
J Comb Optim (2013) 26:44–70
DOI 10.1007/s10878-011-9431-1

Optimal key tree structure for two-user replacement
and deletion problems

Weiwei Wu · Minming Li · Enhong Chen

Published online: 30 November 2011
© Springer Science+Business Media, LLC 2011

Abstract We study the optimal tree structure for the key management problem. In
the key tree, when two or more leaves are deleted or replaced, the updating cost is
defined to be the number of encryptions needed to securely update the remaining
keys. The objective is to find the optimal tree structure where the worst case updating
cost is minimum. We extend the result of 1-replacement problem in Snoeyink et al.
(Proceedings of the twentieth annual IEEE conference on computer communications,
pp. 422–431, 2001) to the k-user case. We first show that the k-deletion problem
can be solved by handling k-replacement problem. Focusing on the k-replacement
problem, we show that the optimal tree can be computed in O(n(k+1)2

) time given
a constant k. Then we derive a tight degree bound for optimal tree when replacing
two users. By investigating the maximum number of leaves that can be placed on the
tree given a fixed worst case replacement cost, we prove that a balanced tree with
certain root degree 5 ≤ d ≤ 7 where the number of leaves in the subtrees differs by at
most one and each subtree is a 2-3 tree can always achieve the minimum worst case
2-replacement cost. Thus the optimal tree for two-user replacement problem can be
efficiently constructed in O(n) time.

Keywords Key tree · Optimality · Updating cost · User deletion · Multicast cost

W. Wu (�) · M. Li
Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong
e-mail: wweiwei2@student.cityu.edu.hk

M. Li
e-mail: minmli@cs.cityu.edu.hk

E. Chen
School of Computer Science, University of Science and Technology of China, Hefei, Anhui, China
e-mail: cheneh@ustc.edu.cn

mailto:wweiwei2@student.cityu.edu.hk
mailto:minmli@cs.cityu.edu.hk
mailto:cheneh@ustc.edu.cn

J Comb Optim (2013) 26:44–70 45

1 Introduction

In the applications that require content security, encryption technology is widely used.
Asymmetric encryption is usually used in a system requiring stronger security, while
symmetric encryption technology is also widely used because of the easy implemen-
tation and other advantages. In the applications such as teleconferencing and online
TV, the most important security problem is to ensure that only the authorized users
can enjoy the service. Centralized key management technology can achieve efficiency
and satisfy the security requirement of the system. Hence, several models based on
the key tree management are proposed to safely multicast the content. Two kinds of
securities should be guaranteed in these applications: one is Future Security which
prevents a deleted user from accessing the future content; the other is Past Security
which prevents a newly joined user from accessing the past content. Key tree model,
which was proposed by Wong et al. (2000) and Wallner et al. (1999), is widely studied
in recent years. In this model, the Group Controller (GC) maintains a tree structure
for the whole group. The root of the tree stores a Traffic Encryption Key (TEK) which
is used to encrypt the content that should be broadcast to the authorized users. To up-
date the TEK securely, some auxiliary keys are maintained. Whenever a user leaves
or joins, the GC would update keys accordingly to satisfy Future Security and Past
Security. Because updating keys for each user change is too frequent in some appli-
cations, Li et al. (2001) proposed batch rekeying model where keys are only updated
after a certain period of time. Zhu et al. (2003) studied the scenario of popular ser-
vices with limited resources which always has the same number of joins and leaves
during the batch period (because there are always users on the waiting list who will be
assigned to empty positions whenever some authorized users leave). A good survey
for key tree management can be found in Goodrich et al. (2004).

An important research problem in the key tree model is to find an optimal structure
for a certain pattern of user behaviors so that the total number of encryptions involved
in updating the keys is minimized. Graham et al. (2007) studied the optimal structure
in batch rekeying model where every user has a probability p to be replaced in the
batch period. They showed that the optimal tree for n users is an n-star when p >

1 − 3−1/3 ≈ 0.307, and when p ≤ 1 − 3−1/3, the optimal tree can be computed in
O(n) time. Specially when p approaches 0, the optimal tree resembles a balanced
ternary tree to varying degrees depending on certain number-theoretical properties of
n. This is then extended to include a special group of users called “loyal users” (Chan
et al. 2010). The normal users have probability p to issue a leave request, while
loyal users have probability zero to leave the group. Chan et al. (2009) considers the
case that each member v has an update probability wv and they aim at minimizing
the average communication cost of an update. There provide a hardness result and
a constant-factor approximation algorithm. Chen et al. (2008) studied the optimal
structure in traditional key tree model under the assumption that users in the group
are all deleted one by one (sequence of deletion). They show that the optimal tree
is a tree where every internal node has degree at most 5 and the children of nodes
which have degree d �= 3 are all leaves. Wu et al. (2008a) improved the result of
Chen et al. (2008) and showed that a balanced tree where every subtree has nearly
the same number of leaves can achieve the optimal cost. They also investigate the
optimal structure when the insertion cost in the initial setup period is considered.

