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Abstract

We present a novel approach to low-level vision problems that combines sparse
coding and deep networks pre-trained with denoising auto-encoder (DA). We pro-
pose an alternative training scheme that successfully adapts DA, originally de-
signed for unsupervised feature learning, to the tasks of image denoising and blind
inpainting. Our method achieves state-of-the-art performance in the image denois-
ing task. More importantly, in blind image inpainting task, the proposed method
provides solutions to some complex problems that have not been tackled before.
Specifically, we can automatically remove complex patterns like superimposed
text from an image, rather than simple patterns like pixels missing at random.
Moreover, the proposed method does not need the information regarding the re-
gion that requires inpainting to be given a priori. Experimental results demonstrate
the effectiveness of the proposed method in the tasks of image denoising and blind
inpainting. We also show that our new training scheme for DA is more effective
and can improve the performance of unsupervised feature learning.

1 Introduction

Observed image signals are often corrupted by acquisition channel or artificial editing. The goal of
image restoration techniques is to restore the original image from a noisy observation of it. Image
denoising and inpainting are common image restoration problems that are both useful by themselves
and important preprocessing steps of many other applications. Image denoising problems arise when
an image is corrupted by additive white Gaussian noise which is common result of many acquisition
channels, whereas image inpainting problems occur when some pixel values are missing or when
we want to remove more sophisticated patterns, like superimposed text or other objects, from the
image. This paper focuses on image denoising and blind inpainting.

Various methods have been proposed for image denoising. One approach is to transfer image signals
to an alternative domain where they can be more easily separated from the noise [1, 2, 3]. For
example, Bayes Least Squares with a Gaussian Scale-Mixture (BLS-GSM), which was proposed by
Portilla et al, is based on the transformation to wavelet domain [2].

Another approach is to capture image statistics directly in the image domain. Following this strategy,
A family of models exploiting the (linear) sparse coding technique have drawn increasing attention
recently [4, 5, 6, 7, 8, 9]. Sparse coding methods reconstruct images from a sparse linear combination
of an over-complete dictionary. In recent research, the dictionary is learned from data instead of hand
crafted as before. This learning step improves the performance of sparse coding significantly. One
example of these methods is the KSVD sparse coding algorithm proposed in [6].

Image inpainting methods can be divided into two categories: non-blind inpainting and blind in-
painting. In non-blind inpainting, the regions that need to be filled in are provided to the algorithm
a priori, whereas in blind inpainting, no information about the locations of the corrupted pixels is
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given and the algorithm must automatically identify the pixels that require inpainting. The state of
the art non-blind inpainting algorithms can perform very well on removing text, doodle, or even
very large objects [10, 11, 12]. Some image denoising methods, after modification, can also be
applied to non-blind image inpainting with state-of-the-art results [7]. Blind inpainting, however,
is a much harder problem. Existing algorithms can only address i.i.d. or simply structured impulse
noise [13, 14, 15].

Although sparse coding models perform well in practice, they share a shallow linear structure. Re-
cent research suggests, however, that non-linear, deep models can achieve superior performance in
various real world problems. One typical category of deep models are multi-layer neural networks.
In [16], Jain et al. proposed to denoise images with convolutional neural networks. In this pa-
per, we propose to combine the advantageous “sparse” and “deep” principles of sparse coding and
deep networks to solve the image denoising and blind inpainting problems. The sparse variants of
deep neural network are expected to perform especially well in vision problems because they have
a similar structure to human visual cortex [17].

Deep neural networks with many hidden layers were generally considered hard to train before a new
training scheme was proposed which is to adopt greedy layer-wise pre-training to give better ini-
tialization of network parameters before traditional back-propagation training [18, 19]. There exist
several methods for pre-training, including Restricted Boltzmann Machine (RBM) and Denoising
Auto-encoder (DA) [20, 21].

We employ DA to perform pre-training in our method because it naturally lends itself to denoising
and inpainting tasks. DA is a two-layer neural network that tries to reconstruct the original input
from a noisy version of it. The structure of a DA is shown in Fig.1a. A series of DAs can be stacked
to form a deep network called Stacked Denoising Auto-encoders (SDA) by using the hidden layer
activation of the previous layer as input of the next layer.

SDA is widely used for unsupervised pre-training and feature learning [21]. In these settings, only
the clean data is provided while the noisy version of it is generated during training by adding random
Gaussian or Salt-and-Pepper noise to the clean data. After training of one layer, only the clean data
is passed on to the network to produce the clean training data for the next layer while the noisy
data is discarded. The noisy training data for the next layer is similarly constructed by randomly
corrupting the generated clean training data.

