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Rapid advances in the networking technologies have prompted the emergence of the ‘‘software as ser-
vice’’ model for enterprise computing, moreover, which is becoming one of the key industries quickly.
‘‘Database as service’’ model provides users power to store, modify and retrieve data from anywhere in
the world, as long as they have access to the Internet, thus, being increasingly popular in current enter-
prise data management systems. However, this model introduces several challenges, an essential issue
being how to implement SQL queries over encrypted data efficiently. To ensure data security, this model
generally encrypts sensitive data at the trusted client’s site, before storing them into the non-trusted
database service provider’s site, which, unfortunately, results in that SQL queries cannot be executed over
the encrypted data immediately at the database service provider.

In this paper we only focus on how to query encrypted character strings efficiently. Our strategy is that
when storing character strings to the database service provider, we not only store the encrypted charac-
ter strings themselves, but also generate some characteristic index values for these character strings, and
store them in an additional field; and when querying the encrypted character strings, we first execute a
coarse query over the characteristic index fields at the database service provider, in order to filter out
most of tuples not related to the querying conditions, and then, we decrypt the rest tuples and execute
a refined query over them again at the client site. In our strategy, we define an n-phase reachability
matrix for a character string and use it as the characteristic index values, and based on such a definition,
we present some theorems to split a SQL query into its server-side representation and client-side repre-
sentation for partitioning the computation of a query across the client and the server and thus improving
query performance. Finally, experimental results validate the functionality and effectiveness of our
strategy.

Crown Copyright � 2012 Published by Elsevier B.V. All rights reserved.
1. Introduction

Rapid advance in enterprise informatization makes efficient
data processing in enterprise routine activities more and more
important, and thus most enterprises end up installing and main-
taining database management systems to satisfy diversified data
processing requirements. With the rapid increase of enterprise
data, however, enterprise databases are becoming larger and more
complicated, consequently, making the maintenance cost of data-
base systems increasingly expensive. To decrease maintenance
cost, a great number of enterprises begin to consider hiring special-
ized servers supplied by database service providers (that provide
012 Published by Elsevier B.V. All
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database storage and file access as services) and authorizing the
providers to manage their databases. Such application requirement
has fueled the emergence of a new database management model
called ‘‘Database-As-Service’’ (or called DAS for short) [1]. In the
DAS model, enterprises are allowed to store themselves databases
into Database Service Providers (or called DSP for short), and to ac-
cess the databases in the DSP through the Internet. In other words,
the DAS model provides enterprises power to store, modify and re-
trieve information from anywhere in the world, as long as they
have access to the Internet. Therefore, the DAS model allows enter-
prises to leverage hardware and software solutions that are pro-
vided by the DSP for data management, without having to
develop them on their own. Perhaps more importantly, just as
pointed out in [1], the DAS model provides a way for many enter-
prises to share the expertise of database professionals, thereby
rights reserved.
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Fig. 1. Prototype architecture for executing SQL query over encrypted character strings in the Database-As-Service model.
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decreasing the people cost of enterprises managing their database
systems. All the advantages make the DAS model increasingly pop-
ular in current enterprise data management systems.

As described in [1–4], although cutting the cost of managing
databases, from the technological angle, the DAS model poses
many significant challenges foremost of which is the problem of
data security. In the DAS model, the DSP is not trusted, where some
DSP workers (e.g., database administrator) can access data stored
in enterprise databases without any constraint, thus, making sen-
sitive enterprise data possible to be stolen. Hence, the DAS model
needs to provide more sufficient security measures to guard data
privacy. It not only includes the protection from theft of sensitive
enterprise data from external hackers to break into the DSP site
and scan disks, but also includes the protection from the DSP itself.
However, traditional database access strategies, such as user
checking and access control, obviously no longer can satisfy such
requirements of guarding sensitive data security in the DAS model.
In order to guard data security in the DAS model, a straightforward
way is to encrypt sensitive data in the DSP database, such that the
encrypted data even if being stolen unfortunately cannot be under-
stood [2,5,6]. However, if encrypted by using traditional encryption
techniques [7,8], data may lose some important characteristics
which the data themselves own originally, such as well-ordering
and comparability.1 In other words, to execute a SQL query over a
database encrypted by using traditional encryption techniques, we
have to decrypt all the encrypted data (which may be an encrypted
table or database) and then execute the query over the decrypted
data. Because the decryption operation of an entire table or database
is time-consuming, the approach will extremely decrease the query
performance in the DAS environment. Therefore, how to efficiently
implement a SQL query over encrypted data in the DAS model is
an important problem.

In this paper, we only concentrate on how to query encrypted
character strings efficiently in the DAS model, because the query
issue for other numerical data types has been discussed in [1–4]
and solved successfully. Our proposed system, whose basic archi-
tecture and control flow are shown in Fig. 1, is comprised of some
fundamental components. A user through a Web browser poses a
SQL query to the client. A server is hosted by the DSP that stores
the encrypted database. Before being submitted by a user to insert
1 Although there are some data encryption techniques which can make the
encrypted data still keep original ordering and comparability, they are generally o
weak security, i.e., the data encrypted by these techniques are easy to be decrypted by
statistics attack, as pointed out in [9].
f

into the database at the DSP site, a character string has to be en-
crypted by an index generator and augmented with some addi-
tional information (called the characteristic index), which
allows certain amount of query processing to occur at the DSP ser-
ver without jeopardizing data privacy. A client stores the enter-
prise data into the DSP server, maintains metadata used for
translating an original SQL query given by user to the representa-
tion over the encrypted database at the DSP site, and performs
post-processing on temporal query results that are returned from
the server. Based on the auxiliary metadata, we develop techniques
to split an original SQL query defined over character strings into
two parts: (1) a server-side query defined over the corresponding
characteristic index to run on the DSP server, and (2) a client-side
query for post-processing results of the server query. We achieve
this goal by a query translator. A query executor at the client site
is used first to decrypt the temporal results returned by the server-
side query, and then to execute the client-side query (actually,
which is the original query, shown as Fig. 1) over the decrypted
data to return actual results of the user query.

From what mentioned above, we can find that, the primary is-
sue in our work is how to generate good characteristic index values
for sensitive character strings. Generally, a good characteristic in-
dex should satisfy the following three requirements. (1) Good
security. The characteristic index values are stored into the DSP
database as additional information on encrypted character strings,
consequently, making them visible to the DSP workers. So, the
characteristic index values should ensure themselves security,
i.e., it is difficult to infer the original plaintexts from the index val-
ues. (2) Good effectiveness. Using the characteristic index, a query
with any common type over character strings should be able to be
translated to a new server-side query that can be executed imme-
diately over the encrypted database at the DSP site, without need-
ing to decrypt data. (3) Good efficiency. The temporal results
returned by the server-side query should be as close to the real re-
sults as possible, to lighten the computation at the client site, con-
sequently, improving the query performance in the DAS
environment.

For the above three requirements, the first one could conflict
with the last two ones to a certain extent. On the one hand, good
security generally requires the characteristic index to store as little
characteristic information on character strings as possible, making
attackers impossible to obtain plaintexts based on the index val-
ues. On the other hand, good effectiveness and efficiency require
that as much information as possible on character strings can be
reflected out by the index values. So, a good characteristic index
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may be required to make a compromise between security and
effectiveness, i.e., it may be not able to perform perfectly over all
the three requirements. However, a good characteristic index
should better satisfy the first one, due to that, if unable to ensure
security, it is not meaningful to introduce the characteristic index
at all.

In this paper, we use a data structure called n-phase reachabil-
ity matrix to generate the characteristic index values for sensitive
character strings. In such an n-phase reachability matrix, we only
store the key information on a character string, but discard the
non-key information. By using the key information stored, many
relationships (such as similar to each other) between character
strings can be reflected out by their characteristic index values to
a certain content, consequently, making that, many queries over
character strings could be translated to server-side queries over
the index values, i.e., making the index of good effectiveness. Be-
sides, discarding the non-key information makes attackers difficult
to infer plaintexts from the index values, i.e., making the index of
good security. In this paper, we detail how to generate the n-phase
reachability matrix for a given character string, and then, by using
the n-phase reachability matrix as the characteristic index, we de-
tail how to translate a query to its server-side representation for
partitioning the computation of the query across the client and
the server and thus improving query performance. Last, we also de-
tail the experimental results of leveraging our approach to query
encrypted character strings in the DAS model. The experimental
results show that, the performance of executing a SQL query over
the encrypted database in the DAS environment can be improved
effectively by our approach, i.e., it is of good efficiency.

The rest of this paper is organized as follows: Section 2 presents
related work. Section 3 shows how a character string is encrypted
and stored into a database at the DSP site. Section 4 discusses how
each type of SQL conditions over character strings is mapped into a
new condition over the characteristic index values at the encrypted
database. Section 5 presents a two-phase query algorithm that re-
writes an original SQL query by splitting it into a server-side query
and a client-side query, such that the computation at the client is
decreased, and then analyzes the security of our proposed ap-
proach. Section 6 presents the experimental results of executing
our approach over a randomly generated database. We last con-
clude this paper in Section 7.
2. Related work

Hakan et al. in [1] aiming at the issue of how to query encrypted
numerical data in the DAS model, for the first time proposed to cre-
ate the index for encrypted numerical data at the DSP database,
and then translate each query to a new query defined over these
index values. This approach first maps the domain of values of each
sensitive attribute into several partitions and calls a hash function
to assign a unique identifier to each partition, such that each value
in the attribute, based on partition which this value belongs to,
could be mapped to an identifier (called an index value); and then
this approach redefines each query over these index values instead
of original attribute values, such that the redefined query can be
executed in the encrypted database at the DSP site immediately,
without the need to decrypt the stored data. Later, the authors in
[3] proposed to use the homomorphism techniques to enhance
their approach, thus, making it become allowable to conduct an
aggregation query operation over encrypted data. And, the authors
in [4] further discussed the query optimization techniques about
their approach, i.e., how to utilize multiple communications be-
tween the DSP server and the client to decrease the workload of
the client as much as possible. The work given by Hakan et al. is
very significant, which presented a basic framework of how to en-
sure data security in the DAS model. Especially, it presented two
useful techniques to minimize the computation at the client, i.e.,
an algebraic framework to split the original query, and the two
phase query algorithm, which have been widely referenced by
other researchers in their related works [11,12]. In this paper, we
also reference the two techniques (Sections 5.1 and 5.2). However,
Hakan et al. did not analyze the security of their approach, and
unfortunately, their approach is valid only for numerical data,
i.e., it cannot solve the issue of querying character strings, a very
important data type for enterprise computing.

To better implement range queries over encrypted data, Hore
et al. in [10] presented a new approach to partitioning value do-
main, based on the solutions in [2]. By increasing the computation
at the server as much as possible, so as to decrease the computa-
tion at the client, this approach can well improve the performance
of querying encrypted data in the DAS model. Although maximiz-
ing the precision of range queries, this approach is also valid only
for numerical data, and is useless for character strings.