46 J Comb Optim (2013) 26:44–70

More related to this paper, Snoeyink et al. (2001) proved that any distribution
scheme has a worst-case cost of Ω(logn) for deleting a user. They also found an
optimal structure when only one user is deleted from the tree. In this paper, we fur-
ther investigate the problem when more users are simultaneously deleted from a tree.
We show that the k-deletion problem can be solved by handling the k-replacement
problem. Thus we only focus on the k-replacement problem. Given a constant k,
the optimal tree can be compute in O(n(k+1)2

) time. Then we give a tight degree
bound for the optimal tree when replacing two users which leads to an O(n8) algo-
rithm. To solve the 2-replacement problem more efficiently, we then investigate the
maximum number of leaves that can be placed on the tree given a fixed worst case
replacement cost (denoted by capacity). Based on this, we prove that a balanced tree
with certain root degree 5 ≤ d ≤ 7 where the number of leaves in the subtrees dif-
fers by at most one and each subtree is a 2-3 tree can always achieve the minimum
worst case 2-replacement cost. Thus the optimal tree can be efficiently constructed in
O(n) time. Interestingly, we propose a conjecture on the capacity function for gen-
eral k-replacement problem which can be used to construct its optimal tree in linear
time.

The remaining of this paper is organized as follows. We review the key tree model
in Sect. 2. Section 3 shows the relationship between the k-deletion problem and the
k-replacement problem. From Sect. 4 on, we focus on the two-user replacement prob-
lem. We start by deriving degree bound for this problem in Sects. 4.1 and 4.2. In
Sect. 4.3, we study the maximum number of leaves that can be placed on a tree given
a fixed replacement cost and use the result to prove the optimal tree structure for the
2-replacement problem. Finally, we conclude our work and propose a conjecture on
the optimal tree cost for the general k-replacement problem in Sect. 5. This paper is
an extended version of our ISAAC 2008 paper (Wu et al. 2008b) with all the proofs
included.

2 Preliminaries

We first review the key tree model (Wong et al. 2000) which is also referred to in the
literature as LKH (Logical Key Hierarchy) (Wallner et al. 1999).

In the key tree model, there is a Group Controller maintaining a key tree for the
group. A leaf on the key tree represents a user and stores an individual key that is only
known by this user. An internal node stores a key that is shared by all its leaf descen-
dants. Thus a user always knows the keys stored in the path from its leaf to the root.
To guarantee content security, the GC encrypts the content by the Traffic Encryption
Key (TEK) which is stored in the root and then broadcast it to the users. Only the au-
thorized users knowing the TEK can decrypt the content. When a user joins or leaves,
the GC will update the keys in a bottom-up fashion. As shown in Fig. 1(a), there are
7 users in the group. We take the deletion of user u4 as an example. Since u4 knows
k4, k9 and k10, the GC need to update the keys k9 and k10 (the node that stores k4
disappears because u4 is already deleted from the group). GC will encrypt the new
k9 with k5 and broadcast it to notify u5. Note that only u5 can decrypt the message.
Then GC encrypts the new k10 with k6, k7, k8 and the new k9 respectively, and then

J Comb Optim (2013) 26:44–70 47

Fig. 1 Two structures of a group with 7 users

broadcast the encrypted messages to notify the users. Since all the users and only the
users in the group can decrypt one of these messages, the GC can safely notify the
users except user u4 about the new TEK. The deletion cost measured as the number
of encryptions is 5 in this example.

In the following, we say that a node u has degree d if it has d children in the tree.
Note that the worst case deletion cost of the tree shown in Fig. 1(a) is 6 where one
of the users u1, u2, u3 is deleted. In Snoeyink et al. (2001), the authors investigate
the optimal tree structure with n leaves where the worst case single deletion cost is
minimum. Their result shows that the optimal tree is a special kind of 2-3 tree defined
below. Figure 1(b) demonstrate the 2-3 tree with 7 leaves.

Definition 1 In the whole paper, we use 2-3 tree to denote a tree with n leaves con-
structed in the following way.

(1) When n ≥ 5, the root degree is 3 and the number of leaves in three subtrees of the
root differs by at most 1. When n = 4, the tree is a complete binary tree. When
n = 2 or n = 3, the tree has root degree 2 and 3 respectively. When n = 1, the
tree only consists of a root.

(2) Each subtree of the root is a 2-3 tree defined recursively.

In popular servers, since there are always users on the waiting list, the batch rekey-
ing model will update the TEK by replacing constant k revoked users with k waiting
users. The newly joined k users will take the k positions which are vacant due to the
leave of k users, thus keeping the structure of the tree unchanged for each update. This
reduces the update frequency. The updating cost equals the summation of degrees of
all ancestors of the k old users (leaves). Thus the objective is to find an optimal tree
where the worst case updating cost incurred by the k-user membership change is
minimum. We denote this problem to be k-replacement problem. In fact, Snoeyink
et al. (2001) showed that 2-3 tree is the optimal tree for 1-replacement problem. We
further denote the problem to find the optimal tree when k users are deleted from the
tree as k-deletion problem. As shown in Fig. 1(b), the tree has a worst case cost 5 for
1-deletion problem and worst case cost 6 for 1-replacement problem. We study the
two-user case for both deletion and replacement problems.

We first define the k-replacement problem formally as follows.

48 J Comb Optim (2013) 26:44–70

Definition 2 Given a tree T , we denote the number of encryptions incurred by re-
placing ui1 , . . . , uik with k new users as CT (ui1 , . . . , uik) = ∑

v∈(
⋃

1≤j≤k ANC(uij
)) dv

where ANC(u) is the set of u’s ancestor nodes and dv is v’s degree. We use
k-replacement cost to denote the maximum cost among all possible combinations
and write it as Ck(T ,n) = maxi1,i2,...,ik CT (ui1, ui2, . . . , uik).

