
aware recommendation, context-aware UI adaption [4], can be
improved by understanding the habits of mobile users from
their behavior patterns. Moreover, behavior patterns can be
used to build user profiles and segment users for marketing
analysis.

Context logs collect the history context data and interaction
records of mobile users, and thus can be used as data sources
for mining behavior patterns. However, mining behavior pat-
terns is not a trivial problem because it can not be addressed
by the traditional association rule mining [5–7]. On one hand,
we should not collect context data only when an interaction
happens, because it loses the discriminative information on
how likely no interaction happens with a given context. On the
other hand, if we always collect context data no matter whether
any interaction happens, the occurrences of contexts and user
interaction records in context logs will be very unbalanced [3],
which makes it difficult to mine meaningful patterns through
the traditional association rule mining approach. Therefore,
Cao et al. [3] defined the problem of behavior pattern mining
from a different perspective which takes context logs as
time ordered sequences of context records and calculates the
support of a context by taking into account its time ranges of
appearances. Moreover, they proposed an effective algorithm
named GCPM to solve the problem.

To protect user privacy and save the data flow, it may be
desirable to directly perform behavior pattern mining on users’
mobile devices instead of transiting the raw context data to the
back end server and then performing mining. However, we find
it is difficult to apply GCPM in practical mobile computing
environment due to the limited computing resource of mobile
devices, which motivates us to search effective strategies for
improving the efficiency of behavior pattern mining. To this
end, we investigate several typical optimizing strategies for
association rule mining and discuss the feasibility of applying
them to behavior pattern mining since the two problems are
similar in some aspects.

The contributions of this paper are summarized as follows.
First, to the best of our knowledge, it is the first attempt

to systematically study the feasibility of applying typical op-
timizing strategies used in association rule mining to behavior
pattern mining.
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Second, we propose a novel and efficient algorithm named
BP-Growth (Behavior Pattern Growth) for mining behavior
patterns. BP-Growth combines two optimizing strategies for
association rule mining and the experimental results on real
context data clearly show that it significantly outperforms
GCPM and other two baselines in terms of both running time
and memory cost.

Last, we firstly make a systematic evaluation of several
algorithms for behavior pattern mining in a practical mobile
computing environment, which may be inspiring for the de-
velopers who are interested in developing relevant applications
based on behavior pattern mining.

The rest of this paper is organized as follows. First, in
Section 2, we review the problem statement of behavior
pattern mining. Then, we briefly review some related work
and especially introduce the GCPM algorithm in Section 3.
In Section 4, we study the feasibility of applying several
widely used optimizing strategies for association rule mining
to behavior pattern mining. In Section 5, we propose a novel
and efficient algorithm named BP-Growth for mining behavior
patterns by combing two promising strategies. Next in Section
6, the experimental results in practical mobile computing
environment are summarized and discussed. Finally, in Section
7 we conclude this paper and point out the direction of future
work.

II. PRELIMINARIES

Before reviewing the related work, we firstly briefly review
the related notions of association rule mining [6–8] and
behavior pattern mining [3, 9] as follows.

A. Association Rule Mining

A transaction database TDB is a set of transactions, where
each transaction, denoted as a tuple < Tid,X >, contains
a set of items (i.e., X) and is associated with a unique
transaction identifier T id. A transaction < Tid,X > is said
to contain itemset Y if Y ⊂ X . The number of transactions
in TDB containing itemset Y is called the support of itemset
Y , denoted as Sup(Y ). Given a minimum support threshold
min sup and a minimum confidence threshold min conf ,
A =⇒ B is an association rule if Sup(A ∪ B) ≥ min sup

and Sup(A∪B)
Sup(A) ≥ min conf , where A, B denote two non-

overlapped itemsets, A is called the antecedent, and B is called
the consequent.

B. Behavior Pattern Mining

The problem of behavior pattern mining is proposed by Cao
et al. [3] for mining the habits of mobile users from their
context logs which record their historical context data and
interaction records. A context log R contains several context
records r1r2...rn, and each context record r =< Tid, C, I >

consists of a timestamp T id, the most detailed available
context at that time C, and the corresponding user interaction
record I . A context C consists of several contextual feature-
value pairs {(f1 : v1), (f2 : v2), ..., (fl : vl)} where (fi : vi)
denotes a context data type fi and the corresponding value vi,

such as (Time range: AM8:00-9:00). It is worth noting that we
mention “available” because a context record may miss some
context data though which context data should be collected
is usually predefined. For example, the GPS coordinate is not
available when the user stays indoors. Moreover, interaction
records can be empty (denoted as “Null”) because user inter-
actions do not always happen. Table I illustrates a toy context
log which contains 10 context records.

According to [3], for the associations between user con-
texts and the user interactions with mobile devices, they
are regarded as behavior patterns if both their supports and
confidences are bigger than predefined thresholds. Compared
with the traditional association rule mining, behavior pattern
mining can address the unbalanced occurrences of context
data and user interaction records well due to its different
way of calculating the supports of contexts. To be specific,
it counts the support of a context by taking into account how
many times it continuously appears in several adjacent context
records, which constitute a context range of the context. For a
context range which contains non-empty interaction records,
the number of non-empty interaction records is regarded as
the support of the corresponding context in this context range.
Otherwise, for a context range which only contains empty
interaction records, the support of the corresponding context
is regarded as one in this context range. Finally, the support
of the corresponding context is calculated by summing the
supports in each of its context ranges. Take the context log in
Table I for example, considering the context “{(Is a holiday?:
No),(Time range: AM8:00-9:00)}”, though it appears in seven
context records, its support is not seven but three because it has
three context ranges, i.e., (t1, t2, t3), (t38, t39), and (t58, t59),
respectively, and each context range at most has one non-
empty interaction record. Moreover, since {(Is a holiday?:
No),(Time range: AM8:00-9:00)} and “Playing Music Player”
co-occur two times, the confidence of “{(Is a holiday?:
No),(Time range: AM8:00-9:00)} −→ Playing Music Player”
is 2/3 = 0.66. According to [3], the definition of behavior
patterns is formulated as follows.