Aiming to the problem of querying encrypted character strings
in a database, Wang et al. in [11] proposed to turn a character
string into characteristic values by using a characteristic function
(or called a pairs coding function), so as to support similarity que-
ries over encrypted character strings. The basic idea of this ap-
proach is as follows: when encrypting and storing a character
string, based on the pairs information inherent in the character
string itself, this approach constructs characteristic functions to
turn the character string into the characteristic values and then
stores them in an additional field; and when querying the en-
crypted character string, this approach firstly executes a coarse
query over the additional field to filter out some irrelevant tuples,
and then decrypts the rest tuples and executes a refined query over
them again to generate actual results. This approach can reduce the
scope of data decryption, and thus improve the querying perfor-
mance. In this approach, however, there still are the following dis-
advantages: (1) the approach due to only considering the pairs
information of a character string, makes it necessary to decrypt
the entire table when querying the character strings only contain-
ing one character, resulting in decreasing the query performance;
(2) the approach cannot well solve the similarity queries in the
form of ‘‘LIKE ‘%s’’’ and ‘‘LIKE ‘s%’’’; (3) the approach cannot solve
the similarity queries over Chinese character strings; (4) the ap-
proach cannot solve the range queries over encrypted character
strings; (5) owing to using only one pairs coding function to map
each pair of a character string into one characteristic value, in
the characteristic value there exists strong tendentiousness to ‘1’
for each bit, making the approach difficult to withstand statistics
attack or inference attack; (6) the approach did not present the
way for computing the length of characteristic values; and (7)
the approach did not present specific characteristic functions.

Furthermore, Wang et al. in [12] subsequently presented a new
map approach based on flattening-disturbing function, which can
make the ‘1’ in each bit of characteristic value of better equality,
thus improving data privacy and security. However, this approach
may lead to time-consuming and space-consuming computation.
This makes database update operations become expensive, result-
ing in a bad feasibility in real applications. By analyzing the tradi-
tional order-preserving encryption approach to numerical data, a
fuzzy matching encryption approach aiming at character strings
was proposed in [13]. In this approach, a character string is first
transformed to numerical values, and an order-preserving encryp-
tion technique in [9] for numerical data, is then used to encrypt the
transformed numerical values. To solve the problem of not sup-
porting range queries for the approach in [11,12], Cui et al. in
[14] proposed to split index values into two parts: partition values
and characteristic values, and use the partition values to support
range queries. Essentially, this approach is to apply the numerical
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data indexing approach given by Hakan et al. into the character
strings, and combine with the approach given by Wang et al.
Hence, this approach has the disadvantages of both Hakan and
Wang, i.e., having worse data security.

In [15], Houmani et al. presented a novel approach to verify the
secrecy property of cryptographic protocols under equational the-
ories. In [16], inspired by the theory of artificial immune systems,
Yang et al. presented a novel model of Agents of Network Danger
Evaluation, which have been verified experimentally to have the
features of real-time processing that provide a good solution for
network surveillance. In [17], to improve security protocol analy-
sis, Chen et al. proposed a formal framework to deal with the
inconsistency in secure messages by weighting majority, conse-
quently, making that people can verify protocols in an intuitive
way and guarantees correct verification results. In [18], Yuan pro-
posed an asymptotic secrecy model to secure communications be-
tween and within knowledge based systems over public channels.
The proposed model is applied to solve some problems in wireless
sensor networks as examples to show how the model can be ap-
plied for knowledge based systems in general. In addition, there
are also other related encryption techniques for outsourced dat-
abases [19–21] or systems [22–24,31].

From what discussed above, we have the following two conclu-
sions. On the one hand, although there are a number of research re-
sults about database encryption, most of which are not designed
for the DAS model, making that, when querying encrypted data,
we need first to decrypt the data and then query over the de-
crypted data, thereby not satisfying the requirement of querying
performance in the DAS model. On the other hand, for existing ap-
proaches to querying encrypted data in the DAS model, there are
many disadvantages, for example, they cannot well support to
query over encrypted character strings. Therefore, how to execute
SQL queries over encrypted character strings efficiently and effec-
tively in the DAS environment is a problem urgent to be solved.
3. Encrypting character string

Before we discuss techniques for encrypting character strings,
let us first show how the encrypted character strings and their
additional characteristic index values are stored into the DSP data-
base. The scheme we below used is similar to that mentioned in
[2,11].

For each relation R(A1, A2, . . . , At, . . . , Am), where At is a sensitive
field with character string type, which needs to be encrypted, we
store at the DSP database an encrypted relation as follows:

RS A1;A2; . . . ;AE
t ; . . . ;Am;A

S
t

� �

where the attribute AE
t stores an encrypted string (we will explain

how AE
t is defined in Section 3.3) that corresponds to the sensitive

attribute At in the original relation R; while the attribute AS
t corre-

sponds to the characteristic index for At that will be used for query
processing at the DSP server. The remaining fields are identical to
those of the original relation. For example, let us consider a relation
std that stores information about students, shown as Table 1, where
the field marked with shadow is sensitive and needs to be en-
Table 1
A relation std that contains a sensitive filed of character string type.

Id Name Sex Age Addr cid

01092125 John Male 24 China 12
01092126 Mary Female 23 California 13
01092127 Tony Male 26 Florida 10
01092128 Lucy Female 22 Massachusetts 11
crypted. The relation std is mapped to a corresponding encrypted
relation stored at the DSP database, given as follows:

stdSðid;name; sex; age; addrE
; cid; addrSÞ

where the attribute addrE stores the encrypted bit string corre-
sponding to the field addr, while the attribute addrS stores corre-
sponding characteristic index values.

In this section, we mainly discuss how to create the character-
istic index values for a character string, to make that (1) the char-
acteristic index can support various queries over character strings
efficiently, and (2) the index itself is safe, namely, it is difficult for
attackers to obtain original character strings from the index values.
Specifically, we first introduce a concept called n-phase reachabil-
ity matrix; second, we explain how a character string is mapped
into an n-phase reachability matrix; and last, we present the de-
tailed scheme about how to use the n-phase reachability matrix
as the characteristic index to store sensitive character strings into
the DSP database. Moreover, to simplify presentations, we assume
that there exists only one sensitive field R.At of character string
type in the relation R.

3.1. Reachability matrix

The goal of creating characteristic index values for every sensi-
tive character string is to make each SQL query defined over the
character strings transformed into a new SQL query defined over
the characteristic index values, such that the new query can be
executed immediately at the DSP server, without having to decrypt
encrypted character strings. For this purpose, the characteristic in-
dex values should reflect some useful information of their corre-
sponding character strings. However, these characteristic index
values themselves should be as safe as possible, for preventing
attackers from obtaining original character strings based on the in-
dex values. To meet the two purposes, we introduce an n-phase
reachability matrix, used as the characteristic index of character
strings. In this section, we first present the definition of an n-phase
reachability matrix. In subsequent sections, we will step by step
show the advantages of leveraging the n-phase reachability ma-
trixes as the characteristic index, i.e., based on the n-phase reach-
ability matrix, how various queries about character strings are
implemented at the DSP server (Section 4), and how data security
is guaranteed (Section 5.3).

Definition 1. Let U:{e1, e2, . . . , em} be a set consisting of m
elements (1 6m), and Q:q1q2 � � � qt be a sequence (1 6 t) defined
over U (i.e.,"i(1 6 i 6 t, qi 2 U)). Then, the n-phase connected
element pairs (1 6 n) over the sequence Q are defined as follows:

PnðQÞ½U� ¼
fðqi; qnþiÞji ¼ 1;2; . . . ; t � ng; if t P ðnþ 1Þ
;; otherwise

�

and, let f1:U ? {1, 2, . . . , m}, f2:U ? {1, 2, . . . , m} and f3:U ?
{1, 2, . . . , m} be three bijections. Then, the n-phase reachability
matrix over the sequence Q is defined as follows:

MnðQÞ½U� ¼ ðaijÞðmþ1Þ�ðmÞ

where (1) for 1 6 i, j 6m, aij = 1 if ðf�1
1 ðiÞ; f�1

2 ðjÞÞ 2 ðP
1ðQÞ½U�

[P2ðQÞ½U� [ . . . [ PnðQÞ½U�Þ; (2) for (1 + m) = i and 1 6 j 6m, aij = 1
if f�1

3 ðjÞ ¼ q1 or f�1
3 ðjÞ ¼ qt; and (3) aij = 0, otherwise.

From Definition 1, we can obtain the following properties: (1)
each n-phase reachability matrix is a Boolean matrix; (2) for a
sequence, the size of its n-phase reachability matrix is determined
by the set over which the sequence defined, instead of being
determined by the sequence itself (i.e., for any two sequences over
the same set, their reachability matrixes are of the same size); (3)
each n-phase reachability matrix uses its first m rows to store the
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information about the connected element pairs contained in its
corresponding sequence; and (4) each n-phase reachability matrix
uses its last row to point out the front element and the tail element
of its corresponding sequence. We below illustrate the construc-
tion of the n-phase reachability matrix over a sequence.
Example 1. Assume that there are U:{5, 7, 18, 9}, a set consisting of
four elements, and Q: 5 5 9 18, a sequence over U. And, for simpli-
fying presentations, we let f1 = f2 = f3; f1(5) = 1; f1(7) = 2; f1(18) = 3;
and f1(9) = 4. Then, based on Definition 1, we can construct the 1-
phase reachability matrix, the 2-phase reachability matrix and the
3-phase reachability matrix, over the sequence Q, respectively
given as follows:

M1ðQÞ½U� ¼

1 0 0 1
0 0 0 0
0 0 0 0
0 0 1 0
1 0 1 0

0
BBBBBB@

1
CCCCCCA

M2ðQÞ½U� ¼

1 0 1 1
0 0 0 0
0 0 0 0
0 0 1 0
1 0 1 0

0
BBBBBB@

1
CCCCCCA

M3ðQÞ½U� ¼

1 0 1 1
0 0 0 0
0 0 0 0
0 0 1 0
1 0 1 0

0
BBBBBB@

1
CCCCCCA

In Definition 1, we use the three bijections (i.e., f1, f2, and f3) to
generate the matrix, which not only aims to make the definition
more general, but also aims to enhance data security. If without
the bijections, the information about the connected element pairs
in a sequence would be reflected out immediately by the n-phase
reachability matrix over the sequence, consequently, increasing
the probability of sensitive data leakage. For example, assume
without using the bijections, i.e., aij = 1, if (ei, ej) 2 (P1(Q)[U] [ P2(-
Q)[U] [ � � � [ Pn(Q)[U]). If aij = 1 in the 1-phase reachability matrix
over a sequence, then we can conclude that the 1-phase connected
element pair (ei, ej) should be contained in the sequence, and we
can further infer all the 1-phase element pairs contained in the se-
quence. However, such a problem can be solved by the bijections to
a certain extent. Specifically, the bijections are first generated
through using a collision-free hash function or a random way,
and second, the metadata about these bijections is stored into
the trusted client site (see Fig. 1), namely, which is difficult to be
obtained by other persons. Such a way makes attackers difficult
to infer the element pairs contained in an n-phase reachability
matrix.