We further define an optimal tree Tn,k,opt (abbreviated as Tn,opt if the context is
clear) for the k-replacement problem as a tree which has the minimum k-replacement
cost over all trees with n leaves, i.e. Ck(Tn,opt , n) = minT Ck(T ,n). We also denote
this optimal cost as OPTk(n). The k-replacement problem is to find the OPTk(n)

and Tn,k,opt . The k-deletion cost and the k-deletion problem are defined similarly
by using the cost incurred by permanently deleting the leaves instead of the cost
incurred by replacing the leaves. Note that some keys need not be updated if all its
leaf descendants are deleted and the number of encryptions needed to update that key
is also reduced if some branches of that node totally disappear due to deletion. We
remark that the k-deletion problem and the k-replacement problem are not trivially
equivalent.

3 Relationship between the k-deletion problem and the k-replacement problem

In this section, we will show that the k-deletion problem can be solved by handling
the k-replacement problem.

Definition 3 We say a node v is a pseudo-leaf node if its children are all leaves. In
the following two lemmas, we use t to denote the number of pseudo-leaf nodes in a
tree T .

Lemma 1 If t ≤ k, then the k-deletion cost of T is at least n − k.

Proof When t ≤ k, we claim that in order to achieve k-deletion cost, we need to
delete at least one leaf from each pseudo-leaf node. Suppose on the contrary there
exists one pseudo-leaf node v where none of its children belongs to the k leaves we
delete. We divide the discussion into two cases.

First, if each of the k leaves is a child of the remaining t − 1 pseudo-leaf nodes,
then there exists one pseudo-leaf node u with at least two children deleted. In this
case, a larger deletion cost can be achieved if we delete one child of v while keeping
one more child of u undeleted.

Second, if some of the k leaves are not from the remaining t −1 pseudo-leaf nodes,
then we assume that u is one of them whose parent is not a pseudo-leaf. Then there
exists one of u’s siblings w that has at least one pseudo-leaf w′ (w′ can be w itself)
as its descendant. If no children of w′ belong to the k leaves, then deleting a child of
w′ while keeping u undeleted incurs larger deletion cost. If at least one child of w′
belongs to the k leaves, then deleting a child of v while keeping u undeleted incurs
larger deletion cost.

J Comb Optim (2013) 26:44–70 49

We see that in the worse case deletion, each pseudo-leaf node has at least one child
deleted, which implies that all the keys in the remaining n − k leaves should be used
once as the encryption key in the updating process. Hence the k-deletion cost of T is
at least n − k. �

Lemma 2 If t > k, then the k-deletion cost is Ck(T ,n) − k where Ck(T ,n) is the
k-replacement cost.

Proof Using similar arguments as in the proof of Lemma 1, we can prove that
when t > k, the k-deletion cost can only be achieved when the k deleted leaves are
from k different pseudo-leaf nodes. Then it is easy to see that the k-deletion cost is
Ck(T ,n) − k where Ck(T ,n) is the k-replacement cost. �

Although worst case costs between these two problems do not always differ by a
constant k given some tree T , we can show that the worst case costs between their
optimal tree structures always differ by k.

Theorem 1 When considering trees with n leaves, the optimal k-deletion cost is
OPTk(n) − k where OPTk(n) is the optimal k-replacement cost.

Proof Note that in the tree where all n leaves have the same parent (denoted as one-
level tree), the k-deletion cost is n − k. By Lemma 1, any tree with the number of
pseudo-leaf nodes at most k has the k-deletion cost at least n−k. Hence we only need
to search the optimal tree among the one-level tree and the trees with the number of
pseudo-leaf nodes larger than k. Moreover, in the one-level tree T , the k-deletion
cost is n − k = Ck(T ,n) − k where Ck(T ,n) is the k-replacement cost. Further by
Lemma 2, all the trees in the scope for searching the optimal tree have k-deletion cost
Ck(T ,n) − k, which implies that the optimal k-deletion cost is OPTk(n) − k where
OPTk(n) is the optimal k-replacement cost. �

The above analysis implies that the optimal tree for the k-deletion problem can
be obtained by solving the k-replacement problem. Therefore, we only focus on the
k-replacement problem in the following.

4 Two-user replacement problem

4.1 First step: loose degree bound for the k-replacement problem

Given a constant k, we show that k-replacement problem can be computed in poly-
nomial time by deducing a loose degree bound. In the following proofs, we will often
choose a template tree T and then construct a tree T ′ by removing from T some
leaves together with the exclusive part of leaf-root paths of those leaves. Here, the
exclusive part of a leaf-root path includes those edges that are not on the leaf-root
path of any of the remaining leaves. We also say that T is a template tree of T ′. By
the definition of the k-replacement cost, we have the following fact.

50 J Comb Optim (2013) 26:44–70

Fig. 2 Transformation of the tree which has root degree d = (k + t)2 + r

Fact 2 If T is a template tree of T ′, then the k-replacement cost of T ′ is no larger
than that of T .

Lemma 3 OPTk(n) is non-decreasing when n increases.

Proof Suppose on the contrary OPTk(n1) > OPTk(n2) when n1 ≤ n2, then there
exist two trees T1 and T2 satisfying Ck(T1, n1) = OPTk(n1) and Ck(T2, n2) =
OPTk(n2). We can take T2 as a template tree and delete the leaves until the number
of leaves decreases to n1. The resulting tree T ′

2 satisfies Ck(T
′
2, n1) ≤ Ck(T2, n2) <

OPTk(n1) by Fact 2, which contradicts the definition of OPTk(n1). The lemma is
then proved. �

Lemma 4 Tn,opt has root degree upper bounded by (k + 1)2 − 1.