Definition 1 (Support, Confidence): Given a context Ci and
an interaction record I , the support of Ci w.r.t. I (denoted
as Sup(Ci =⇒ I)) is

∑
m Countm(I), where Countm(I)

denotes the occurrence number of I in the m-th context range
of Ci.

Given a complete interaction set Γ, the support of Ci

(denoted as Sup(Ci)) is
∑

I∈Γ Sup(Ci =⇒ I) + N0, where
N0 denotes the number of Ci’s context ranges which only
contain empty interaction records. Moreover, the confidence
of Ci w.r.t. I denoted as (Conf(Ci =⇒ I)) is Sup(Ci=⇒I)

Sup(Ci)
.

Definition 2 (Promising Context, Behavior Pattern):
Given a context Ci, if ∃ISup(Ci =⇒ I) ≥ min sup, Ci is
called a promising context. Moreover, if Sup(Ci =⇒ I) ≥
min sup and Conf(Ci =⇒ I) ≥ min conf , Ci =⇒ I is
called a behavior pattern.
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TABLE I
A TOY CONTEXT LOG.

Timestamp Context Interaction record
t1 {(Is a holiday?: No),(Time range: AM8:00-9:00),(Cell ID: 2341-42344)} Null
t2 {(Is a holiday?: No),(Time range: AM8:00-9:00),(Cell ID: 2341-22347)} Playing Music Player
t3 {(Is a holiday?: No),(Time range: AM8:00-9:00),(Cell ID: 2341-79901)} Null

......
t38 {(Is a holiday?: No),(Time range: AM8:00-9:00),(Cell ID: 2341-32044)} Null
t39 {(Is a holiday?: No),(Time range: AM8:00-9:00),(Cell ID: 2341-2501)} Null

......
t58 {(Is a holiday?: No),(Time range: AM8:00-9:00),(Cell ID: 2341-42344)} Playing Music Player
t59 {(Is a holiday?: No),(Time range: AM8:00-9:00),(Cell ID: 2341-42344)} Null

III. RELATED WORK

Cao et al. [3] firstly proposed to use behavior patterns to
characterize mobile users’ habits and gave a corresponding
algorithm named GCPM for behavior pattern mining. As
introduced in the previous section, behavior patterns denote
associations between user interactions and contexts captured
by mobile devices. However, though traditional association
rule mining is widely used for mining associations between
items that usually co-occurred in same transactions from a
transaction data base [6–8], it can not be used to mine behavior
patterns because of the unbalanced occurrences of contexts
and interaction records [3]. Therefore, Cao et al. defined the
problem of behavior pattern mining by using different metrics
of support and confidence, which are two key notions of
association.

GCPM is an Apriori-like algorithm [8] which iteratively
generates candidate behavior patterns by joining shorter
promising contexts and checks their correctness from the
original context log. Though it can effectively find meaningful
behavior patterns, we find it is still difficult to apply it to a
practical mobile computing environment since it has a rela-
tively high requirement of main memory and big computation
cost. To this end, we are motivated to find a much more
efficient algorithm for behavior pattern mining which fits
limited computation resource.

The problem of association rule mining has been studied
for more than a decade and a lot of optimizing strategies are
proposed to improve the mining efficiency. These strategies
can be roughly grouped into four categories. The first category
is to reduce the redundant data before performing mining. The
second category is to compress the original data set by FP-
Trees. The third category is to adopt “divide and conquer”
principle and partition the original data sets into several
small data sets. The last category is to discover patterns by
directly comparing candidate patterns in the sorted data set.
Most of successful algorithms take advantage of more than
one optimizing strategy. For example, FP-Growth [10] and
CLOSET+ [11] take advantage of the strategies of removing
redundant data, FP-Trees, and data set partition. FreeSpan [7]
and PrefixSpan [12] take advantage of the strategies of re-
moving redundant data and data set partition. Disc [13] takes
advantage of the strategies of removing redundant data, data
set partition, and directly comparing candidate patterns.

Since the problem of behavior pattern is largely related to
association rule mining, the optimizing strategies for associ-
ation rule mining may be used for improving the efficiency

of behavior pattern mining. It motivates us to systematically
study these strategies and discuss the feasibility of applying
them to behavior pattern mining.

IV. CANDIDATE OPTIMIZING STRATEGIES FOR BEHAVIOR

PATTERN MINING

A. Removing Redundant Data

In the problem of traditional association rule mining, an
item is infrequent if and only if its support is less than
min sup. A widely used optimizing strategy is removing the
infrequent items of the original database before performing
association rule mining. It is easy to prove that removing
infrequent items will not affect the mined association rules
according to the Apriori-Theory [8]. In this way, both the
memory requirement and mining space of association rule
mining are reduced.

Similarly, in the problem of behavior pattern mining, we can
safely remove the unpromising contextual feature-value pairs
from the context log. The support of a contextual feature-value
pair is calculated by taking it as a 1-context. To prove this
statement, we firstly introduce the following lemmas.

Lemma 4.1: Given a promising context Ci, for any un-
promising contextual feature-value pair p, we can conclude
p �∈ Ci.

Proof: Assume that p is unpromising and p ∈ Ci. Accord-
ing to Definition 2, ∃ISup(Ci =⇒ I) ≥ min sup. Moreover,
according to the Context-Apriori theorem [3], ∃ISup(p =⇒
I) ≥ min sup. However, the conclusion is in conflict with
the statement that p is unpromising. Therefore, the assumption
is false and the lemma is true.

Lemma 4.2: Given a context Ci and a context log R,
removing a contextual feature-value pair p from R where
p �∈ Ci does not affect Sup(Ci) and ∀ISup(Ci =⇒ I).