Besides, the attackers even if having known all the element
pairs contained in a sequence, are difficult to infer the original se-
quence based on these element pairs, because the order of the ele-
ment pairs is not reflected out by the reachability matrix. For
example, if having known the bijections used in Example 1, the
attackers based on the 1-phase reachability matrix can infer that
the following 1-phase element pairs: (5, 5), (5, 9) and (9, 18) should
be contained in the sequence, but they do not know how many
times each element pair appears in the sequence, and how the ele-
ment pairs are arranged, so they cannot infer the original sequence.
Therefore, the n-phase reachability matrix has better security. A
more detailed security analysis about an n-phase reachability ma-
trix is presented in Section 5.3.

3.2. Mapping character string to reacability matrix

We observe that any character string can be viewed as a se-
quence defined over a set consisting of corresponding characters,
so based on Definition 1, we can construct the n-phase reachability
matrix for a character string, and then use the matrix as the char-
acteristic index values of the character string. However, the set of
characters over which a string is defined, generally is relatively
large, consequently, making the corresponding reachability matrix
space-consuming. For example, if a character string is defined over
the ASCII set that is of size 28, then any n-phase reachability matrix
constructed based on the character string would be of size
(28 + 1) � 28; and furthermore, if defined over the Unicode set of
size 216, then it would lead to the larger reachability matrix that
is of size (216 + 1) � 216. Hence, it is not suitable to use the reach-
ability matrix that is generated immediately from a string over a
larger set of characters, as the characteristic index.

To solve this, for any given string QC = q1, q2, . . . , qt, defined over a
set UC of characters, we consider mapping the set UC into a new set
UD with smaller size, noted as: UD = mapset(UC); and then mapping
the string QC into a new sequence QD defined over UD, noted as:
QD = mapseq(QC). In this mapping process for generating a new se-
quence, we use a method which is similar to what mentioned in
[2] for indexing numerical data. Specifically, we first map the set
UC into many smaller partitions: {u1,u2, . . . , uk}, such that, (1) these
partitions taken together cover the whole set UC, i.e., UC =
(u1 [ u2 [ � � � [ uk); and (2) any two partitions do not overlap, i.e.,
(ui \ uj) = ;, for 1 6 i, j 6 k and i – j. Second, we assign each partition
ui(i=1, 2, . . . , k) with an integer identifier di which is different from
that of any other partition, i.e., di – dj, for 1 6 i, j 6 k and i – j, there-
by, forming a new set: UD = mapset(UC) = {d1, d2, . . . , dk}. Third, we
map each character qi in the string QC, based on the partition that
the character belongs to, into an integer g(qi)(g(qi) 2 UD, i.e., the par-
tition identifier), thereby, generating a new sequence: QD = mapseq

(QC) = g(q1)g(q2) � � � g(qt), defined over the set UD. Based on the se-
quence QD, we construct the n-phase reachability matrix as follows:

MnðQ DÞ½UD� ¼ MnðmapseqðQ CÞÞ½mapsetðUCÞ�

Last, we use the above matrix as the character index values of the
character string QC, instead of the original reachability matrix con-
structed from the character string itself immediately.

In the above process, if we let the size of each partition greater
than 1, i.e., juij > 1, for i = 1, 2, . . . , k, then jUCj > jUDj, and
jMn(QC)[UC]j > jMn(QD)[UD]j. Furthermore, the greater size each par-
tition has, the smaller size the corresponding reachability matrix
has. Therefore, through setting a greater size for each partition,
we can generate the n-phase reachability matrix of smaller size
for any character string, resulting in consuming less space. We be-
low use a simple example to explain the detailed mapping process
from a character string to such a new n-phase reachability matrix.

Example 2. For the ASCII set UC, consisting of 28 elements, and QC:
China, a character string over the set UC, we below show how to
create the n-phase reachability matrix for the character string QC.
First, we divide the set UC into five smaller partitions as follows:

u1 ¼ ½a; f �; u2 ¼ ½g; j�; u3 ¼ ½k;p�; u4 ¼ ½q; z�; and
u5 ¼ U1 � ðu1 [ u2 [ u3 [ u4Þ

In this process, we use a random way to partition the set of
characters; and of course, other partitioning techniques such as
Equi-Width and Equi-Depth [21] can also be used. In our evalua-
tion experiments discussed in Section 7, we use the Equi-Depth
to partition the set of characters, making that, randomly given a
character string, the sum of probability values for each character
in a partition appearing in the character string, is approximately
equal to that of any other partition.

Second, we assign each partition ui(i = 1, 2, . . . , 5) with an inte-
ger identifier i, i.e., (u1 ? 1); (u2 ? 2); (u3 ? 3); (u4 ? 4) and
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(u5 ? 5), resulting in forming a new set UD = mapset(UC) = {1, . . . , 5}.
In this process, any two partitions should be assigned with differ-
ent identifiers. Here, we use a simple way to assign partition iden-
tifiers. However, in real application, we can use a collision-free
hash function mentioned in [2], and store the corresponding meta-
data into the trusted client site, so as to enhance data security.
Third, we map each character in the string QC: China, to an integer
(equal to the identifier of the partition at which the character is lo-
cated), thereby, generating a new sequence : QD = mapseq(QC) = 5 2
2 3 1. Fourth, let f1 = f2 = f3; f1(1) = 1; f1(2) = 2; f1(3) = 3; f1 (4) = 4;
and f1(5) = 5. Based on Definition 1, we construct the 1-phase
reachability matrix, the 2-phase matrix, the 3-phase matrix and
the 4-phase matrix, for the new sequence QD over the new set
UD, given as follows:
M1ðQ DÞ½UD� ¼ M1ðmapseqðQ CÞÞ½mapsetðUCÞ�

¼

0 0 0 0 0
0 1 1 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
1 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

M2ðQ DÞ½UD� ¼ M2ðmapseqðQ CÞÞ½mapsetðUCÞ�

¼

0 0 0 0 0
1 1 1 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
1 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

M3ðQ DÞ½UD� ¼ M3ðmapseqðQ CÞÞ½mapsetðUCÞ�

¼

0 0 0 0 0
1 1 1 0 0
1 0 0 0 0
0 0 0 0 0
0 1 1 0 0
1 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

M4ðQ DÞ½UD� ¼ M4ðmapseqðQ CÞÞ½mapsetðUCÞ�

¼

0 0 0 0 0
1 1 1 0 0
1 0 0 0 0
0 0 0 0 0
1 1 1 0 0
1 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

Last, the above four reachability matrixes are used as the new ma-
trixes of the character string QC over the set UC. We choose any of
them as the characteristic index of the string QC, instead of the n-
phase reachability matrixes constructed from the character string
immediately. In real application, it is important to choose an appro-
priate n-phase reachability matrix as the index for a character
string. Generally, the greater ‘‘n’’ would lead to the better data secu-
Table 2
An encrypted relation stdS that contains encrypted strings and index values.

Id Name Sex Age Ad

01092125 John Male 24 11
01092126 Mary female 23 00
01092127 Tony Male 26 10
01092128 Lucy female 22 11
rity (see Section 5.3 for detail), but the greater false rate (reference
Definition 4). In our system, ‘‘n’’ is a parameter that can be set by
users according to their real application.

For a sensitive character string in the relation R, after using the
above approach to generate the n-phase reachability matrix (i.e.,
the characteristic index) of the string, we need to store the matrix
into the corresponding additional attribute RS. AS

t at the DSP data-
base. To simplify such storage, we map the reachability matrix into
a string of bits, through using a way of prior mapping matrix rows
or a way of prior mapping matrix columns. Here, prior mapping
matrix rows denotes that we first map the first row of the matrix
into a string of bits, then map the second row, the third row and
so forth, and last we combine these bit strings. For example, if prior
mapping matrix rows, we can obtain a bit string from the 1-phase
reachability matrix in Example 2 as follows: ‘‘00000 01100 10000
00000 01000 10001’’; and similarly, if prior mapping matrix col-
umns, we obtain another bit string as follows: ‘‘001001 010010
010000 000000 000001’’. Therefore, in order to store the reachabil-
ity matrix in Example 2, we need to spend 30 bits (i.e., 4 bytes)
space. More generally, given a set U of characters, and any charac-
ter string Q defined over U, in order to store the n-phase reachabil-
ity matrix constructed based on this string Q, the space that needs
to be consumed is (jmapset(U)j + 1) � (jmapset(U)j) bits or
(jmapset(U)j + 1) � (jmapset(U)j)/8 bytes. This shows that (1) for all
the character strings over the same set U, their index values would
have the same size; and (2) if the set U is divided into many parti-
tions, resulting in the set mapset(U) of greater size, then the index
values will consume a larger storage. In real application, we allow
users to set the number of divided partitions, although we recom-
mend 128 as the default value. We below use strbit(M) to denote
the bit string generated from the n-phase reachability matrix M
through using the way of prior mapping matrix rows.

3.3. Storing encrypted character strings

We now have enough notations to describe how to store the en-
crypted relation into the DSP database. Given any tuple t = (a1, a2,
. . . , at, . . . , am) over the relation: R(A1, A2, . . . , At, . . . , Am), where at

is a sensitive character string defined over a character set U, the
corresponding encrypted relation: RS A1;A2; . . . ;AE

t ; . . . ;Am;A
S
t

� �
, in

the DSP database stores an encrypted tuple tS as follows:

tS ¼ ða1;a2; . . . ;encryptðatÞ; . . . ;am;strbitðMnðmapseqðatÞÞ½mapsetðUÞ�ÞÞ

where encrypt is a function used to encrypt a character string. We
treat the encryption function as a black box. Some traditional data
encryption techniques such as AES [26], RSA [27], Blowfish [28],
and DES [29] can be used to encrypt sensitive character strings. In
Table 2, we show the encrypted relation stdS that corresponds to
the relation std in Table 1, and is stored at the DSP database.

In Table 2, the column stdS.addrE stores the encrypted bit strings
corresponding to the sensitive attribute std.addr, which is gener-
ated by the encryption function. For instance, the character string
‘‘China’’ is encrypted to ‘‘11011000. . .’’ (as shown at the first row
and the fifth column in Table 2) that is equal to encrypt(‘‘China’’).
Moreover, the column stdS.addrS corresponds to the index strings
over std.addr, and we here use the approach identical to that in
drE cid AddrS

011000. . . 12 00000 01100 10000 00000 01000 11101
101010. . . 13 01000 11100 00010 01000 10000 11101
110110. . . 10 10000 11000 00000 01000 01000 11101
001000. . . 11 11010 00010 00000 10010 10000 11101
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Example 2 to construct the 1-phase reachability matrix as the char-
acteristic index. For instance, the index values ‘‘00000 01100
10000 00000 01000 11101’’ (as shown at the first row and the sev-
enth column in Table 2) corresponding to ‘‘China’’ is equal to the 1-
phase reachability matrix given in Example 2.