Proof We divide the value of root degree d ≥ (k+1)2 into two sets, {d|(k+ t)2 ≤ d <

(k+ t)(k+ t +1), d, k, t ∈ N, t ≥ 1} and {d|(k+ t −1)(k+ t) ≤ d < (k+ t)2, d, k, t ∈
N, t ≥ 2}. Take k = 2 for instance, the first set is {9,10,11,16,17,18,19,25, . . .}
while the other is {12,13,14,15,20,21,22,23, . . .}.

Case 1: (k + t)2 ≤ d < (k + t)(k + t + 1) (t ≥ 1).
We write d as (k + t)2 + r where 0 ≤ r < k + t . Given a tree T , we can trans-

form it into a tree with root degree k + t as Fig. 2 shows. In the resulting tree T ′,
subtrees Tu1, . . . , Tuk+t

are k + t subtrees where the root u1, . . . , uk+t are on level
one. Among the k + t subtrees, there are r subtrees with root degree k + t + 1
and k + t − r subtrees with root degree k + t . Suppose that the k-replacement cost
of T ′ is incurred by replacing k1, k2, . . . , ks users from subtrees Ti1, Ti2, . . . , Tis

respectively where k1 + k2 + · · · + ks = k and s ≤ k. The corresponding cost is
Ck(T

′, n) = ∑s
j=1 Ckj

(Tij , nij) + D0 where nij is the number of leaves in Tij and
D0 is the cost incurred in the first two levels.

In the original tree T , the corresponding cost for replacing those leaves is
Ck(T ,n) = ∑s

j=1 Ckj
(Tij , nij) + d = ∑s

j=1 Ckj
(Tij , nij) + (k + t)2 + r . We will

prove that when t ≥ 1 we always have Ck(T ,n) ≥ Ck(T
′, n), i.e. D0 ≤ (k + t)2 + r .

Firstly, if r ≤ k, the cost D0 is at most r(k + t + 1)+ (k − r)(k + t)+ k + t where
there are r users coming from r subtrees with root degree k + t + 1 and k − r users
coming from k − r subtrees with root degree k + t . Therefore, we have

D0 ≤ (k + t + 1)r + (k + t)(k − r) + k + t = (k + t)(k + 1) + r ≤ (k + t)2 + r.

J Comb Optim (2013) 26:44–70 51

Fig. 3 Transformation of the tree which has root degree d = (k + t)2 − (k + t − r)

Secondly, if r > k, the cost D0 is at most (k + t) + (k + t + 1)k where the k users
are all from k subtrees which have root degree k + t + 1. Therefore, we have

D0 ≤ (k + t) + (k + t + 1)k ≤ (k + t)(k + 1) + k ≤ (k + t)2 + r.

Hence, in both situations, the condition t ≥ 1 ensures that the transformation from
T to T ′ does not increase the k-replacement cost.

Case 2: (k + t − 1)(k + t) ≤ d < (k + t)2 (t ≥ 2).
In this case, we write d as (k+ t)2 − (k+ t − r) where 0 ≤ r < k+ t . We transform

T into a tree with root degree k + t where there are r subtrees with root degree k + t

and k + t − r subtrees with root degree k + t −1, as Fig. 3 shows. Similarly for r ≤ k,
we have

D0 ≤ (k + t)r + (k + t − 1)(k − r) + k + t = (k + t)(k + 1) − (k − r)

≤ (k + t)2 − (k + t − r).

The last inequality holds because t ≥ 2.
While for r > k, we have

D0 ≤ (k + t)k ≤ (k + t)2 − (k + t − r).

Thus, t ≥ 2 ensures that the transformation from T to T ′ does not increase the
k-replacement cost.

Therefore, for any root degree d ≥ (k + 1)2, through a series of transformations,
we can transform the tree into a tree with root degree less than (k + 1)2 without
increasing the k-replacement cost. For example, when d = 120 and k = 2, we have
120 = (k + 9)2 − 1. Firstly we transform it into a tree with root degree k + 9 =
11. Since 11 = (k + 1)2 + 2 is still greater than (k + 1)2, we further transform the
resulting tree into a tree with root degree k + 1 = 3. Because 3 < (2 + 1)2, we stop
our transformation. The lemma is finally proved. �

Lemma 4 suggests that we can find an optimal tree for the k-replacement prob-
lem among trees whose root degree is at most (k + t)2 − 1. Note that our degree
bound in Lemma 4 is only for the root. We can also extend this property to all the
internal nodes. This leads to a polynomial time algorithm to compute the optimal
k-replacement tree given a constant k.

52 J Comb Optim (2013) 26:44–70

Fig. 4 Transformation of tree T which has an internal node with degree d ≥ (k + t)2

Theorem 3 Any internal node in Tn,opt has degree upper bounded by (k + 1)2 − 1.

Given a constant k, the k-replacement problem can be computed in O(n(k+1)2) time.