Proof: First, given a context Ci, for each context record
in R denoted as r =< Tid, C, I >, removing p does
not affect whether Ci appears in C . Therefore, removing
p does not affect the context ranges of Ci. Considering
that the interaction records are not affected by removing p

too, it is obvious that removing p does not affect N0 and
∀ISup(Ci =⇒ I) according to Definition 1. Moreover, since
Sup(Ci) =

∑
I∈Γ Sup(Ci =⇒ I)+N0, we can conclude that

removing p does not affect Sup(Ci).
The above lemmas imply that for any promising context

Ci, removing unpromising contextual feature-value pairs does
not affect ∀ISup(Ci =⇒ I) and Sup(Ci). Therefore, we can
safely remove unpromising contextual feature-value pairs for
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TABLE II
AN EXAMPLE OF CONTEXT LOG

Tid Context Interaction
t1 {(a : 2), (b : 3), (c : 5)} Null
t2 {(a : 2), (b : 3), (c : 5), (d : 1)} I1
t3 {(a : 2), (b : 3), (c : 5), (d : 1)} Null
t4 {(a : 3), (b : 2), (c : 5), (d : 0), (e : 1)} I2
t5 {(a : 2), (b : 2), (c : 5), (d : 1)} Null
t6 {(a : 2), (b : 3), (c : 5), (d : 0), (e : 1)} Null
t7 {(a : 2), (b : 3), (c : 5), (d : 1)} Null
t8 {(a : 2), (b : 3), (c : 5), (d : 1)} Null
t9 {(a : 2), (b : 3), (c : 4), (d : 1)} I2
t10 {(a : 2), (b : 3), (c : 5)} I1

reducing the size of original context log and thus the mining
space.

In the problem of behavior pattern mining, the size of the
original context log can be further safely reduced by removing
the adjacent duplicate context records which only contain
empty interaction records according to the following theorems.

Theorem 1: Given a context log R = r1r2...rn, a context
Ci, if ∃1≤s<m≤nrs.C = rs+1.C = ... = rm.C where r.C

denotes the context of r and ∀s≤k≤m,II �∈ rk , removing
rs+1...rm does not affect Sup(Ci) and ∀ISup(Ci =⇒ I).

Proof: Because no context record of rs+1...rm contains
a non-empty interaction record, removing rs+1...rm does not
affect ∀ISup(Ci =⇒ I) according to Definition 1. We only
need to prove removing rs+1...rm does not affect N0, i.e.,
the number of Ci’s context ranges which only contain empty
interaction records.

Firstly, suppose Ci is a sub-set of rk.C. Thus, ∀s≤k≤mCi ⊆
rk.C because rs.C = rs+1.C = ... = rm.C. According to the
definition of context range, rs+1...rm must be in a context
range of Ci. In this case, removing rs+1...rm just modifies
the context range but does not remove it. Thus, N0 won’t be
affected.

Secondly, suppose Ci is not a sub-set of rk.C. Thus,
∀s≤k≤mCi �⊆ rk.C because rs.C = rs+1.C = ... = rm.C.
According to the definition of context range, rs+1...rm must
not be in any context range of Ci. In this case, removing
rs+1...rm does not affect any context range of Ci can thus
does not affect N0.

Similarly, we have the following theorem.
Theorem 2: Given a context log R = r1r2...rn, a con-

text Ci, if ∃1≤s<m≤nrs.C = rs+1.C = ... = rm.C and
∃s≤k≤m,II ∈ rk, removing rk (s ≤ k ≤ m) does not affect
Sup(Ci) and ∀ISup(Ci =⇒ I) if rk only contains an empty
interaction record.

B. Data Compaction through FP-Trees

FP-Tree [10] is also widely used for reducing the size of the
original transaction database in association rule mining. FP-
Tree is a prefix tree of the lists of frequent items of the original
transaction database. A FP-Tree is usually much smaller than
the original transaction database because transactions usually
share the same prefix. The following figure gives an example
of FP-Tree for the context log in Table II by taking contextual
feature-value pairs as items. It is worth noting that each node is
associated with a support vector for recording the supports of
the context derived from the path to the root node w.r.t. each
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Fig. 1. The FP-Tree for the context log in Table II.

interaction record and the corresponding N0. For example,
Node A contains a support vector for recording the supports
of {(a : 3), (b : 2), (c : 5)} w.r.t. I1, I2, and N0. In contrast,
in association rule mining, each node of FP-Tree only records
the frequency that the item set derived from the path to the
root node occurs as prefixes of transactions [10].

However, we find that FP-Tree cannot be applied to behavior
pattern mining because the problem of behavior pattern mining
has not an important property that association rule mining has.
To ease introducing the property, we introduce the following
notion firstly.

Definition 3 (Minimum Coverage Path): Given an item set
α, a FP-Tree T , if 1) N is a node of T where the item set
derived from the path from the root node of T to N is a super
set of α; and 2) there exists no a path from the root node of
T to an ancestor node of N which can also derive a super
set of α, the path between N and the root of T is called a
minimum coverage path of α.

Property 1 (Minimum Coverage Path Completeness): In
the problem of association rule mining, given an item set α, a
FP-Tree T , we have Sup(α) =

∑
N N.freq, where the path

between N and the root of T makes a minimum covering
path of α, and N.freq indicates the frequency that the item
set derived from the corresponding minimum covering path
occurs as prefixes of original transactions.

This property is very important for the success of FP-Tree to
maintain all necessary information for association rule mining.
For example, if we take the context log in Table II as a
transaction database and consider the FP-Tree in Figure 1
in the view of association rule mining, we can calculate the
frequency of {(b : 2), (c : 5)} by summing the frequencies of
{(a : 2), (b : 2), (c : 5)} and {(a : 3)(b : 2), (c : 5)}, which
are recorded by node A and node B, respectively.