In our system, the task about encrypting sensitive character
strings and generating their characteristic index values are all com-
pleted at the trusted client site by the index generator component;
and then the encrypted character strings and their index values are
transmitted through the Internet and stored into the DSP database
(see Fig. 1).
4. Mapping query conditions

We in this section study how to translate specific query condi-
tions over sensitive attributes of character string type into the con-
ditions over the corresponding characteristic index attributes in
the DSP database. Once we know how query conditions are trans-
lated, we will in Section 5 discuss how to implement efficiently
queries over encrypted character strings, i.e., how to split an origi-
nal SQL query posted by user and over unencrypted character
strings into (1) a server-side query that can be executed in the
DSP server immediately, without having to decrypt tuples, and
(2) a client-side query for post-processing results returned by the
server query.

For each relation, the DSP server stores the encrypted tuples,
along with the characteristic index values for sensitive attributes
of character string type. Meanwhile, the client stores the metadata
about the specific characteristic indices, such as the information
about the partitioning of character set, the mapping functions
and so on (see Sections 3.1 and 3.2). Then, the client uses this infor-
mation to translate a SQL query posted by user into its server-side
representation (i.e., the server-side query, executed by the DSP ser-
ver). We mainly consider two types of query conditions defined
over unencrypted character strings, i.e., similarity conditions
(e.g., R.At LIKE ‘‘%abc%’’) and range conditions (e.g., R.At > ‘‘abc’’).
Besides, we assume that all the character strings are defined over
the same character set U, so for simplicity, we below use the nota-
tion Mn(Q), instead of Mn(Q)[U], to denote the n-phase reachability
matrix constructed based on the character string Q.

In this section, we first in Section 4.1 present related definitions
and theorems; and through using them as a theoretical basis, we
then in Section 4.2 introduce how a query condition related to
character strings is translated into its server-side representation.

4.1. Definitions and theorems

In the encrypted relation, each characteristic index value (i.e., n-
phase reachability matrix) is generated based on a character string,
such that the index value could reflect some useful information
about the original character string itself. Therefore, for any two
character strings between which there is a relationship (e.g., simi-
lar to each other), such a relationship may be also reflected by their
corresponding n-phase reachability matrixes. In other words, the
judgment of whether there is a relationship between two character
strings (e.g., a character string whether similar with another), may
be achieved through checking the reachability matrixes of the two
character strings. We below introduce some related definitions and
theorems to confirm the above supposition.

Definition 2. Let U be a set consisting of m elements (1 6m),
Q:q1q2 � � � qt be a sequence (1 6 t) over U, and f1:U ? {1, 2, . . . , m},
f2:U ? {1, 2, . . . , m}, and f3:U ? {1, 2, . . . , m} be three bijections.
Then, three new n-phase reachability matrixes over the sequence
Q are defined as follows:
Mn
�ðQÞ½U� ¼ ðaijÞðmþ1Þ�ðmÞ Mn

�ðQÞ½U� ¼ ðbijÞðmþ1Þ�ðmÞ

Mn
þðQÞ½U� ¼ ðcijÞðmþ1Þ�ðmÞ

where (1) when 1 6 i, j 6m, aij = bij = cij = 1, if f�1
1 ðiÞ; f�1

2 ðjÞ
� �

2
ðP1ðQÞ½U� [ P2ðQÞ½U� [ . . . [ PnðQÞ½U�Þ; (2) when (1 + m) = i and
1 6 j 6m, aij = 1, if f�1

3 ðjÞ ¼ q1, and bij = 1, if f�1
3 ðjÞ ¼ qt; and (3)

aij = 0, bij = 0, cij = 0, otherwise.
From Definition 2, we see that the three new defined n-phase

reachability matrixes are similar to that in Definition 1, except
having different last rows, where: (1) the first matrix uses its last
row to point out the front element in the sequence Q, which is
called an n-phase reachability matrix with front information;
(2) the second one uses its last row to point out the tail element,
which is called an n-phase reachability matrix with tail infor-
mation; and (3) in the third one, each element of its last row is
equal to ‘0’, so it is called an n-phase reachability matrix without
front and tail information. We uniformly call these three
matrixes as incomplete n-phase reachability matrixes over the
sequence Q. In Example 3, we show the construction of the three
incomplete n-phase reachability matrixes over a sequence.
Example 3. Assume that there are U:{5, 7, 18, 9}, a set consisting of
four elements, and Q: 5 5 9 18, a sequence over U. Let f1 = f2 = f3;
f1(5) = 1; f1(7) = 2; f1(18) = 3; and f1(9) = 4. Then, based on Defini-
tion 2, we construct the three incomplete 1-phase reachability
matrixes over the sequence Q, respectively given as follows:

M1
�ðQÞ½U� ¼

1 0 0 1
0 0 0 0
0 0 1 1
0 0 1 0
1 0 0 0

0
BBBBBB@

1
CCCCCCA

M1
�ðQÞ½U� ¼

1 0 1 1
0 0 0 0
0 0 1 1
0 0 1 0
0 0 1 0

0
BBBBBB@

1
CCCCCCA

M1
þðQÞ½U� ¼

1 0 1 1
0 0 0 0
0 0 1 1
0 0 1 0
0 0 1 0

0
BBBBBB@

1
CCCCCCA
Theorem 1. Given two character strings QA:A1A2 � � � Aa(1 6 a) and
QB:B1B2 � � � Bb (1 6 b) over the same set, assuming that $i(1 6 i 6 b,
A1 = Bi,A2 = Bi+1, . . . , Aa = Bi+a�1), we conclude that

(1) If 1 = i, i.e., QA appears in the front of QB, then: (where ^ repre-
sents a ‘‘bit and’’ operation)
strbit Mn
�ðmapseqðQAÞÞ

� �
¼ strbit Mn

�ðmapseqðQ AÞÞ
� �

^ strbitðMnðmapseqðQ BÞÞÞ ð1Þ
(2) If b � a + 1 = i, i.e., QA appears in the tail of QB, then:
strbit Mn
�ðmapseqðQAÞÞ

� �
¼ strbit Mn

�ðmapseqðQ AÞÞ
� �

^ strbitðMnðmapseqðQ BÞÞÞ ð2Þ
(3) If b � a + 1 > i > 1, i.e., QA appears in the middle of QB, then:
strbit Mn
þðmapseqðQAÞÞ

� �
¼ strbit Mn

þðmapseqðQ AÞÞ
� �

^ strbitðMnðmapseqðQ BÞÞÞ ð3Þ
Proof. We here only prove Eq. (1), and the other two can be pro-
ven similarly. Because QA is a substring of QB, and they are defined
over the same set U, based on what introduced in Section 3.2, we
conclude that, mapseq(QA) is also a subsequence of mapseq(QB),
and both are defined over the same set mapset (U). Then, based
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on the description about n-phase connected element pairs in
Definition 1, we conclude that, Pn(mapseq (QA))[mapset(U)] #

Pn(mapseq(QB))[mapset(U)]; and based on the description about
n-phase reachability matrix in Definition 1, we can further con-
clude that for any element in the matrix Mn

�ðmapseqðQ AÞÞ
½mapsetðUÞ�, if it is equal to ‘1’, then its corresponding element
(namely, located at the same row and the same column) in the
reachability matrix Mn(mapseq (QB))[mapset(U)] is also equal to ‘1’.
Therefore, the Eq. (1) is correct. h

Actually, Theorem 1 presents an insufficient but necessary con-
dition for that a character string is contained in another. Therefore,
the judgment of whether a character string is contained in another
can be achieved by checking the n-phase reachability matrixes,
namely (1) a character string is not contained in another, if their
reachability matrixes cannot meet Eqs. (1), (2) or (3); and (2) it is
likely that a character string is contained in another, otherwise.

In SQL [30], a character string match pattern (such as ‘‘ABC[D-
F]’’) represents a series of character strings with similar feature,
which is important to execute similarity queries over the character
strings. Below, we present a definition on the matrix (called match
matrix) over a character string match pattern in the form of
‘‘ABC[D-F]’’ or ‘‘[A-B]CDE’’. Then, we present a theorem to show
that, it can be reflected out to some extent by the match matrix
and the reachability matrix that a character string whether being
an instance of a match pattern.

Definition 3. Let be U a set consisting of m elements (1 6m),
Q:q1q2 � � � qt be a sequence over U (1 6 t), S # U, QS be a sequence
match pattern over U, each of whose instances consists of Q
connecting an element in S, and SQ be another sequence match
pattern, each of whose instances consists of an element in S
connecting Q. And, let f1:U ? {1, 2, . . . , m}, f2:U ? {1, 2, . . . , m};
and f3:U ? {1, 2, . . . , m} be three bijections. Then, the two match
matrixes over the match pattern QS and SQ respectively, are
defined as follows:

MðQSÞ½U� ¼ ðaijÞðmþ1Þ�ðmÞ MðSQÞ½U� ¼ ðbijÞðmþ1Þ�ðmÞ

where (1) for 1 6 i, j 6m, aij = 1 if and only if f�1
1 ðiÞ; f�1

2 ðjÞ
� �

2
fðqt; qÞjq 2 Sg; and bij ¼ 1 if and only if f�1

1 ðiÞ; f�1
2 ðjÞ

� �
2 fðq; q1Þ

jq 2 Sg; (2) for (1 + m) = i and 1 6 j 6m, aij = 1 if and only if
f�1
3 ðjÞ ¼ q1, and bij = 1 if and only if f�1

3 ðjÞ ¼ qt; and (3) aij = 0,
bij = 0, otherwise.

From Definition 3, we can conclude that, (1) for any sequence
match pattern, the size of its match matrix is determined by the
set, which the match pattern is defined over, so the size of the
match matrix is identical to that of the reachability matrix of a
sequence over the same set; and (2) for all the sequences that can
be generated from the match pattern QS, all their last element pairs
(i.e., the element pairs appearing in the tail of a sequence) are
stored into the match matrix M(QS)[U]. The above two observa-
tions are important for Theorem 2 given below.