Proof Suppose T is an optimal tree and has an internal node v which has degree
dv ≥ (k + 1)2, as shown in Fig. 4. We transform the subtree Tv rooted at v into T ′

v in
the similar way as in Lemma 4 (The resulting tree is denoted by T ′). We will prove
that the k-replacement cost in the resulting tree T ′ does not increase. We consider
all the three possible relative positions of those k leaves whose membership change
achieves k-replacement cost in T ′. First, if none of the leaves are from T ′

v , then the
replacement cost of the corresponding leaves in T will be the same as the replace-
ment cost in T ′. If there are m (m < k) leaves from T ′

v while the others are not, then
replacing the corresponding leaves in T incurs no smaller replacement cost compared
to that in T ′, because replacing m leaves of Tv incurs no smaller cost than replacing
the corresponding m leaves in T ′

v due to similar analysis shown in Lemma 4. If all
the k leaves are from T ′

v , then replacing the corresponding leaves in T again incurs
no smaller replacement cost than T ′ by Lemma 4. In all the above three cases, T ′
has replacement cost no greater than T , which enables us to transform the degree of
every internal node to be equal to or less than (k + 1)2 − 1 without increasing the
k-replacement cost. By enumeration all the possible degrees of the internal node, we
can design a O(n(k+1)2

) time dynamic programming algorithm to iterative compute
the optimal k-replacement cost OPTk(i) (1 ≤ i ≤ n). By keeping the branching infor-
mation for each iteration, we can construct the optimal k-replacement tree with the
same complexity. �

4.2 Tight degree bound for 2-replacement problem

From this subsection on, we focus on the 2-replacement problem to derive efficient
algorithm.

Definition 4 We denote the maximum cost to delete a single leaf in a tree T as
ST and the maximum cost to delete two leaves in T as DT , i.e. ST = C1(T ,n) and
DT = C2(T ,n).

J Comb Optim (2013) 26:44–70 53

Fig. 5 Transformation of tree T which has an internal node with degree 8

According to Theorem 3, for the 2-replacement problem, Tn,opt has degree upper
bounded by 8. Furthermore, we need not consider root degree d = 1 when we are
searching for the optimal tree. Because merging the root and its single child into one
node can strictly decrease the worst case updating cost.

Fact 4 For the 2-replacement problem, suppose that a tree T has root degree d where
d ≥ 2 and the d subtrees are T1, T2, . . . , Td . We have

DT = max
1≤i,j≤d

{DTi
+ d,STi

+ STj
+ d}.

Proof We know that replacing any two leaves from a subtree Ti will incur a cost at
most DTi

+ d , while replacing two leaves from two different subtrees Ti and Tj will
incur a cost at most STi

+ STj
+ d . The 2-replacement cost comes from one of the

above cases and therefore the fact holds. �

We can further remove the possibility of degree 8 by the following lemma.

Lemma 5 For the 2-replacement problem, we can find an optimal tree among the
trees with node degrees bounded between 2 and 7.

Proof By Theorem 3, we only need to remove the possibility of degree 8 for any
internal node. We first prove that we can transform any tree with root degree 8 into
a tree with a smaller root degree and no larger 2-replacement cost. Given a tree T

with root degree 8 and subtrees T1, T2, . . . , T8. We transform the structure at the
root v into degree 4, and each child of v has degree 2, as shown in Fig. 5. In the
original tree, 2-replacement cost is DT = max{DTi

+ 8, STi
+ STj

+ 8} (Fact 4).
In the resulting tree T ′, the cost of replacing two leaves from different subtree
Ti and Tj is at most STi

+ STj
+ 8, and the cost of replacing two leaves from

one subtree Ti is at most DTi
+ 6. Hence, 2-replacement cost in T ′ is at most

max{DTi
+ 6, STi

+ STj
+ 8} ≤ DT .

Note that the 1-replacement cost of T also does not increase in the transformation.
We then can extend this transformation to any internal node as we have shown in the
proof of Theorem 3. The lemma is then proved. �

Based on this bound, the optimal tree can be computed in O(n8) time by enumer-
ating all possible degrees that are at most 7 using a dynamic programming algorithm.

54 J Comb Optim (2013) 26:44–70

Fig. 6 Transformation of a tree which has ST1 < ST2

However, O(n8) is still a bit unaffordable in real computations. Therefore, in the fol-
lowing, we reduce the complexity to O(n) by accurately determining the structure of
the optimal tree. In the following, we show two important properties of the optimal
tree (monotone property and 2-3 tree property) and then further remove the possibil-
ity of root degree 2 and 3 to reduce the scope of trees within which we search for the
optimal tree.

Lemma 6 (Monotone property) For the 2-replacement problem, suppose a tree
T has root degree d where d ≥ 2 and d subtrees are T1, T2, . . . , Td . Without
loss of generality, we assume that T has a non-increasing leaf descendant vector
(n1, n2, . . . , nd), where ni is the number of leaves in subtree Ti . Then, there ex-
ists an optimal tree where ST1 ≥ ST2 ≥ · · · ≥ STd

and Ti is a template of Ti+1 for
2 ≤ i ≤ d − 1.

Proof If a given optimal tree contradicts the lemma, we prove that we can always
change this tree into a tree satisfying the monotone property but with equal or less
2-replacement cost.

Case 1: ST1 < ST2 .
We first Let T ′

1 be the same as T1, and then choose T ′
1 to be the template tree

and construct a subtree T ′
2 by removing n1 − n2 leaves from T1. Similarly, we con-

struct the subtrees T ′
i (3 ≤ i ≤ d) by removing ni−1 − ni leaves from T ′

i−1, as shown
in Fig. 6. Since each subtree T ′

i is a template of T ′
i+1, the final set of new trees

satisfy ST ′
1

≥ ST ′
2

≥ · · · ≥ ST ′
d
, and DT ′

1
≥ DT ′

2
≥ · · · ≥ DT ′

d
. We then prove that

2-replacement cost is not increased in the resulting tree T ′. Note that ST ′
1
= ST1 < ST2

and DT ′
1
= DT1 . Since DT ′ = max1≤i<j≤d{DT ′

i
+ d,ST ′

i
+ ST ′

j
+ d} = max{DT1 +

d,ST ′
1
+ST ′

2
+d} and DT ≥ max{DT1 +d,ST1 +ST2 +d}, we have DT ′ < DT because

ST ′
1
+ ST ′

2
< ST1 + ST2 . Hence, the lemma holds in this case.