By contrast, in the problem of behavior pattern mining,
we can not calculate the support of a context in a similar
way. Take the FP-Tree in Figure 1 for example, given a
context Ci = {(b : 2), (c : 5)}, node A and node B
contribute two minimum covering pathes of Ci which derive
{(a : 2), (b : 2), (c : 5)} (denoted as Cj) and {(a : 3), (b :
2), (c : 5)} (denoted as Ck), respectively. As mentioned

241241241



above, node A records N0 = 1, Sup(Cj =⇒ I1) = 0,
Sup(Cj =⇒ I2) = 0, and node B records N0 = 0,
Sup(Ck =⇒ I1) = 0, Sup(Ck =⇒ I2) = 1. Thus, both
Sup(Cj) and Sup(Ck) are 1. However, we can not calculate
Sup(Ci) since Sup(Ci) = 1 �= [Sup(Cj) + Sup(Ck)]. The
challenge of applying FP-Tree to behavior pattern mining is
that FP-Tree can not maintain all necessary information for
mining behavior patterns, which is caused by the different
way of calculating supports.

C. Data Set Partition

The major computation cost of Apriori-like algorithms
comes from the generation of candidate patterns. In association
rule mining, the strategy of data set partition is usually
used to avoid candidate pattern generation. For example, FP-
Growth [10] and CLOSET+ [11] recursively generate candi-
date FP-Trees from the original FP-Tree. The main idea of
data set partition is to recursively partition the original data
set into smaller sub-datasets and then mine patterns on the
basis of the seed patterns of each sub-data set.

Since in behavior pattern mining we can not use a FP-Tree
to compress the original context log, we should study the
association rule mining algorithms which take advantage of
data set partition strategy but do not use FP-Trees. The typical
algorithms of them are PrefixSpan [12] and PTAC [14]. Instead
of performing FP-Tree based partition, they take advantage of
an alternative data partition approach named Prefix Projection.
The main idea of prefix projection is to recursively partition
the original data set with prefixes as projected data sets and
make the new mined patterns from the projected data sets
as new prefixes. To depict how to apply prefix projection to
behavior pattern mining, let’s introduce the following related
notions.

Definition 4 (Prefix, Projection, and Suffix): Given a con-
text Ci = {(x1 : v1), (x2 : v2), ..., (xl : vl)}, one of its sub-
contexts Cj = {(y1 : u1), (y2 : u2), ..., (ym : um)} is called
a prefix of Ci if and only if ∀1≤k≤m(xk = yk) ∧ (vk = uk);
Given a context record r =< Tid, Ci, I > and one context
Cj ⊆ Ci, the projection of r w.r.t. prefix Cj is rp =<

Tid, Cp, I >, where Cp is the longest sub-context of Ci which
has a prefix Cj . Moreover, the suffix of r w.r.t. prefix Ci is
rs =< Tid, Cs, I >, where Cs = Cp − Cj ;

For example, given a context record r =< t2, {(a : 2), (b :
3), (c : 4), (d : 1)}, I2 > and a context (b : 3), the projection
of r w.r.t. prefix {(b : 3)} is rp =< t2, {(b : 3), (c : 4), (d :
1)}, I2 > and the suffix of r w.r.t. prefix {(b : 3)} is rs =<

t2, {(c : 4), (d : 1)}, I2 >.
Definition 5 (Projected Context Log): Given a context log

R and a context Cj , the projected context log of R w.r.t.
prefix Cj is a timestamp ordered suffix sequence R|Cj which
contains all suffixes of context records in R w.r.t. prefix Cj .

For example, Table III shows the projected context log of
the context log in Table II w.r.t. prefix {(b : 3)}.

The suffix of a context record can be taken as a special
context record. The related notions about context record also
fit suffix. Similarly, the related notions about context log, such

TABLE III
THE PROJECTED CONTEXT LOG OF THE CONTEXT LOG IN TABLE II W.R.T.

PREFIX {(b : 3)}

Tid Context Interaction
t1 {(c : 5)} Null
t2 {(c : 5), (d : 1)} I1
t3 {(c : 5), (d : 1)} Null
t6 {(c : 5), (d : 0), (e; 1)} Null
t7 {(c : 5), (d : 1)} Null
t8 {(c : 5), (d : 1)} Null
t9 {(c : 4), (d : 1)} I2
t10 {(c : 5))} I1

as context range, support, and confidence, also fit projected
context log. Because projected context logs are usually dramat-
ically smaller than the original context log, the search space
of mining behavior patterns will be reduced if we can mine
behavior patterns from the projected context logs.

Since the factors of indicating a behavior pattern Ci =⇒ I

are Sup(Ci =⇒ I) and Sup(Ci), if we can calculate the two
factors from projected context logs, we will be able to mine
behavior patterns from projected context logs.

Theorem 3: Given a context Cj = {(x1 : v1), (x2 :
v2), ..., (xl : vl)} and one of its super contexts Ci = {(x1 :
v1), (x2 : v2), ..., (xl : vl), (xl+1 : vl+1)}, ∀ISup(Ci =⇒
I) = Sup|Cj((xl+1 : vl+1) =⇒ I), where Sup|Cj(∗)
indicates the support of ∗ in R|Cj .

This theorem is easy to prove. It implies that given a l+1-
context Ci, denoting the last context feature-value pair of Ci as
(xl+1 : vl+1), we can calculate Sup(Ci =⇒ I) by calculating
Sup|Cj((xl+1 : vl+1) =⇒ I), where Cj denotes the context
generated by removing (xl+1 : vl+1) from Ci.

However, we cannot calculate Sup(Ci) in a similar way.
Take the projected context log in Table III for example,
Sup({(b : 3), (c : 5)}) = 3 �= Sup|Cj((c : 5)) = 2
where Cj = (b : 3). It is because the projected context log
may lose the information of context range contained by the
original context log. Fortunately, we can solve this problem
by extracting the context ranges of the prefix Cj from the
original context log firstly and then build the projected context
logs w.r.t. prefix Cj in each context range of Cj .