In order to generate the match matrix for a character string
match pattern, we use the same method mentioned in Section 3.2.
For a given character set U and a character string match pattern QS
(or SQ) over U (where Q is a character string over U and S # U), we
first map U into a new integer set mapset(U) through set partition-
ing; then, we map each character in S, based on the partition that
the character belongs to, into an integer (namely, the partition
identifier), consequently, generating a new set S0 (obviously,
S0 # mapset (U)); and last, we map the character string Q into a
new integer sequence mapseq(Q). Finally, we obtain a new sequence
match pattern, which is comprised of mapseq(Q) and S0, and is
defined over the new set mapset(U). We use mapprn (QS) to denote
the new generated sequence match pattern.
Example 4. For the ASCII set U1, and, QS (where Q = China and
S = [a, q)) and SQ, two match patterns defined over U1, if using
the same partitioning method in Example 2, then we can obtain
two new sequence match patterns: Q0S0, where Q0 = 5 2 2 3 1 and
S0 = [1, 2], and S0Q0, defined over the new integer set U2 = mapset(U1).
Then, from the new generated two match patterns, we construct
their match matrixes, respectively given as follows:

MðQ 0S0Þ½U2� ¼ MðmapprnðQSÞÞ½mapsetðU1Þ�

¼

1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0
BBBBBBB@

1
CCCCCCCA

MðS0Q 0Þ½U2� ¼ MðmapprnðSQÞÞ½mapsetðU1Þ�

¼

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0
BBBBBBB@

1
CCCCCCCA
Theorem 2. Given two character strings Q1 and Q2 defined over the
same character set U, and a character set S (S # U), we conclude that

(1) If Q2 is an instance of the character string match pattern Q1S,
then
strbitðMðmapseqðQ 1SÞÞ ^ strbitðMnðmapseqðQ2ÞÞÞ – 0 AND

strbit Mn
�ðmapseqðQ1ÞÞ

� �
¼ strbit Mn

�ðmapseqðQ 1ÞÞ
� �

^ strbitðMnðmapseqðQ2ÞÞÞ ð4Þ
(2) If Q2 is an instance of the character string match pattern SQ1,
then
strbitðMðmapseqðSQ 1ÞÞÞ ^ strbitðMnðmapseqðQ 2ÞÞÞ– 0 AND

strbit Mn
�ðmapseqðQ1ÞÞ

� �
¼ strbit Mn

�ðmapseqðQ 1ÞÞ
� �

^ strbitðMnðmapseqðQ2ÞÞÞ ð5Þ
Proof. We here only prove Eq. (4), and the other one can be proven
similarly. In Eq. (4) there are two equations: (1) For the second
equation, because Q2 is an instance of the match pattern Q1S, we
conclude that Q1 is a substring of Q2, and Q1 appears in the front
of Q2; and then based on Theorem 1, we further conclude that
the equation is correct. (2) For the first equation, we assume that
it is not correct. From such an assumption, we conclude that there
is not any character string in the set: {AB j A is the last character in
Q1, and B belongs to S.}, appearing in Q2, which conflicts with the
known condition that Q2 is an instance of the match pattern Q1S.
Therefore, the assumption is not tenable, i.e., the first equation is
correct. h

Actually, Theorem 2 presents an insufficient but necessary con-
dition for that a character string is an instance of a match pattern,
so the judgment of a character string whether or not being an in-
stance of a character string match pattern can be achieved through
checking some related n-phase reachability matrixes and related
match matrixes, namely (1) a character string cannot be generated
from a character string match pattern, if their related matrixes can-
not meet Eq. (4) or (5); and (2) it is likely that the character string
is an instance of the match pattern, otherwise.
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4.2. Mapping query conditions

Based on the definitions and theorems given in Section 4.1, we
below discuss how query conditions over character string attri-
butes are mapped to their server-side representations, which are
defined over the corresponding characteristic index attributes in
the server-side encrypted relation, and thus can be performed by
the DSP database immediately. Below, we call the process of map-
ping a query condition to its server-side representation as condi-
tion mapping for short, and use transc to denote such a condition
mapping.

Mapping 1. R1 � At = R2 � Ad: Such a query condition, which is
related to two attributes in two relations, arises in
a join operation, where R1.At and R2.Ad are both sen-
sitive attributes of character string type. The condi-
tion mapping is defined as follows:
transcðR1: At ¼ R2: AdÞ ) RS
1: AS

t ¼ RS
2: AS

d

In our system, all the characteristic index values
(which may belong to different index attributes or
different encrypted relations) are generated by using
the same mapping approach (see Section 3), conse-
quently, making that, any two character strings,
which are identical to each other, would be mapped
to the same n-phase reachability matrix, namely,
they would have the same characteristic index value.
Mapping 2. R . At = Q: Such a query condition, which is related
to only one attribute, arises in a selection operation,
where Q is a character string constant, and R . At is a
sensitive attribute of character string type. Its con-
dition mapping is defined as follows:
transcðR : At ¼ QÞ ) strbitðMnðmapseqðQÞÞÞ ¼ RS: AS
t

The above mapping is relatively simple. We only
need to generate the characteristic index value for
the character string constant contained in the query
condition, using the approach identical to that used
to generate the index values for the sensitive attri-
bute of character string type.
Mapping 3. R . AtLIKE%Q%: Such a query condition appears in the
LIKE clause, where ‘‘%’’ is a wildcard [30] which rep-
resents to match a character string of any size. For
example, ‘‘%ABC’’ can match any character strings
ended with ‘‘ABC’’. From Theorem 1, we have
known that, the judgment of any character string
whether being contained in another can be
achieved by checking the n-phase reachability
matrixes of the two character strings. Therefore,
for three LIKE query conditions in the form of ‘‘R .
AtLIKE%Q %’’, ‘‘R.AtLIKE Q%’’ and ‘‘R . AtLIKE%Q’’, we
can define their condition mappings, respectively
given as follows:
 � �

transcðR : AtLIKE%Q%Þ ) strbit Mn

þðmapseqðQÞÞ

¼ strbit Mn
þðmapseqðQÞÞ

� �
^ RS: AS

t

transcðR : AtLIKEQ%Þ ) strbit Mn
�ðmapseqðQÞÞ

� �
¼ strbit Mn

�ðmapseqðQÞÞ
� �

^ RS: AS
t

transcðR : AtLIKE%QÞ ) strbit Mn
�ðmapseqðQÞÞ

� �
¼ strbit Mn

�ðmapseqðQÞÞ
� �

^ RS: AS
t

Besides, for similar LIKE conditions described by
using another wildcard ‘‘_’’, which represents to
match only one character (e.g., ‘‘_ABC’’ can match
‘‘AABC’’), we can define their condition mappings
identical to the three ones mentioned above.
Mapping 4. R . AtLIKE Q[A1 � A2]: Such a condition appears in the
LIKE clause, where A1 and A2 are both characters and
A1 6 A2, and ‘‘[]’’ is a wildcard which is used to
match only one character located in a given domain.
For example, ‘‘ABC[D-E]’’ can match the following
two character strings: ‘‘ABCD’’ and ‘‘ABCE’’. This
query condition is mainly used to check whether a
character string can be generated by a given match
pattern. Therefore, for two given LIKE query
conditions in the form of ‘‘R.AtLIKEQ[A1 � A2]’’ and
‘‘R.AtLIKE[A1 � A2]Q’’, based on Theorem 2, we can
define their condition mappings, respectively given
as follows:
transcðR : AtLIKEQ ½A1�A2�Þ) 0

– strbitðMðmapseqðQ ½A1�A2�ÞÞÞ ^RS: AS
t AND

strbit Mn
�ðmapseqðQÞÞ

� �
¼ strbit Mn

�ðmapseqðQÞÞ
� �

^RS: AS
t

transcðR : AtLIKE½A1�A2�QÞ) 0

– strbitðMðmapseqð½A1�A2�QÞÞÞ ^RS: AS
t AND

strbit Mn
�ðmapseqðQÞÞ

� �
¼ strbit Mn

�ðmapseqðQÞÞ
� �

^RS: AS
t

Moreover, for similar two LIKE query conditions de-
scribed through another wildcard ‘‘[^]’’ which is used
to match one character that is not located in a given
domain (e.g., ‘‘ABC[^B-Z]’’ only can match ‘‘ABCA’’),
we define their condition mappings, similar to the
two ones mentioned above.
Mapping 5. R . AtLIKE Q1#Q2#...#Qk: It presents a more general
LIKE condition, where ‘‘#’’ represents a wildcard
(i.e., it can be equal to ‘‘%’’, ‘‘_’’ ‘‘[]’’ or ‘‘[^]’’). For
such a general character string match pattern
‘‘Q1#Q2#...#Qk’’, if any character string is an
instance of the match pattern, then it would contain
all the substrings Q1, Q2, . . ., and Qk. Based on such
an observation, we define the mapping for the gen-
eral LIKE condition as follows:
transcðR : At LIKE Q1#Q 2# . . . #QtÞ
) transcðR : AtLIKEQ1%Þ AND
transcðR : At LIKE%Q 2%Þ AND . . . AND
transcðR : AtLIKE%QkÞ
Moreover, we can present similar condition mappings
for the LIKE query conditions in the forms of ‘‘R.AtLI-
KE#Q1#Q2# � � � #Qk’’, ‘‘R . AtLIKE Q1#Q2# � � � #Qk#’’
and ‘‘R . AtLIKE#Q1#Q2# � � � #Qk#’’.
Mapping 6. R . At > Q: Such a query condition presents a range
query operation over character strings. Without
loss of generality, we assume that Q = A1 A2. . . Ar

(1 6 r) and A is a character of the greatest value in
the character set. Then, any character string
Q 0 ¼ A01A02 � � �A

0
hð1 6 hÞ is greater than Q, if and only

if it satisfying that: ðA1 < A01Þ; or ðA1 ¼ A01 and
A2 < A02Þ; or . . .; or ðA1 ¼ A01, A2 ¼ A02; . . . ;Ak�1 ¼
A0k�1 and Ak < A0kÞ, where k is equal to r (if r 6 h)
or h (if r > h). Based on such an observation, the
range condition mapping is defined as follows:
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transcðR : At > QÞ ) transcðR : AtLIKE½B1 � A�Þ OR
transcðR : AtLIKE A1½B2 � A�Þ OR . . . OR
transcðR : AtLIKE A1A2 . . . Ar�1½Br � A�Þ
where B1 = A1 + 1, B2 = A2 + 1, . . ., and Br = Ar+1. Moreover, we can
define the similar condition mapping for another range condition
‘‘R � At < Q’’. In addition, the range conditions ‘‘R � At P Q’’ and
‘‘R � At 6 Q’’ are equivalent with ‘‘R � At < Q’’ and ‘‘R � At > Q’’, respec-
tively, and thus, their condition mappings are also identical to the
two ones.

Above, we present the condition mappings for three main types
of query conditions about character strings, i.e., equivalent condi-
tions (Mappings 1–2); similarity conditions (Mappings 3–5); and
range conditions (Mapping 6). All the server-side condition repre-
sentations in Mappings 1–6 are described using the computation
between two related matrixes, and can be executed in the DSP da-
tabase immediately. Below, we analyze the performance of execut-
ing these server-side condition representations.