Case 2: ST1 ≥ ST2 ≥ · · · ≥ STj
and STj

< STj+1 .
In this case, we let T ′

1, T
′

2 be the same as T1, T2 respectively. Then we choose
T ′

2 to be the template tree and construct a subtree T ′
3 by removing n2 − n3 leaves

from T2. Similarly, we construct subtrees T ′
i (4 ≤ i ≤ d) by removing ni−1 − ni

leaves from T ′
i−1, as shown in Fig. 7. Since each subtree T ′

i is a template of
T ′

i+1, the final set of new trees satisfy ST1 ≥ ST2 ≥ ST ′
3

≥ · · · ≥ ST ′
d

and DT2 ≥
DT ′

3
≥ · · · ≥ DT ′

d
. Therefore, we have DT ′ = max1≤i,j≤d{DT ′

i
+ d,ST ′

i
+ ST ′

j
+ d} =

max{DT1 + d,DT2 + d,ST1 + ST2 + d}, which implies DT ′ ≤ DT .

J Comb Optim (2013) 26:44–70 55

Fig. 7 Transformation of a tree T which has STj
< STj+1 where j ≥ 2

The 2-replacement cost is not increased in T ′ in both cases and therefore the
lemma is proved. �

Fact 5 For trees satisfying the monotone property (Lemma 6), we have

DT = max{DT1 + d,ST1 + ST2 + d}.

Proof By Fact 4 we have DT = max1≤i,j≤d{DTi
+ d,STi

+ STj
+ d}. Lemma 6

further ensures that max1≤i,j≤d{DTi
+ d,STi

+ STj
+ d} = max{DT1 + d,DT2 +

d,ST1 +ST2 +d}. Since DT2 < 2ST2 ≤ ST1 +ST2 , we have DT = max{DT1 +d,ST1 +
ST2 + d}. �

In the following, we further reduce the scope for searching the optimal tree by
proving the following lemma.

Lemma 7 (2-3 tree property) For a tree T satisfying Lemma 6, we can transform
subtrees T2, . . . , Td into 2-3 trees without increasing the 2-replacement cost.

Proof Given a tree T satisfying Lemma 6 and Fact 5, we transform subtrees
T2, T3, . . . , Td into 2-3 trees T ′

2, T
′
3, . . . , T

′
d to get a new tree T ′. For 2 ≤ i ≤ d , since

ST ′
i
= OPT1(ni), we have ST ′

d
≤ · · · ≤ ST ′

3
≤ ST ′

2
≤ ST2 (Lemma 3) and DT ′

i
≤ 2ST ′

i
≤

2ST ′
2
≤ ST1 + ST ′

2
(2 ≤ i ≤ d). Thus DT ′ = max{DT1 + d,DT ′

2
+ d,ST1 + ST ′

2
+ d} ≤

max{DT1 + d,ST1 + ST2 + d} = DT , which implies the transformation does not in-
crease 2-replacement cost. The lemma is then proved. �

We denote the trees satisfying Lemma 7 as candidate-trees. By Lemma 7, we can
find an optimal tree among all the candidate trees. For a candidate tree T with root
degree d , we define branch Bi to be the union of Ti and the edge connecting the
root of T with the root of Ti . We say branch B1 is the dominating branch and other
branches B2, . . . ,Bd are ordinary branches. To make the discussion self-contained,
we introduce the following two properties.

Fact 6 Suppose that c(u) is the ancestor weight of leaf u, i.e. c(u) = ∑
v∈ANC(u) dv

where ANC(u) is the set of u’s ancestor nodes and dv is v’s degree, then the cost of
replacing two leaves u1 and u2 is c(u1, u2) = c(u1) + c(u2) − c(v) − dv where v is
the nearest common ancestor of u1 and u2.

56 J Comb Optim (2013) 26:44–70

Fig. 8 The three cases of u0 in the proof of Fact 8

Lemma 8 In a tree T , assume that u1, u2 are the two leaves which incur the
2-replacement cost (c(u1, u2) = DT) and v is the nearest common ancestor of u1
and u2, then

(1) one of the leaves satisfies c(u) = ST (let this leaf be u1) and therefore DT =
c(u1) + c(u2) − c(v) − dv = ST + c(u2) − c(v) − dv .

(2) c(u2) − c(v) − dv ≤ ST − 1.

Proof The fact implies that if two leaves’ replacement cost in T is maximum, then at
least one of the leaves has the maximum ancestor weight ST . Suppose on the contrary
that two leaves u1, u2 satisfy c(u1, u2) = DT but c(u1) < ST and c(u2) < ST . Then,
for a leaf u0 which has c(u0) = ST , we prove c(u0, u1) > c(u1, u2) or c(u0, u2) >

c(u1, u2), which contradicts c(u1, u2) = DT . Figure 8 shows the transformations for
the following three cases.