Theorem 4: Given a context Cj = {(x1 : v1), (x2 :
v2), ..., (xl : vl)} and one of its super contexts Ci = {(x1 :
v1), (x2 : v2), ..., (xl : vl), (xl+1 : vl+1)}, 1)∀ISup(Ci =⇒
I) =

∑
k Supk|Cj((xl+1, vl+1) =⇒ I); 2)Sup(Ci) =∑

k Supk|Cj((xl+1, vl+1)), where Supk|Cj(∗) indicates the
support of ∗ in the projected context log from the k-th context
range of Cj .

This theorem is also easy to prove. With this theorem, we
can perform behavior pattern mining in projected context logs.
For example, Table IV shows the projected context logs of the
context log in Table II w.r.t. prefix {(b : 3)} for each context
range of {(b : 3)}. From the projected context logs in Table IV,
we can calculate both ∀I(Sup({(b : 3), (c : 5)} =⇒ I) and
Sup({(b : 3), (c : 5)}). For instance, denoting {(b : 3)} as Cj ,
Sup({(b : 3), (c : 5)}) = Sup1|Cj((c : 5)) + Sup2|Cj((c :
5)) = 1 + 2 = 3.
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TABLE IV
CONTEXT RANGE VIEW: THE PROJECTED CONTEXT LOGS OF THE

CONTEXT LOG IN TABLE II W.R.T. PREFIX {(b : 3)}

Context Range 1
Tid Context Interaction
t1 {(c : 5)} Null
t2 {(c : 5), (d : 1)} I1
t3 {(c : 5), (d : 1)} Null

Context Range 2
Tid Context Interaction
t6 {(c : 5), (d : 0), (e : 1)} Null
t7 {(c : 5), (d : 1)} Null
t8 {(c : 5), (d : 1)} Null
t9 {(c : 4), (d : 1)} I2
t10 {(c : 5)} I1

V. BP-GROWTH: COMBINING PROMISING OPTIMIZING

STRATEGIES

In above discussions, we find that the strategies of re-
ducing redundant data and data set partition can be applied
to behavior pattern mining. In this section, we propose a
novel algorithm for behavior pattern mining called BP-Growth
(Behavior Pattern Growth) by combining the two strategies.
The main steps of BP-Growth are shown in Algorithm 1,
where redundant context records denote the context records
which have duplicated contexts with adjacent context records
and only contain empty interaction records.

Algorithm 1 BP-Growth
Input1: a context log R = r1r2...rn;
Input2: an interaction set Γ = {I1, I2, ...IQ};
Input3: min sup, min conf ;

1: Find all promising 1-context set C1
p = {C1

p |∃ISup(C
1
p =⇒ I) ≥

min sup}.
2: Remove (y : u) from R where (y : u) �∈ C1

p.
3: Remove redundant context records.
4: for each 1-context C1

p in C1
p do

5: for each I in Γ do
6: if Sup(C1

p =⇒ I) ≥ min sup and Conf(C1
p =⇒ I) ≥

min conf then
7: Output C1

p =⇒ I ;
8: SearchBP (C1

p ,C
1
p, R1|C

1
p , ..., Rn|C

1
p);

The procedure of SearchBP () is outlined as follows.
Firstly, the method SearchBP () receives a promising context
Cl

p, a set of promising 1-contexts C1
p, and a set of projected

context logs {R1|C
l
p, ..., Rn|C

l
p} where Ri|C

l
p denotes the

projected context log of the i-th context range of Cl
p (1 ≤

i ≤ n). Then it tries to find all promising 1-contexts in R|Cl
p

as C∗1
p for extending Cl

p. For each extended l + 1-context
Cl+1

p , the method SearchBP () firstly checks Cl+1
p and then

recursively calls SearchBP () for Cl+1
p if Cl+1

p is promising.
The pseudo code of SearchBP () is shown in Algorithm 2,

where for each promising 1-context C1
p , an array is constructed

for recording its support w.r.t. each interaction record in Γ,
denoted as C1

p .support[]. C
1
p .support[0] is used for counting

N0, i.e., the number of context ranges of C1
p which only

contain empty interaction records. Moreover, Cl
p ·C

1
p denotes

the context generated by appending C1
p to Cl

p.

Algorithm 2 SearchBP

Input1: a promising l-context Cl
p;

Input2: a set of promising 1-contexts C1
p;

Input3: a set of projected context logs {R1|C
l
p, ..., Rn|C

l
p};

1: //Init
2: Init C∗1

p = φ;
3: for each C1

p in C1
p do

4: Init C1
p .support[];

5: //Count support
6: for each projected context log Ri|C

l
p(1 ≤ i ≤ n) do

7: Remove redundant suffixes.
8: Scan Ri|C

l
p to update C1

p .support[].

9: //Count confidence
10: for eachC1

p in C1
p do

11: for 1 ≤ n ≤ Q do
12: if C1

p .support[n] ≥ min sup then
13: C∗1

p ∪ = C1
p ;

14: if
C1

p.support[n]
∑Q

n=0
C1

p.support[n]
≥ min conf then

15: Output Cl
p · C1

p =⇒ In;

16: //Partition data set
17: for each 1-context C∗1

p in C∗1
p do

18: Cl+1
p = Cl

p · C∗1
p ;

19: for each Ri|C
l+1
p do

20: Remove (y : u) from Ri|C
l+1
p where (y : u) �∈ C∗1

p .
21: SearchBP (Cl+1

p ,C∗1
p , R1|C

l+1
p , ..., Rn′ |Cl+1

p );

TABLE V
THE PRUNED CONTEXT LOG IN TABLE II.

Tid Context Interaction
t2 {(a : 2), (b : 3), (c : 5)} I1
t4 {(c : 5)} I2
t5 {(a : 2), (c : 5)} Null
t6 {(a : 2), (b : 3), (c : 5)} Null
t9 {(a : 2), (b : 3)} I2
t10 {(a : 2), (b : 3), (c : 5)} I1

The following example illustrates the process of mining
behavior patterns from the context log in Table II by BP-
Growth for easing understanding how BP-Growth works. The
min sup and min conf are set to be 2 and 0.6, respectively.