From the approach to constructing reachability matrixes men-
tioned in Section 4, we have known that, all the matrixes appearing
in Mappings 1–6 are with the same size, i.e., equal to (m2 + m),
where m = jmapset(U)j and U is the set which all sensitive character
strings defined over. Therefore, the computation between any two
matrixes has to conduct m bit operations, i.e., its time complexity is
O(m2 + m). If viewing each bit operation in the matrix computation
as a basic unit, then we conclude that, (1) for each server-side con-
dition representation generated from Mappings 1 to 3, it contains
only one matrix computation, and thus its time complexity is
O(m2 + m),i.e.,O(m2); (2) for each server-side condition from Map-
ping 4, its time complexity is O(2m2 + 2m), i.e., O(m2), due to hav-
ing two matrix computations; (3) for each server-side condition
from Mapping 5, its time complexity is O(km2 + km), i.e., O(km2),
due to containing k matrix computations; and (4) for each ser-
ver-side condition from Mapping 6, its time complexity is
O(rm2 + rm), i.e., O(rm2). Last, it should be pointed out that, the
bit computation between two n-phase reachability matrixes can
be completed efficiently, and thus the server-side condition repre-
sentations generated from Mappings 1 to 6 have better computa-
tion performance.

5. Querying encrypted character string

In this section, we describe how individual query operations
(such as selections and joins) are implemented in our database ar-
chitecture. The basic idea of our strategy is similar to that given in
[2,11], i.e., to partition the computation of a query operation across
the user client and the DSP server, so as to improve the querying
performance. Specifically, we attempt to use a redefined query op-
eration over the characteristic index attribute at the DSP database,
to compute a superset of answers; and then the temporal answers
are decrypted and filtered at the client, to generate the actual re-
sults. Using such a two-phase query approach, we attempt to mini-
mize the query processing work done at the client as much as
possible; consequently, making that, the client-side query opera-
tions can be implemented efficiently.

Below, we first discuss how individual selection or join opera-
tions are partitioned into two parts that would be executed at
the client and the DSP server, respectively. Next, we based on such
a partition, present a two-phase query algorithm, to efficiently exe-
cute SQL queries over encrypted character strings in the DAS envir-
onment. Last, we analyze the security of our proposed approach.

5.1. Partitioning query operations

Here, we only consider two types of essential query operations,
i.e., selections and joins. We mainly consider how to partition a se-
lection or join operation into its server-side representation and its
client-side representation, so as to minimize the work done at the
client as much as possible and to improve the query performance.
Actually, the idea of this part is originated from the work given by
Hakan et al. in [2]. We acknowledge their contribution. However,
for the integrity of this paper, we here introduce this work.

(1) Selection operation: Let us consider a basic selection opera-
tion rCOND(R) defined on a relation R, where COND is a basic
condition specified on the sensitive attribute R�At of charac-
ter string type in the relation R. A straightforward imple-
mentation of such an operation in the DAS environment is
to transmit the entire encrypted relation RS from the DSP
server to the client. And, then the client decrypts RS and exe-
cutes the selection operation over the decrypted data. How-
ever, the running performance of such a straightforward
strategy would be decreased, due to the two following fac-
tors. On the one hand, the encrypted relation needs to be
transmitted from the server to the client through the Inter-
net, resulting in a large data transmission quantity. On the
other hand, all the encrypted character strings need to be
decrypted at the client, resulting in a time-consuming data
decryption operation. An alternative mechanism is to par-
tially compute the selection operation at the DSP database
through using the characteristic index related to the sensi-
tive attribute R�At, so as to decrease the number of encrypted
tuples which need to be transmitted from the server to the
client, and to improve the running performance effectively.
Based on such a consideration, the selection operation can
be rewritten as follows:
rCONDðRÞ ¼ rCONDðdecryptðrS
transcðCONDÞðR

SÞÞÞ

where decrypt is a decryption function used to decrypt the
encrypted temporal results transmitted from the server. Be-
sides, in the above notations, the selection operation, which
being executed at the server, is adorned with a superscript
‘‘S’’ (rS), namely, it is a server-side selection operation; and
the non-adorned operation (r) would be executed at the cli-
ent, namely, it is a client-side selection operation.
(2) Join operation: Let us consider a basic join operation
R1fflCOND R2 over two relations R1 and R2, where COND
should be an equality condition defined on a sensitive attri-
bute of character string type in R1 and a sensitive attribute of
character string type in R2. Because a join can be viewed as a
selection operation over the Cartesian product of two rela-
tions, such a basic join operation can be implemented by
using an approach similar to that of a selection operation.
Specifically, the join operation can be rewritten as follows:
R1 fflCOND R2 ¼ rCOND decrypt RS
1 fflS

transcðCONDÞ RS
2

� �� �

where as before, the ‘‘S’’ adornment on the join operation is to
emphasize the fact that, the join operation would be exe-
cuted at the DSP server. However, different from selection
operations, such a join partition cannot guarantee that, the
rewritten query operations have a better running perfor-
mance than the original operation (i.e., through transmitting
the encrypted relations to the client, and then executing the
join operation at the client). In real system, we use a cost es-
timation formula to decide whether the computation of a join
operation is partitioned across the server and the client. In
addition, for other non-equality join operation (i.e., theta-
join), we use the original strategy immediately to push the
entire work of executing the join operation to be done at
the client. Of course, other query operations related to non-
sensitive fields would be executed at the DSP server in
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advance, to decrease the number of the encrypted tuples re-
quired to be transmitted.
Below, we analyze the rationality of the above approach to par-
titioning query operations. From what mentioned in Section 4, we
can conclude that, the server-side selection or join operations can
guarantee to return a superset of actual results. Consequently, this
guarantees that, the client-side query operations can select the ac-
tual results from the temporal ones transmitted from the server.
Therefore, the partition approach can guarantee to return the ac-
tual query results.
5.2. Two-phase query algorithm

Algorithm 1. A two-phase query over encrypted character strings

Phase 0: Original query being translated at the client
Step 1. The query translator partitions the original SQL query

posted by user into two parts: server-side query related to
the characteristic index and client-side query identical to
the original query;

Phase 1: Coarse query being executed at the DSP server
Step 2. The server executes the server-side query at the

encrypted database, and then transmits the encrypted
tuples returned by the server-side query to the client
through the Internet, after discarding related characteristic
index fields.

Phase 2: Refined query being executed at the client
Step 3. The query executor decrypts the encrypted tuples

(i.e., decrypts the encrypted attributes corresponding to
encrypted character strings), which are generated in the
first coarse query phase and transmitted from the server;

Step 4. The query executor executes the client-side query
over the decrypted tuples, as a result, obtaining actual
query results and then returning to the user.

Based on the above approach to partitioning query operations,
we present a two-phase query algorithm for querying encrypted
character strings in the DAS environment efficiently, which is
shown as Algorithm 1. In Algorithm 1, its input is an original SQL
query, which is posted by user and defined over unencrypted rela-
tions, and its output is the true query results. As shown in Algo-
rithm 1, the steps about querying sensitive character strings are
mainly implemented by the query translator and the query execu-
tor. The particular workflow also can be seen in Fig. 1.
Example 5. Let us use the relation in Table 1 and its encrypted
relation in Table 2 as an example. First, we assume that the original
SQL query posted by user is as follows:

Q1. SELECT std.id, std.name, std.addr FROM std WHERE std.addr
LIKE ‘‘%if%’’
Then, in the first phase of Algorithm 1, this query is
partitioned into two parts, noted as Q1 and Q2,
respectively, where Q1 denotes the client-side query
which is identical to the original query; and Q2
denotes the server-side query, given as follows:

Q2. SELECT stdS.id, stdS.name, stdS.addrS FROM stdS WHERE
transc(std.addr LIKE ‘‘%if%’’)
After execution of the sever-side query Q2, two
encrypted tuples will be returned, which are the sec-
ond record and the third record in Table 2. Next, in
the second phase of Algorithm 2, the client decrypts
the returned tuples and executes the client-side
query Q1 (i.e., the original query) over the unen-
crypted tuples, as a result returning the second
record in Table 1.

5.3. Security analysis

In the encrypted relation RS at the DSP database, AE
t is used to

store the encrypted values of sensitive character strings and thus
is in the form of ciphertext, so we think its values are safe as long
as the encryption algorithm and the key are secure. However, it is
out of scope of this paper to discuss the security of the encryption
algorithm and the key. Here, we only analyze the security of the
additional characteristic index field AS

t .
From Section 3, we have known that, the characteristic index

values are generated through mapping each sensitive character
string Q into its n-phase reachability matrix Mn(mapseq(Q)). In this
section, we mainly discuss the security problem of the characteris-
tic index value Mn(mapseq(Q)). Specifically, we analyze whether
there is probability that the attackers infer the plaintext character
string based on the characteristic index value, through using some
attack method. For comparison, we also consider other two
schemes of (1) using mapseq(Q) as the characteristic index value,
and (2) using Mn(Q) as the characteristic index value. Obviously,
it is difficult for the attackers to infer the character strings from
the characteristic index values directly, due to that the mappings
such as g, f1, f2 and f3 (referenced in Sections 3.1 and 3.2) are used.
Therefore, we below analyze the security of the characteristic in-
dex values under two types of familiar attack methods, i.e., statis-
tical attack and known-plaintext attack.

(1) Statistical attack. First, let us consider the simple scheme,
which uses the 1-phase reachability matrix M1(Q), generated based
on the method mentioned in Section 3.1, as the characteristic index
value of the character string Q. In this scheme, different 1-phase
connected character pairs always would be mapped into the differ-
ent positions in a 1-phase reachability matrix, consequently, mak-
ing it possible for the attackers to infer the mapping from character
pairs to matrix positions by using a statistical method, and then,
further to infer the plaintext character strings, i.e., this scheme
may be helpless to prevent the statistical attack. In general, the sta-
tistical attack is built on the following two preconditions.

Precondition 1. The attackers have in advance known the
detailed process of how to generate the charac-
teristic index values for plaintext character
strings, but they have not known the related
metadata, due to which is stored at the trusted
client site.

Precondition 2. Let GO be a set of sensitive character strings, GE

another set of character strings, which are ran-
domly chosen from GO and need to be encrypted
and stored into the DSP database, GC a set of the
characteristics index values, corresponding to
the character strings in GE. The attackers have
in advance known GO and GC, but have not
known GE.