Case 1: u0, u1’s nearest common ancestor v0 ∈ ANC(v).
In this case, we have c(u0, u2) = c(u0) + c(u2) − c(v0) − dv0 and therefore

c(u0, u2)− c(u1, u2) = c(u0)− c(u1)+ c(v)+dv − c(v0)−dv0 . Since c(u0) > c(u1)

and c(v0)+dv0 ≤ c(v) (v0 is v1’s ancestor), we have c(u0, u2) > c(u1, u2), the lemma
is proved in this case.

Case 2: u0, u1’s nearest common ancestor v0 ∈ ANC(u1) but v0 /∈ ANC(v).
In this case, we have c(u0, u2) − c(u1, u2) = c(u0) − c(u1) > 0.
Case 3: u0, u2’s nearest common ancestor v0 ∈ ANC(u2) but v0 /∈ ANC(v).
In this case, we have c(u0, u1) − c(u1, u2) = c(u0) − c(u2) > 0.
In all the three cases, we have either c(u0, u1) > c(u1, u2) or c(u0, u2) >

c(u1, u2). Therefore, Item (1) of the fact is proved.
Item (2) is correct because c(u2) ≤ ST . �

Through a series of lemmas in the Appendix, we are able to prove the following
theorem to further remove the possibility of root degree 2 and 3 in the optimal tree.
While removing large degree d ≥ 8 is easy, it is comparatively complicate to remove
small degrees 2 or 3.

Theorem 7 For the 2-replacement problem, a tree T with root degree 2 or 3 can be
transformed into a tree with root degree 4 without increasing the 2-replacement cost.

J Comb Optim (2013) 26:44–70 57

4.3 Linear time algorithm: balanced structure of 2-replacement problem

Note that the optimal structure can be computed in O(n8) time by enumerating all
possible degrees that are at most 7 by the result of Sect. 4.2. Although we have re-
moved the possibility of the root degree 2 and 3 in Sect. 4.2 and have fixed the struc-
ture of the ordinary branches, we still do not have an effective algorithm to exactly
compute the optimal structure because we need to enumerate all the possible struc-
tures of the dominating branch. In this subsection, we will prove that among the
candidate trees with n leaves, a balanced structure can achieve 2-replacement cost
OPT2(n). This reduces the complexity of the algorithm substantially to O(n).

The basic idea is to first investigate the capacity g(R) defined below for candi-
date trees with 2-replacement cost R (Theorem 8). Note that the optimal tree has
the minimum 2-replacement cost with n leaves, which reversely implies that if we
want to find a tree with 2-replacement cost R and at the same time has the maximum
possible number of leaves, then computing the optimal tree for increasing n until
OPT2(n) > R will produce one such solution. We then analyze and calculate the ex-
act value for the capacity (maximum number of leaves) given a fixed 2-replacement
cost R (Theorem 11). Finally, we prove that certain balanced structure can always be
the optimal structure that minimizes the 2-replacement cost (Theorem 12).

Definition 5 We use capacity to denote the maximum number of leaves that can
be placed in a certain type of trees given a fixed replacement cost. According to
Snoeyink et al. (2001), function f (r) defined below is the capacity for 1-replacement
cost r (among all the possible trees). We use function g(R) to denote the capacity for
2-replacement cost R (among all the possible trees). In other words, when g(R−1) <

n ≤ g(R), we have OPT2(n) = R.

f (r) =
⎧
⎨

⎩

3 · 3i−1 if r = 3i

4 · 3i−1 if r = 3i + 1
6 · 3i−1 if r = 3i + 2

To facilitate the discussion, according to Fact 5, we can divide the candidate trees
with 2-replacement cost R and root degree d into two categories as summarized in
the following definition.

Definition 6 Candidate trees of category 1: The two leaves whose replacement cost
achieves 2-replacement cost are from different branches, i.e. DT = ST1 + ST2 + d ,
which implies ST1 + ST2 ≥ DT1 .

Candidate trees of category 2: The two leaves whose replacement cost achieves
2-replacement cost are both from the dominating branch B1, i.e. DT = DT1 + d ,
which implies ST1 + ST2 < DT1 .

Correspondingly, we denote the capacity of the candidate trees belonging to cate-
gory 1 with 2-replacement cost R by g1(R) and denote the capacity of the candidate
trees belonging to category 2 with 2-replacement cost R by g2(R). Note that we
can find the optimal tree among the candidate trees according to Lemma 7, which

58 J Comb Optim (2013) 26:44–70

implies that with the same 2-replacement cost R, the best candidate tree can al-
ways have equal or larger number of leaves than the general trees. That is, we have
g(R) = max{g1(R), g2(R)}. Thus in the following discussions, we only focus on the
candidate trees. On the other hand, because we are looking for trees with the maxi-
mum number of leaves, it is easy to see that we can assume the number of leaves in
ordinary branches are all the same (Otherwise, we can make the tree bigger without
affecting the 2-replacement cost).

In all candidate trees with 2-replacement cost R, by Fact 5, we only need to con-
sider the case where at most one of the two leaves whose replacement cost achieves
2-replacement cost is from an ordinary branch. Suppose each ordinary branch has
1-replacement cost r−, and correspondingly T1 has 1-replacement cost r+ where
r+ ≤ R − d − r− (otherwise we have DT ≥ r+ + r− + d > R, a contradiction). For
fixed cost R, Lemma 6 (monotonous property) implies that r+ ≥ r−. We first prove
the following capacity bound.

Theorem 8 We have gi(R) ≤ (R − 2r−) · f (r−) (i = 1,2).