Example 1 (Mining behavior patterns): Firstly, we remove
the unpromising contextual feature-value pairs (a : 3), (b :
2), (c : 4), (d : 0), (d : 1) and (e : 1), and then remove
all redundant context records, i.e., the context records with
timestamps t1, t3, t7, and t8. The pruned context log is shown
in Table V.

Secondly, we find all behavior patterns with 1-contexts from
the pruned context log as follows: {(a : 2)} =⇒ I1 (support:
2, confidence: 0.66), {(b : 3)} =⇒ I1 (support: 2, confidence:
0.66), and {(c : 5)} =⇒ I1 (support: 2, confidence: 0.66).
Then for each promising contextual feature-value pair (fi, vi),
we build projected context logs w.r.t. prefix (fi, vi) in its each
context range, as illustrated in Table VI. Notice that 1) an
empty suffix in the second projected context log w.r.t. prefix
{(b : 3)} is maintained to indicate that the suffixes with
timestamps t6 and t10 are not in the same context range of
{(b : 3), (c : 5)}; and 2) all the projected context logs w.r.t.
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TABLE VI
CONTEXT RANGE VIEW: THE PROJECTED CONTEXT LOGS OF THE CONTEXT LOG IN TABLE V W.R.T. (A) PREFIX {(a : 2)}, (B) PREFIX {(a : 2), (b : 3)},

AND (C) PREFIX {(b : 3)}.

(a) (b) (c)
Context Range 1

Tid Context Interaction
t2 {(b : 3), (c : 5)} I1

Context Range 2
Tid Context Interaction
t5 {(c : 5)} Null
t6 {(b : 3), (c : 5)} Null
t9 {(b : 3)} I2
t10 {(b : 3), (c : 5)} I1

Context Range 1
Tid Context Interaction
t2 {(c : 5)} I1

Context Range 2
Tid Context Interaction
t6 {(c : 5)} Null
t9 {} Null
t10 {(c : 5)} I1

Context Range 1
Tid Context Interaction
t2 {(c : 5)} I1

Context Range 2
Tid Context Interaction
t6 {(c : 5)} Null
t9 {} Null
t10 {(c : 5)} I1

prefix (c : 5) for each context range of (c : 5) are empty and
avoided to be generated.

Thirdly, we find the promising contextual feature-value pairs
from the projected context log in Table VI (a), i.e.,(b : 3) and
(c : 5), then output the behavior patterns {(a : 2), (b : 3)} =⇒
I1 (support: 2, confidence: 0.66) and {(a : 2), (c : 5)} =⇒ I1
(support: 2, confidence: 0.66). Then we build the projected
context logs w.r.t. prefix {(a : 2), (b : 3)} for each context
range of {(a : 2), (b : 3)} as illustrated in Table VI (b). The
projected context logs w.r.t. prefix {(a : 2), (c : 5)} are avoided
to built since they are empty.

Fourthly, we find the promising contextual feature-value
pairs from the projected context log in Table VI (b), i.e.,
(c : 5), and output the behavior patterns {(a : 2), (b : 3), (c :
5)} =⇒ I1 (support: 2, confidence: 0.66).

Finally, since the projected context logs w.r.t. {(a : 2), (b :
3), (c : 5)} are empty, the mining in the projected context logs
w.r.t. prefix {(a : 2)} is end and we come back to the projected
context logs w.r.t. prefix {(b : 3)} (Table VI (c)). Specially,
we find the only one promising contextual feature-value pair
(c : 5), and output the behavior pattern {(b : 3), (c : 5)} =⇒
I1 (support: 2, confidence: 0.66).

In BP-Growth, generating projected context logs needs
additional memory cost. Wisely, we can avoid generating
physical projected context logs by taking advantage of the
pseudo projection technology [12]. The main idea of pseudo
projection is to replace the physical projected data by a group
of pointers when the memory can hold the original data to
be projected. To be specific, a pseudo projected context log
consists of a series of pseudo suffixes. Each pseudo suffix
consists of a T id which indicates a context record in the
original context log and an index which indicates the beginning
position to separate a suffix from the corresponding context
record. For example, Table VII shows the pseudo projected
context logs w.r.t. prefix {(a : 2)} for each context range of
(a : 2). In the first pseudo suffix of the pseudo projected
context log from context range 1, the T id t2 and index 2
indicate a suffix beginning from the second contextual feature-
value pair of the context record with timestamp t2, i.e., (b : 3),
to the end of the context record. Similarly, in the first pseudo
suffix of the pseudo projected log from context range 2, the
T id t5 and index 2 indicate a suffix beginning from the
second contextual feature-value pair of the context record with
timestamp t5, i.e., (c : 5), to the end of the context record,

which is also (c : 5).

TABLE VII
CONTEXT RANGE VIEW: THE PSEUDO PROJECTED LOGS OF THE CONTEXT

LOG IN TABLE V W.R.T. PREFIX {(a : 2)}

Context Range 1
Tid Index
t2 2

Context Range 2
Tid Index
t5 2
t6 2
t9 2
t10 2

With pseudo projected context logs, we can still find
promising contextual feature-value pairs and behavior patterns
through BP-Growth but do not need to generate physical
projected context logs. A constraint of pseudo projection
technology is that we can not reduce the mining space for
behavior pattern mining by removing the redundant context
data in pseudo projected context logs as we do in physical
projected context logs. It is because each accessed contextual
feature-value pairs from a pseudo projected context log is
substantially located in the pruned original context log and
only has one copy. An unpromising contextual feature-value
pair (fi, vi) in one pseudo projected context log S1 may
be promising in another. Thus, if we remove (fi, vi) when
operating S1, the operation for other pseudo projected context
logs may be affected.