Based on the above two preconditions, the attackers can infer
the position in a matrix, into which each character pair would be
mapped, using the statistical method. Let UC be the set over which
all character strings are defined. The attack process is presented as
follows. First, for each character pair pi = (a,b), which is defined
over the set UC, i.e., a 2 UC, and b 2 UC, the attackers compute the
value num(pi)[GO], that is equal to the number of the character



Z. Wu et al. / Knowledge-Based Systems 35 (2012) 332–348 343
strings in GO, which contain the character pair pi. Thus, the attack-
ers can obtain a series of values: num(p1)[GO], num(p2)[GO ], � � �,
num(ph)[GO], where h is equal to the number of all character pairs
over UC, i.e., h = jUCj2. Second, the attackers compute the frequen-
cies for all the character pairs appearing in GO as follows:

freqðp1;p2; . . . ;phÞ½GO�¼
numðp1Þ½GO�

jUC j
;
numðp2Þ½GO�

jUC j
;. . . ;

numðphÞ½GO�
jUC j

� �

Third, for each position ci(except for the last row) in a 1-phase
reachability matrix defined over the set UC, the attackers count
the value num(ci)[GC] that is equal to the number of the reachability
matrixes in GC, satisfying the value of the position ci is equal to ‘1’.
As a result, the attackers obtain a series of values: num(c1)[GC],
num(c2)[GC], . . ., num(ch)[GC], where h = jUCj2. Fourth, the attackers
compute the frequencies for all the matrix positions over GC as
follows:

freqðc1;c2; .. . ;chÞ½GC �¼
numðc1Þ½GC �
jUC j

;
numðc2Þ½GC �
jUC j

; . .. ;
numðchÞ½GC �
jUC j

� �

In a 1-phase reachability matrix, one position corresponds to one
character pair defined over U, i.e., between which there is a one-
to-one mapping. Now, the attackers try to infer the mapping. As-
sume that the character pair corresponding to the position ci is
p0iði ¼ 1;2; . . . ; jUC j2Þ. Obviously, have freq p01;p

0
2; . . . ;p0h

� �
½GE� ¼

freqðc1; c2; . . . ; chÞ½GC �. Moreover, because GE are randomly chosen
from GO, both of them should present the similar feature distribu-
tion, i.e.,freq(p1 ,p2, . . . ,ph)[GE] 	 freq(p1, p2, . . . , ph)[GO]. Finally,
through comparing the two sequences freq p01; p

0
2; . . . ;p0h

� �
½GE� and

freq(p1, p2, . . . , ph)[GE], i.e.,freq(c1, c2, . . . , ch)[GC] and freq(p1,
p2, . . . , ph)[GO], the attackers infer the character pair, which each po-
sition in the 1-phase reachability matrix corresponds to. Once the
attackers know the mapping from matrix position to character pair,
they can generate the 1-phase reachability matrixes GM for all the
character strings in GO. Then, for any given characteristic index va-
lue, the attackers can find out all of its possible plaintext character
strings based on GM and GO.

Now, let us consider scheme, which uses mapseq(Q) generated
based on what mentioned in Section 3.2 as the characteristic index
value of the character string Q. In general, the statistical attack is
built on the precondition that, there should be some one-to-one re-
lationship between plaintext and ciphertext, e.g., the one-to-one
mapping from matrix positions to character pairs, mentioned
above. However, in this scheme, we use an Equi-Depth way to di-
vide the set of characters, and then, map each character in a char-
acter string into an integer, resulting in the character string being
mapped into an integer sequence (see Section 3.2 for detail). This
makes many characters would be mapped into the same integer,
i.e., forming a multiple-to-one mapping from character strings to
integer sequences. In other words, it is difficult for the attackers
to find out some one-to-one relationship between the character
strings and the characteristics index values generated by this
scheme, i.e., it is difficult to use a statistical method to infer the
plaintext character strings from the characteristic index values.
So, we conclude that, the scheme of using mapseq (Q) as the charac-
teristic index value can well oppose the statistical attack.

In our approach, we use Mn(map seq(Q)) as the characteristic in-
dex value of the character string Q, which first maps the character
string into an integer sequence, and then, maps the integer se-
quence into an n-phase reachability matrix. It can be viewed as a
composite mapping, i.e., the combination of mapseq(Q) and Mn(Q),
consequently, making it difficult to determine some one-to-one re-
lationship between the character strings and the characteristics in-
dex values. Therefore, our approach also can well oppose the
statistical attack.
(2) Known-plaintext attack. Known-plaintext attack means
that the attackers have several samples of the plaintext and its ci-
phertext, and then make use of them to further infer other plain-
texts. In general, except for the preconditions of the statistical
attack, the following precondition should be added in order to con-
duct the known-plaintext attack.

Precondition 3. The attackers have in advance known a set of

plaintext character strings SC and their corre-
sponding characteristic index values SD.
First, let us consider the scheme, which uses the integer se-
quence mapseq(Q) as the characteristic index value of the character
string Q. We now show how the attackers infer the multiple-to-one
mapping g:UC ? UD (mentioned in Section 3.2), from the set UC of
characters to the set UD of integers, and then, infer the plaintext
character string from a characteristic index value in the form of in-
teger sequence.

Let QC = q1q2 � � � qt(q1, q2, . . . , qt 2 UC, QC 2 SC) represent a plain-
text character string, and QD = d1d2 � � � dt(d1, d2, . . . , dt 2 UD,
QD 2 SD) be its corresponding characteristic index value. Due to
having in advance known QC and QD, as well as the detailed process
of how to generate the characteristic index value, the attackers can
infer that: d1 = g(q1), d2 = g(q2), . . . , dt = g(qt). Therefore, the attack-
ers can further infer the mapping g:UC ? UD, as long as the charac-
ter strings in SC can cover all the characters in UC. Once knowing
the mapping from characters to integers, actually, the attackers
know the mapping from character strings to their index values
(i.e., integer sequences), so they can generate the integer sequences
SO for all the character strings in GO. Then, for any given character-
istic index value (in the form of integer sequence), the attackers
can determine all of its possible plaintext character strings based
on SO and GO.

Now, let us consider another scheme, which uses Mn(Q) as the
characteristic index value of the character string Q. In an n-phase
reachability matrix generated by this scheme based on a character
string, we only store the information about the n-phase connected
character pairs contained in the character string, but do not store
the order and frequency information about these character pairs.
This makes that, given a character string and its n-phase reachabil-
ity matrix, it become too difficult for the attackers to determine the
n-phase connected character pair, to which each ‘1’ in the matrix
corresponds. Moreover, the use of three bijections f1, f2, and f3 (re-
ferenced in Definition 1) also further enhance such difficulty. In
other words, this scheme makes the attackers difficult to deter-
mine the mapping from character string to its n-phase reachability
matrix, consequently, making it difficult to use a known-plaintext
method to infer the plaintext character strings from the character-
istic index values. In conclusion, the scheme that uses Mn(Q) as the
characteristic index value can well oppose the known-plaintext at-
tack. In our proposed approach, we also leverage n-phase reach-
ability matrixes as the characteristic index values of character
strings. So, our approach also can well oppose the known-plaintext
attack.

As mentioned above, the two schemes of using mapseq(Q) as the
characteristic index value and using Mn(Q) as the index value, both
cannot ensure the data security of their generated index values,
where the first one cannot prevent the known-plaintext attack,
and the other one cannot prevent the statistical attack. In our ap-
proach, we combine the two schemes. This makes the characteris-
tic index values generated by our approach can well present both
of the known-plaintext attack and the statistical attack, resulting
in good security. However, just as pointed by Sergei et al. in [25],
it is impossible to design an absolutely secure system that can well
support queries over encrypted database. In other words, the in-
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crease of data security certainly results in the decrease of the query
effectiveness; and vice versa. In our approach, we make a good
compromise between data security and query effectiveness.

Last, let us review the security of the characteristic index values
generated using the approach mentioned in [11,12]. As pointed out
by the authors, with the increase of the size of index values, the
probability of different character pairs being mapped to different
bits in the index values would be increased, such that the attackers
can infer all the character pairs using the statistical attack or the
plaintext attack. However, once all the character pairs have been
known, the attackers can infer the original character strings easily,
due to that the character pairs are well-ordered in their index va-
lues. Hence, our approach has a better security than that men-
tioned in [11,12].

6. Evaluation experiments

In order to evaluate the effectiveness and efficiency of our pro-
posed approach, we have performed a number of experiments. In
this section, we present our experimental results.

First, we constructed a database that only contains one table,
whose schema is shown as Table 1. Table 3 presents the informa-
tion about the attribute that is considered sensitive and needs to
be encrypted. Second, for the database, we randomly generated a
million of tuples, where addr values were constructed over a set
consisting of 80 characters, i.e., they were determined by the reg-
ular expression given in the 5th column of Table 3. Last, the experi-
ments were conducted over two Lenovo personal computers with
Intel Core2 Duo 2.93 GHz CPU and 2 GB RAM. One of the computers
performed as the DSP server, and the other performed as the client.
In addition, we used Microsoft Windows NT as the operating sys-
tem, and Microsoft SQL Server 2000 as the database management
system.

6.1. Effectiveness evaluations

In the first group of experiments, we aimed to evaluate the ef-
fectiveness of our proposed approach, i.e., to evaluate the effective-
ness for filtering non-targeted tuples in the first phase of the two-
phase query algorithm. To do this, we used the following two mea-
sure factors: FIE and FAE.

Definition 4. Assuming that there are N tuples in a relation, the
number of tuples returned in the first phase of the two-phase
query algorithm is N1, and the number of tuples in actual query
results is N2, then, we define the filter rate (FIE) and the false rate
(FAE), as follows:

FIE ¼ N � N1

N � N2
FAE ¼ N1 � N2

N1

where N � N1 denotes the number of non-targeted tuples filtered in
the first phase; N1 � N2 denotes the number of non-targeted tuples
returned in the first phase; and N � N2 denotes the total number of
non-targeted tuples in the relation.

Table 4 presents all the query conditions used in our experi-
ments, which, actually, presents the general cases for basic similar-
ity queries and basic range queries. Other more complex similarity
Table 3
The information about sensitive field that needs to be encrypted.

Table
name

Field
name

Data type Tuple
number

Regular
expression

Std Addr Varchar
(20)

1,000,000 [,�j]{20}
or range queries can be generated by using these basic queries.
Aiming to similarity queries, we conducted experiments over char-
acter strings with the same length (equal to 20) but with character-
istic index values of increasing length. The experimental results are
shown in Figs. 2 and 3, where each data point was obtained by per-
forming twenty experiments and computing average value of their
results. In our experiments, we increased the length of index va-
lues, through partitioning the set that sensitive character strings
are defined over, into more subsets. Hence, in Figs. 2 and 3, as well
as the following Figs. 6, 7 and 10, each value m of the horizontal
ordinate denotes the number of subsets partitioned, i.e., the length
of characteristic index values is equal to (m2 + m).