For the image denoising and inpainting tasks, however, the choices of clean and noisy input are
natural: they are set to be the desired image after denoising or inpainting and the observed noisy
image respectively. Therefore, we propose a new training scheme that trains the DA to reconstruct
the clean image from the corresponding noisy observation. After training of the first layer, the
hidden layer activations of both the noisy input and the clean input are calculated to serve as the
training data of the second layer. Our experiments on the image denoising and inpainting tasks
demonstrate that SDA is able to learn features that adapt to specific noises from white Gaussian
noise to superimposed text.

Inspired by SDA’s ability to learn noise specific features in denoising tasks, we argue that in unsuper-
vised feature learning problems the type of noise used can also affect the performance. Specifically,
instead of corrupting the input with arbitrarily chosen noise, more sophisticated corruption process
that agrees to the true noise distribution in the data can improve the quality of the learned features.
For example, when learning audio features, the variations of noise on different frequencies are usu-
ally different and sometimes correlated. Hence instead of corrupting the training data with simple
i.i.d. Gaussian noise, Gaussian noise with more realistic parameters that are either estimated from
data or suggested by theory should be a better choice.

2 Model Description

In this section, we first introduce the problem formulation and some basic notations. Then we briefly
give preliminaries about Denoising Auto-encoder (DA), which is a fundamental building block of
our proposed method.
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(a) Denoising auto-encoder (DA) architecture (b) Stacked sparse denoising auto-encoder architecture

Figure 1: Model architectures.

2.1 Problem Formulation

Assuming x is the observed noisy image and y is the original noise free image, we can formulate
the image corruption process as:

x = η(y). (1)
where η : Rn → Rn is an arbitrary stochastic corrupting process that corrupts the input. Then, the
denoising task’s learning objective becomes:

f = argmin
f

Ey‖f(x)− y‖22 (2)

From this formulation, we can see that the task here is to find a function f that best approximates
η−1. We can now treat the image denoising and inpainting problems in a unified framework by
choosing appropriate η in different situations.

2.2 Denoising Auto-encoder

Let yi be the original data for i = 1, 2, ..., N and xi be the corrupted version of corresponding yi.
DA is defined as shown in Fig.1a:

h(xi) = σ(Wxi + b) (3)
ŷ(xi) = σ(W′h(xi) + b′) (4)

where σ(x) = (1+exp(−x))−1 is the sigmoid activation function which is applied element-wise to
vectors, hi is the hidden layer activation, ŷ(xi) is an approximation of yi and Θ = {W,b,W′,b′}
represents the weights and biases. DA can be trained with various optimization methods to minimize
the reconstruction loss:

θ = argmin
θ

N∑
i=1

‖yi − ŷ(xi)‖. (5)

After finish training a DA, we can move on to training the next layer by using the hidden layer
activation of the first layer as the input of the next layer. This is called Stacked denoising auto-
encoder (SDA) [21].

2.3 Stacked Sparse Denoising Auto-encoders

In this section, we will describe the structure and optimization objective of the proposed model
Stacked Sparse Denoising Auto-encoders (SSDA). Due to the fact that directly processing the en-
tire image is intractable, we instead draw overlapping patches from the image as our data objects.
In the training phase, the model is supplied with both the corrupted noisy image patches xi, for
i = 1, 2, ..., N , and the original patches yi. After training, SSDA will be able to reconstruct the
corresponding clean image given any noisy observation.

To combine the virtues of sparse coding and neural networks and avoid over-fitting, we train a DA
to minimize the reconstruction loss regularized by a sparsity-inducing term:

L1(X,Y; θ) =
1

N

N∑
i=1

1

2
‖yi − ŷ(xi)‖22 + βKL(ρ̂‖ρ) + λ

2
(‖W‖2F + ‖W′‖2F ) (6)
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Method Standard deviation σ
25/PSNR=20.17 50/PSNR=14.16 100/PSNR=8.13

SSDA 30.52± 1.02 27.37± 1.10 24.18± 1.39
BLS-GSM 30.49± 1.17 27.28± 1.44 24.37± 1.36
KSVD 30.96± 0.77 27.34± 1.11 23.50± 1.15

Table 1: Comparison of the denoising performance. Performance is measured by Peak Signal to
Noise Ratio (PSNR). Results are averaged over testing set.

where

KL(ρ̂‖ρ) =
|ρ̂|∑
j=1

ρ log
ρ

ρ̂j
+ (1− ρ) log (1− ρ)

1− ρ̂j
, ρ̂ =

1

N

N∑
i

h(xi).

and h(·) and ŷ(·) are defined in (3), (4) respectively. Here ρ̂ is the average activation of the hidden
layer. We regularize the hidden layer representation to be sparse by choosing small ρ so that the KL-
divergence term will encourage the mean activation of hidden units to be small. Hence the hidden
units will be zero most of the time and achieve sparsity.