VI. EXPERIMENTS

To evaluate the efficiency of BP-Growth for behavior pat-
tern mining in terms of running time and memory cost, we
conduct extensive experiments on real context log collected
from mobile users. The experimental data sets include 10
university volunteers’ context logs spanning for one month
and contain rich types of context data and user interaction
records such as day name, battery level, cell ID, listening
to music, playing games, email and so on. These data are
collected by Cao et al. [9] and can be downloaded from
http://dm.ustc.edu.cn/paperlist.html. For more details of the
data sets, please refer to [9].

A. Experimental Set Up

To effectively evaluate the efficiency of BP-Growth for be-
havior pattern mining, we select three algorithms for behavior
pattern mining as baselines.

· GCPM-H: An implementation of GCPM which takes
advantage of CH-Trees instead of context sets to store
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and access candidate promising contexts. The experi-
mental results show that the memory cost of GCPM-H
is comparable to the original GCPM while the running
time drops more than 10 ten times averagely [3, 9].

· GCPM-H-R: An optimization of GCPM-H which
adopts the strategy of removing redundant data. In
other words, it firstly removes redundant data and then
performs GCPM-H in the pruned context log.

· BP-Growth-NR: An algorithm which takes advantage
of the same strategy of data set partition as BP-Growth
but does not remove redundant data in the original
context log and projected context logs.

As mentioned above, it is desirable to directly perform
behavior pattern mining on users’ smart devices for protecting
user privacy and saving data flow, which motivates us to
find an efficient algorithm for behavior pattern mining which
can work well in practical mobile computing environments.
Therefore, all experiments in this paper are conducted in
a practical mobile computing environment. To be specific,
in the following experiments, the BP-Growth algorithm and
all baselines are implemented by Qt on a Nokia N97 smart
phone with S60v5 operating system, 128MB main memory
and 434MHZ CPU. It is worth noting that the operating
system needs more than 70MB main memory for running.
Consequently, the development guideline claims the available
main memory for third party programs are less than 40MB.

B. Cost of Running Memory

Since the available memory of smart phones for third part
programs is usually much less than PC, memory cost is an
important indicator for the efficiency of algorithms which
run in mobile computing environments. Therefore, in this
section, we firstly compare the memory cost of BP-Growth
and the baselines on varying context logs. Limited by space,
it is not feasible to show the detailed experimental results
for all collected context logs. Instead, we randomly select
two context logs, namely, RA and RB to show the detailed
experimental results and report part of experimental results
for other context logs. Finally, we summarize the observations
from experimental results.

Figure 2 (a) and Figure 2 (b) compare the memory cost
of BP-Growth, the optimization of BP-Growth which takes
advantage of pseudo projection technology (denoted as BP-
Growth-P), and the baseline algorithms with varying settings
of min sup on RA and RB , respectively. The min conf is
set to be 0.5. The memory cost of GCPM-H and GCPM-H-
R with min sup = 2 is not available because in this case
its memory cost is over the memory limit (40MB) of the
experimental smart phone and the program terminates with an
exception. From the figures we can see that the memory cost of
BP-Growth, BP-Growth-P and BP-Growth-NR is dramatically
less than GCPM-H and GCPM-H-R with relatively small
min sup. To be specific, they reduce more than 75% memory
cost compared with GCPM-H in the best case. In contrast,
when min sup increases bigger and bigger their memory cost
becomes comparable to GCPM-H.
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Fig. 2. Memory cost of varying algorithms for context logs (a) RA and (b)
RB with varying min sup and the fixed min conf = 0.5.
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Fig. 3. Numbers of mined behavior patterns for context logs (a) RA and
(b) RB with varying min sup and the fixed min conf = 0.5.

It is worth noting that the relatively good performance of
GCPM in terms of memory cost with big min sup makes no
sense because rare behavior patterns are mined in this case, and
all comparing algorithms quickly terminate. Figure 3 (a) and
Figure 3 (b) show the numbers of mined behavior patterns with
varying settings of min sup and the fixed min conf = 0.5
on RA and RB , respectively. We can see that the number
of mined behavior patterns drops quickly when the min sup

increases. Thus, it is more meaningful to compare the memory
cost of different algorithms by considering their performance
with relatively small min sup.

Moreover, from Figure 2 (a) and Figure 2 (b) we can see
that the memory cost of BP-Growth, BP-Growth-P, and BP-
Growth-NR is stable with varying settings of min sup while
GCPM-H and GCPM-H-R’s memory cost is sensitive to the
decrease of min sup.
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Fig. 4. Memory cost of varying algorithms for context logs (a) RA and (b)
RB with varying min conf and the fixed min sup = 3.

Figure 4 (a) and Figure 4 (b) compare the memory cost of
BP-Growth, BP-Growth-P, and the baseline algorithms with
varying settings of min conf on RA and RB , respectively.
The min sup is set to be 3. From the figures we can see
that the memory cost of BP-Growth, BP-Growth-P, and BP-
Growth-NR is dramatically less than GCPM-H and GCPM-H-
R with varying settings of min conf . Moreover, the memory
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Fig. 5. Memory cost of varying algorithms on all context logs with
min sup = 3 and min conf = 0.5.

cost of all algorithms is stable with the change of min conf .
The experiments on other context logs show the similar
phenomenon.

Figure 5 shows the memory cost of all algorithms with
min sup = 3 and min conf = 0.5 on all context logs. Such
a setting of min sup leads to the worst case of memory cost
for all algorithms on the basis of ensuring that their running
memory is not over the memory limit of experimental device.
From this figure we can see that the memory cost of BP-
Growth, BP-Growth-P, and BP-Growth-NR is dramatically less
than GCPM-H and GCPM-H-R on all context logs, and BP-
Growth-P always performs best in terms of memory cost.