From Figs. 2 and 3, we can see that, with the increase of the size
of characteristic index values, on one hand, the FAE values would
become smaller and smaller, i.e., the rates of non-targeted tuples
returned in the coarse-query phase (i.e., Phase 1 in Algorithm 1)
become smaller; and on the other hand, the FIE values would be-
come greater and greater, i.e., the effects of the coarse query to fil-
ter non-targeted tuples are improved increasingly. This is because,
with the increase of the length of characteristic index values, the
probability of different character strings corresponding to different
index values would become greater, i.e., the probability of non-tar-
geted tuples being filtered would become greater. From Figs. 2 and
3, we also see that, by using the characteristic index values gener-
ated by our proposed approach, most of non-targeted tuples will be
filtered at the coarse-query phase, and the filter rates to non-tar-
geted tuples are generally greater than 0.8, even if the characteris-
tic index values are assigned with a small length. Especially, for the
similarity query condition F1 (i.e., addr like ‘A1%’), when the size of
characteristic index is increased to 802+80, the FAE value would be
equal to 0, and the FIE value equal to 1, i.e., all the non-targeted tu-
ples have been filtered out in the coarse-query phase. This would
reduce the number of encrypted tuples transmitted from the server
to the client, and thus improve similarity query performance.

Aiming to similarity queries, we also have conducted another
group of experiments over character strings with decreasing length
but with characteristic index values of the same length (that is
equal to 402 + 40). The experimental results are shown in Figs. 4
and 5. From Fig. 4, we can see that, although the length of sensitive
character strings is decreased, the FAE values are not changed ob-
viously, which shows that the rates of non-targeted tuples re-
turned by the coarse queries are relatively steady. This is due to
that the decrease speed of the number of tuples returned by the
coarse query is approximately accordant to that returned by the re-
fined query, with the decrease of the length of sensitive character
strings. From Fig. 5, we can see that, with the decrease of the length
of character strings, the effects of the coarse query to filter non-tar-
geted tuples can be improved to a certain extent, but such im-
provement is not obvious. In other words, the good effectiveness
of the coarse query to filter non-targeted tuples will not be de-
creased seriously with the change of the length of sensitive charac-
ter strings.

From Figs. 2 and 4, we see that, different similarity query con-
ditions lead to the different change trends for FAE values, and, with
the increase of quantity of information contained by the matching
patterns (M1–M3 and F1–F3), the FAE values are also increased.
This is due to that, the increase of quantity of information in the
matching patterns would decrease the number (i.e., the N1 value
in Definition 4) of tuples returned by the coarse query phase in Al-
gorithm 1, resulting in the increase of the FAE values. Besides, from
Figs. 3 and 5, we also see the similar cases for the FIE values, which
is also caused by the similar reason.

Regarding range queries, we conducted experiments over char-
acter strings with the same length (that is equal to 20) but with
characteristic index values of increasing length. The experimental
results are shown in Figs. 6 and 7. From Figs. 6 and 7, we see that,



Table 4
The similarity and range query conditions used in our experiments, where A1, A2, and A3 denote three characters.

Name LIKE condition Name LIKE condition Name Range condition

M1 Addr like ‘%A1%’ F1 Addr like ‘A1%’ R1 Addr > ‘A1’
M2 Addr like ‘%A1A2%’ F2 Addr like ‘A1A2%’ R2 Addr > ‘A1A2’
M3 Addr like ‘%A1A2A3%’ F3 Addr like ‘A1A2A3%’ R3 Addr > ‘A1A2A3’

Fig. 2. FAE values for different LIKE query conditions over characteristic index
values with increasing size.

Fig. 3. FIE values for different LIKE query conditions over characteristic index
values with increasing size.

Fig. 4. FAE values for different LIKE query conditions over sensitive field of
character string type with decreasing size.

Fig. 5. FIE values for different LIKE query conditions over sensitive field of character
string type with decreasing size.

Fig. 6. FAE values for different range query conditions over characteristic index
values with increasing size.

Fig. 7. FIE values for different range query conditions over characteristic index
values with increasing size.
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the range queries have smaller FAE values (less than 0.1) and great-
er FIE values (greater than 0.9), compared to the similarity queries;
and, with the increase of the size of characteristic index values,
both FAE and FIE values would be further improved to a certain ex-
tent. This is due to that, the actual result of a range query generally
consists of too many tuples, thereby reducing the impact of the
non-targeted tuples returned by the coarse query to the FAE and



Fig. 8. FAE values for different range query conditions over sensitive field of
character string type with decreasing size.

Fig. 9. FIE values for different range query conditions over sensitive field of
character string type with decreasing size.

Fig. 10. Execution times for performing LIKE and range queries over characteristic
index values with increasing size.

Fig. 11. Execution times for performing LIKE and range queries over character
strings with decreasing size.
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FIE values. From Fig. 7, we also see that, using the characteristic in-
dex values, most of non-targeted tuples would be filtered by the
coarse query (the filter rates greater than 0.9, even if the index va-
lues are assigned with a small length). Therefore, our approach can
well reduce the number of encrypted tuples transmitted from the
server to the client, and improve the range query performance.

Aiming to the range queries, we also have conducted experi-
ments over character strings with decreasing length but with char-
acteristic index values of the same length (equal to 402 + 40). The
experimental results are shown in Figs. 8 and 9, which are similar
to those of similarity queries except having steadier FAE and FIE
values.
Table 5
The effectiveness comparison results among the approaches to encrypting and
querying character strings, where ‘‘low’’ denotes non-support, ‘‘medium’’ denotes
unable to support all the familiar query operations on character strings, and ‘‘high’’
denotes good support.

Approach In [11] In [13] In [14] Of ours

Similarity queries Medium Medium Medium High
Range queries Low Low High High
Security Medium Medium Medium High
6.2. Efficiency evaluations

In the second group of experiments, we aimed to evaluate the
efficiency of our approach, through testing the execution time of
the two-phase query algorithm over encrypted tables, and compar-
ing the results to the execution time in the traditional way that is
to decrypt all encrypted data before querying them. In the experi-
ment, the execution time of the two-phase algorithm over a query
condition is computed by adding (1) the time of executing the
coarse-query at the DSP database, (2) the time of transmitting
the encrypted data returned by the coarse-query from the server
to the client; (3) the time of decrypting the data; and (4) the time
of executing the original query at the client.

The experimental results are shown in Figs. 10 and 11, where
‘‘BA’’ denotes the traditional way that transmits all encrypted tu-
ples from the server to the client and executes queries at the client
after decrypting the tuples. From Figs. 10 and 11, we see that, using
the characteristic index values generated by our approach, the ex-
ecution times for performing all kinds of queries over sensitive
character strings in the DAS model can be improved effectively:
using our approach, the execution time of a similarity query is de-
creased to about 0.2, and the execution time of a range query is de-
creased to about 0.6, compared with those in the traditional way.
6.3. Comparisons with other approaches

From Section 2, we know that although there have been many
approaches to database encryption, most of them were not de-
signed for querying encrypted character strings in the DAS model,
consequently, making them difficult to be applied into the DAS
model. Therefore, in this part, we compare our approach only with
three existing ones, which were proposed in [11,13,14], respec-
tively, and designed for the problem of how to query encrypted
sensitive character strings. It should be pointed out that all the
three approaches were not designed for the DAS model. For com-
parison, we have re-implemented the approaches over our proto-
type experimental system.



Fig. 12. FAE values for different LIKE and range query conditions over sensitive field
of character string type with decreasing size.

Fig. 13. FIE values for different LIKE and range query conditions over sensitive field
of character string type with decreasing size.

Fig. 14. Execution times for performing LIKE queries over characteristic index
values with increasing size.

Fig. 15. Execution times for performing range queries over character strings with
decreasing size.
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First, based on the evaluation results mentioned in [11,13,14],
we make an overall comparison in terms of effectiveness and se-
curity. The comparison results are shown in Table 5. From Table
5, we can see that, compared to the other three approaches, our ap-
proach can not only better support various operations about
querying encrypted character strings (including similarity queries
and range queries), i.e., having better effectiveness, but also have
better data security, enabling us to prevent attackers from attack-
ing, thus, ensuring the data security and privacy better in the DAS
environment. Overall, our approach has a good balance between
security and effectiveness.

Second, experimentally, we make a more detailed comparison
in terms of query effectiveness. In the experiments, (1) for our
approach, the length of characteristic index values is set to
(402 + 40) (i.e., m = 40); (2) for the approach in [11], the number
of bits of characteristic index field is set to 32 (that is recom-
mended by the authors); (3) for the approach in [14], the number
of bits of index is set to 32, and the number of partitions is set to
200. The experimental results are shown in Figs. 12 and 13, where
‘‘M3(O)’’ and ‘‘R3(O)’’ denote the implementation of our approach
over the query conditions M3 and R3, respectively; ‘‘M3(11)’’ de-
notes the approach in [11]; ‘‘M3(13)’’ denotes the approach in
[13]; and ‘‘M3(14)’’ and ‘‘R3(14)’’ denote the approach in [14].
From Figs. 12 and 13, we see that, for LIKE queries, our approach
performs slightly worse than the other three ones in terms of both
FAE values and FIE values. This is because in our approach, only the
critical information contained in character strings would be re-
tained into the characteristic index values, so as to improve the se-
curity. In addition, for range queries, our approach performs
slightly better than the approach in [14].

Third, experimentally, we make a comparison in terms of query
efficiency. The experimental results are shown in Figs. 14 and 15.
From Figs. 14 and 15, we see that, although performing slightly
worse than the other three approaches in terms of FAE and FIE va-
lues, our approach has nearly the same running efficiency to the
other three ones. In Fig. 15, the approach in [14] has slightly better
range query efficiency than our approach, which is because in our
approach, a range query is generally completed based on several
LIKE queries (see Mapping 6 in Section 4.2), resulting in the de-
crease of running efficiency of coarse query operations in the DSP
site.
7. Conclusions

The ‘‘software as service’’ model for enterprise computing has
emerged with the rise of the Internet technologies, in which, a ser-
vice provider can provide software as a service to many clients over
the Internet. However, unlike other services, databases are special,
because data is a precious resource of an enterprise. This results in
a higher request on data privacy and security for ‘‘database as ser-
vice’’ model. To solve this, the ‘‘database as service’’ model stores
sensitive data into the service provider after encrypting them, as
a result, leading to a new issue, i.e., how to execute queries over
encrypted data efficiently.

In this paper, aiming to the issue of how to query encrypted
character strings efficiently in the ‘‘database as service’’ environ-
ment, we have addressed a new approach. In this approach, we
use the n-phase reachability matrix to generate the characteristic
index values for sensitive character strings, and we then store
the characteristic index values in an additional field, when storing
the encrypted character strings at the server site. Next, when
querying the character strings, we first execute a coarse query over
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the characteristic index at the server to filter out most non-tar-
geted tuples, and we then decrypt the rest tuples and execute a re-
fined query over them again at the client. Consequently, the query
performance of executing queries over encrypted character strings
is improved effectively. By using the n-phase reachability matrix as
the characteristic index, our approach can not only support diver-
sified operations about querying encrypted character strings, in-
cluding equivalent query, similarity query, range query, etc., but
also can well ensure data privacy and security, consequently, mak-
ing our approach superior to other existing ones. Therefore, our
proposed approach is applicable to query encrypted character
strings in the ‘‘database as service’’ environment. Last, the evalua-
tion experiments have validated the effectiveness and feasibility of
our approach.
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