After training of the first DA, we use h(yi) and h(xi) as the clean and noisy input respectively
for the second DA. This is different from the approach described in [21], where xi is discarded and
η(h(yi)) is used as the noisy input. We point out that our method is more natural in that, since h(yi)
lies in a different space from yi, the meaning of applying η(·) to h(yi) is not clear.

We then initialize a deep network with the weights obtained from K stacked DAs. The network has
one input layer, one output and 2K−1 hidden layers as shown in Fig.1b. The entire network is then
trained using the standard back-propagation algorithm to minimize the following objective:

L2(X,Y; θ) =
1

N

N∑
i=1

1

2
‖yi − y(xi)‖22 +

λ

2

2K∑
j=1

(‖Wj‖2F ). (7)

Here we removed the sparsity regularization because the pre-trained weights will serve as regular-
ization to the network [18].

In both of the pre-training and fine-tuning stages, the loss functions are optimized with L-BFGS
algorithm (a Quasi-Newton method) which, according to [22], can achieve fastest convergence in
our settings.

3 Experiments

We narrow our focus down to denoising and inpainting of grey-scale images, but there is no difficulty
in generalizing to colored images. We use a set of natural images collected from the web1 as our
training set and standard testing images2 as the testing set. We create noisy images from clean
training and testing images by applying the function (1) to them. Image patches are then extracted
from both clean and noisy images to train SSDAs. We employ Peak Signal to Noise Ratio (PSNR)
to quantify denoising results: 10 log10(255

2/σ2
e), where σ2

e is the mean squared error. PSNR is one
of the standard indicators used for evaluating image denoising results.

3.1 Denoising White Gaussian Noise

We first corrupt images with additive white Gaussian noise of various standard deviations. For the
proposed method, one SSDA model is trained for each noise level. We evaluate different hyper-
parameter combinations and report the best result. We set K to 2 for all cases because adding more
layers may slightly improve the performance but require much more training time. In the meantime,
we try different patch sizes and find that higher noise level generally requires larger patch size. The

1http://decsai.ugr.es/cvg/dbimagenes/
2Widely used images commonly referred to as Lena, Barbara, Boat, and Pepper by image processing com-

munity.
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Figure 2: Visual comparison of denoising results. Results of images corrupted by white Gaussian
noise with standard deviation σ = 50 are shown. The last row zooms in on the outlined region of
the original image.
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dimension of hidden layers is generally set to be a constant factor times the dimension of the input3.
SSDA is not very sensitive to the weights of the regularization terms. For Bayes Least Squares-
Gaussian Scale Mixture (BLS-GSM) and KSVD method, we use the fully trained and optimized
toolbox obtained from the corresponding authors [2, 7]. All three models are tuned to specific noise
level of each input. The comparison of quantitative results are shown in Tab.1. SSDA achieves PSNR
score comparable to the state-of-the-art models at all noise levels. A visual comparison is shown
in Fig.2. We find that SSDA gives clearer boundary and restores more texture details than KSVD
and BLS-GSM although the PSNR scores are close. This indicates that although the reconstruction
errors averaged over all pixels are the same, SSDA is more capable of denoising complex regions.

3.2 Image Inpainting

Figure 3: Visual comparison of inpainting results.

For the image inpainting task, we test our model on the text removal problem. Both the training
and testing set compose of images with super-imposed text of various fonts and sizes from 18-pix to
36-pix. Due to the lack of comparable blind inpainting algorithms, We compare our method to the
non-blind KSVD inpainting algorithm [7], which significantly simplifies the problem by requiring
the knowledge of which pixels are corrupted and require inpainting. A visual comparison is shown
in Fig.3. We find that SSDA is able to eliminate text of small fonts completely while text of larger
fonts is dimmed. The proposed method, being blind, generates results comparable to KSVD’s even
though KSVD is a non-blind algorithm. Non-blind inpainting is a well developed technology that
works decently on the removal of small objects. Blind inpainting, however, is much harder since it
demands automatic identification of the patterns that requires inpainting, which, by itself is a very
challenging problem. To the best of our knowledge, former methods are only capable of removing
i.i.d. or simply structured impulse noise [13, 14, 15]. SSDA’s capability of blind inpainting of
complex patterns is one of this paper’s major contributions.