Summary: by comprehensively analyzing the experimental
results for memory cost, we summarize the observations as
follows.

a) BP-Growth, BP-Growth-P and BP-Growth-NR dramati-
cally outperform GCPM-H and GCPM-H-R in terms of
memory cost and can run well in a middle-end smart
phone with limited memory. It implies that the strategy
of data set partition plays a more important role in
reducing the memory cost for behavior pattern mining
than the strategy of removing redundant data.

b) GCPM-H-R outperforms GCPM-H slightly in terms of
memory cost while BP-Growth also outperforms BP-
Growth-NR slightly in terms of memory cost. It implies
that the strategy of removing redundant data can reduce
the memory cost for behavior pattern mining though the
effect is limited.

c) BP-Growth-P outperforms BP-Growth slightly in terms
of memory cost. It implies that the pseudo projection
technology can be integrated with the strategy of data
set partition for reducing the memory cost for behavior
pattern though the effect is limited.

C. Computation Efficiency

Except for memory cost, computation efficiency is another
important performance indicator of the algorithms for behavior
pattern mining. In this section, we evaluate the computation
efficiency of BP-Growth and other baselines in terms of
running time. Similar to the experiments of memory cost, we
firstly show the detailed experimental results on two randomly
selected context logs, namely, RA and RB , and then report
part of experimental results for other context logs. Finally, we
summarize the observations from experimental results.
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Fig. 6. Running time of varying algorithms with varying min sup for
context logs (a) RA and (b) RB with min conf = 0.5.

Figure 6 (a) and Figure 6 (b) compare the running time
of BP-Growth, BP-Growth-NR and GCPM-H with varying
settings of min sup on RA and RB , respectively. The
min conf is set to be 0.5. The running time of GCPM-H
with min sup = 2 is not available because its memory cost
is over the memory limit (40MB) of the experimental smart
phone in this case. From the figures we can see that the running
time of BP-Growth is dramatically less than BP-Growth-NR
and GCPM-H with relatively small min sup. To be specific, it
reduces more than 60% running time compared with GCPM-H
in the best case. In contrast, when min sup increases bigger
and bigger their running time becomes to be comparable to
GCPM-H. Moreover, BP-Growth-NR outperforms GCPM-H
in terms of running time with small min sup and becomes
to under-perform the latter when the min sup increases. As
mentioned in Section VI-B, we should consider the case
of small min sup more when comparing the efficiency of
different algorithms for behavior pattern mining since there
are rare mining results with big min sup. Therefore, we can
roughly conclude that the running time of BP-Growth-NR is
at least comparable to GCPM-H.

The two figures do not show the running time of GCPM-
H-R and BP-Growth-P because we observe that the running
time of GCPM-H-R is very close to GCPM-H and the running
time of BP-Growth-P is very close to BP-Growth with varying
min sup. Showing their running time will cause bad clarity
of these figures.

0.2 0.4 0.6 0.8
0

2

4

6

8

x 10
5

Min_conf

R
un

tim
e(

m
s)

 

 

GCPM−H
BP−Growth−NR
BP−Growth

0.2 0.4 0.6 0.8
0

2

4

6

8

10

x 10
5

Min_conf

R
un

tim
e(

m
s)

 

 

GCPM−H
BP−Growth−NR
BP−Growth

(a) (b)
Fig. 7. Running time of varying algorithms for context logs (a) RA and (b)
RB with varying min conf and the fixed min sup = 3.

Figure 7 (a) and Figure 7 (b) compare the running time
of BP-Growth, BP-Growth-NR and GCPM-H with varying
settings of min conf on RA and RB , respectively. The
min sup is set to be 3. From the figures we can see that the
running time of BP-Growth is dramatically less than GCPM-
H and BP-Growth-NR with varying settings of min conf .
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Fig. 8. Running time of varying algorithms on all context logs with
min sup = 3 and min conf = 0.5.

Moreover, the running time of all algorithms is stable with
the change of min conf . The experiments on other context
logs show the similar phenomenon.

Figure 8 shows the running time of all algorithms with
min sup = 3 and min conf = 0.5 on all context logs. From
this figure we can see that the running time of BP-Growth, BP-
Growth-P is dramatically less than BP-Growth-NR, GCPM-H
and GCPM-H-R on all context logs.

Summary: by comprehensively analyzing the experimental
results for running time, we summarize the observations as
follows.

a) BP-Growth, BP-Growth-P dramatically outperform BP-
Growth-NR, GCPM-H and GCPM-H-R in terms of
running time. It implies that the strategy of removing
redundant data plays a more important role in reducing
the running time for behavior pattern mining than the
strategy of data set partition, and the improvement for
data set partition based algorithms is more dramatic.

b) GCPM-H-R is roughly comparable to GCPM-H in terms
of running time. It implies that applying the strategy
of removing redundant data to an Apriori-like algorithm
only leads to very limited improvement of running time.

c) BP-Growth-P is roughly comparable to BP-Growth in
terms of running time. It implies that the pseudo projec-
tion technology only has very limited effect on reducing
the running time of BP-Growth.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied several strategies which may be
used for improving the efficiency of behavior pattern mining
in terms of computing efficiency and memory cost. To be
specific, we searched some typical optimizing strategies for
association rule mining and discuss the feasibility of applying
them to behavior pattern mining since the two problems are
similar in many aspects. Moreover, we proposed a novel and
efficient algorithm named BP-Growth for behavior pattern
mining by combining two promising strategies. The extensive
experiments in a practical mobile computing environment
clearly show that BP-Growth and its optimization significantly
outperform GCPM and other two baselines which adopt one
of the two promising strategies in terms of both running time
and memory cost.

One challenge of utilizing behavior patterns is that there
usually exists thousands of behavior patterns for an individual

mobile user. Usually many of them are semantically similar
or related and may be summarized by several representative
patterns. As for future work, we plan to study the effective
approaches to summarize lots of behavior patterns for easing
the representation of user habits while maintaining as much
information as possible.
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