3.3 Hidden Layer Feature Analysis

Traditionally when training denoising auto-encoders, the noisy training data is usually generated
with arbitrarily selected simple noise distribution regardless of the characteristics of the specific

3We set this factor to 5. The other hyper-parameters are: λ = 10−4, β = 10−2, ρ = 0.05.
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Training noise Testing noise
Gaussian Salt-and-Pepper Image background

Gaussian 91.42% 82.95% 86.45%
Salt-and-Pepper 90.05% 90.14% 81.77%
Image background 84.88% 74.47% 86.87%

Table 2: Comparison of classification results. Highest accuracy in each column is shown in bold
font.

training data [21]. However, we propose that this process deserves more attention. In real world
problems, the clean training data is in fact usually subject to noise. Hence, if we estimate the
distribution of noise and exaggerate it to generate noisy training data, the resulting DA will learn to
be more robust to noise in the input data and produce better features.

Inspired by SSDA’s ability to learn different features when trained on denoising different noise pat-
terns, we argue that training denoising auto-encoders with noise patterns that fit to specific situations
can also improve the performance of unsupervised feature learning. We demonstrate this by a com-
parison of classification performance with different sets of features learned on the MNIST dataset.
We train DAs with different types of noise and then apply them to handwritten digits corrupted by
the type of noise they are trained on as well as other types of noise. We compare the quality of the
learned features by feeding them to SVMs and comparing the corresponding classification accuracy.
The results are shown in Tab.2. We find that the highest classification accuracy on each type of
noise is achieved by the DA trained to remove that type of noise. This is not surprising since more
information is utilized, however it indicates that instead of arbitrarily corrupting input with noise
that follows simple distribution and feeding it to DA, more sophisticated methods that corrupt input
in more realistic ways can achieve better performance.

4 Discussion

4.1 Prior vs. Learned Structure

Unlike models relying on structural priors, our method’s denoising ability comes from learning.
Some models, for example BLS-GSM, have carefully designed structures that can give surprisingly
good results with random parameter settings [23]. However, randomly initialized SSDA obviously
can not produce any meaningful results. Therefore SSDA’s ability to denoise and inpaint images is
mostly the result of training. Whereas models that rely on structural priors usually have very limited
scope of applications, our model can be adapted to other tasks more conveniently. With some mod-
ifications, it is possible to denoise audio signals or complete missing data (as a data preprocessing
step) with SSDA.

4.2 Advantages and Limitations

Traditionally, for complicated inpainting tasks, an inpainting mask that tells the algorithm which
pixels correspond to noise and require inpainting is supplied a priori. However, in various situations
this is time consuming or sometimes even impossible. Our approach, being blind, has significant
advantages in such circumstances. This makes our method a suitable choice for fully automatic and
noise pattern specific image processing.

The limitation of our method is also obvious: SSDA strongly relies on supervised training. In our
experiment, we find that SSDA can generalize to unseen, but similar noise patterns. Generally speak-
ing, however, SSDA can remove only the noise patterns it has seen in the training data. Therefore,
SSDA would only be suitable in circumstances where the scope of denoising tasks is narrow, such
as reconstructing images corrupted by a certain procedure.
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5 Conclusion

In this paper, we present a novel approach to image denoising and blind inpainting that combines
sparse coding and deep neural networks pre-trained with denoising auto-encoders. We propose a
new training scheme for DA that makes it possible to denoise and inpaint images within a unified
framework. In the experiments, our method achieves state-of-the-art performance on image denois-
ing problems and successfully tackles the problem of blind inpainting of complex patterns which
has not been addressed before. We also show that the proposed training scheme is able to improve
DA’s performance in the tasks of unsupervised feature learning.

In our future work, we would like to explore the possibility of adapting the proposed approach to var-
ious other applications such as denoising and inpainting of audio and video, image super-resolution
and missing data completion. It is also meaningful to investigate into the effects of different hyper-
parameter settings on the learned features.
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