To prove this theorem, we will respectively study the two categories of candidate
trees to prove g1(R) ≤ (R − 2r−) · f (r−) and g2(R) ≤ g1(R). We use critical node
defined below to denote a special kind of nodes in the following proofs.

Definition 7 For a selected node u, we say the path from u to the root is a critical
path. Correspondingly, u’s ancestor nodes on the path are named critical nodes.

We first investigate the capacity of the candidate tree T in category 1 which has
2-replacement cost R. In Lemmas 9, 10, 11, 12, we assume that the number of leaves
in T is the maximum possible and try to fix the rmax(·) (Definition 8) of some critical
nodes and their siblings to prove the capacity bound g1(R).

Definition 8 For the subtree Tv rooted at node v, the maximum ancestor weight with
respect to Tv is denoted as rmax(v). Correspondingly, the maximum number of leaves
Tv can hold given the 1-replacement cost rmax(v) is denoted as cap(v).

Given a candidate tree in category 1 where DT = ST1 + ST2 + d , there exists at
least one leaf u ∈ B1 satisfying c(u) = r+ + d = R − r−. We choose such a leaf u

to obtain a critical path, correspondingly u’s ancestors are critical nodes. Notice that
critical node v has rmax(v) = R − r− − c(v). Furthermore, without loss of generality,
we suppose v1 is the nearest ancestor of u which satisfies rmax(v1) ≥ r− (which
implies rmax(v0) < r− where critical node v0 is v1’s child). In the following, we
investigate the capacity for the critical node and their siblings.

Lemma 9 If node v is a critical node, then for any sibling v′ of v, we have rmax(v
′) =

min{r−, rmax(v)}.

Proof By the definition of r+ we have rmax(v
′)+ c(v′)− d ≤ r+ = rmax(v)+ c(v)−

d , which implies rmax(v
′) ≤ rmax(v). On the other hand, if we choose to delete a

J Comb Optim (2013) 26:44–70 59

Fig. 9 spine(v1, root) that
belongs to candidate trees in
category 1

leaf u in Tv and a leaf w in Tv′ , the replacement cost should be at most R, which
means rmax(v) + rmax(v

′) + c(v) ≤ R. Note that rmax(v) = R − r− − c(v). We then
have rmax(v

′) ≤ r−. The possibility rmax(v
′) < min{(r−, rmax(v))} can be removed

because otherwise the capacity of Tv′ is not maximum which contradicts our as-
sumption that the number of leaves in T is the maximum possible. In other words,
if rmax(v

′) < min{r−, rmax(v)}, we can enlarge the tree by increasing rmax(v
′) to

min{r−, rmax(v)} while ensuring that the tree still belongs to candidate trees in cate-
gory 1 and has 2-replacement cost R. This ends the proof. �

Lemma 10 Given a critical node v which is on the path from v1 to the root, if v′ is a
sibling of v, we have rmax(v

′) = r−.

Proof For the critical node v, we have rmax(v) = R − r− − c(v). Furthermore, since
v is v1’s ancestor or v1 itself, we have rmax(v) ≥ rmax(v1) ≥ r−. Hence, the sibling
of v has rmax(v

′) = min{r−, rmax(v)} = r− (Lemma 9). The lemma is proved. �

Consider the structure composed by the critical nodes on the path from v1 to the
root and the siblings of these critical nodes, as shown in Fig. 9. This structure is
denoted as spine(v1, root) according to the definition below. Suppose that w is a leaf
in this structure. The value of rmax(w) is r− by Lemma 10.

Definition 9 Suppose va and vb (va is a descendent of vb) are critical nodes on the
selected critical path, we denote the structure composed by the critical nodes from va

to vb and their siblings as spine(va, vb) (vb’s siblings are not included).

We will consider two cases of spine(v1, root) for candidate trees in category 1 and
prove g1(R) ≤ (R − 2r−) · f (r−) in the following.

Case 1: rmax(v1) = r−.
Case 2: rmax(v1) > r−.

Lemma 11 When rmax(v1) = r−, we have g1(R) ≤ (R − 2r−) · f (r−).

Proof In this case, besides node v1, any other leaf w of spine(v1, root) also has
rmax(w) = r− according to Lemma 10. On the other hand, we know that the total de-
grees from the parent of v1 to the root is c(v1) = R−r− −rmax(v1) = R−2r−, which
equals the number of leaves on spine(v1, root). Therefore, the capacity is bounded by
(R − 2r−) · f (r−). �

Lemma 12 When rmax(v1) > r−, we have g1(R) ≤ (R − 2r−) · f (r−).

60 J Comb Optim (2013) 26:44–70

Proof Theorem 3 implies that dv1 ≤ 7, thus rmax(v1) = rmax(v0) + dv1 ≤ r− + 6
(because rmax(v0) < r−).

Similar with the proof in the previous lemma, for any leaf v except v1 on
spine(v1, root), we have cap(v) ≤ f (r−), which results in at most (R − r− −
rmax(v1)− 1) ·f (r−) leaves. To prove the capacity bound, we only need to show that
cap(v1) ≤ (rmax(v1)+ 1 − r−) ·f (r−). If we write rmax(v1) as r− +m where m ≤ 6,
then it is equivalent to proving (m+1) ·f (r−)−f (r−+m) ≥ 0. When 1 ≤ m ≤ 5, we
can verify that f (r− +m) < (m+1)f (r−). When m = 6, the above relation does not
hold because f (r− + 6) = 9f (r−) > 7f (r−). Therefore we apply another method.
We know that when rmax(v1) = r− +m = r− +6, we have dv1 = 7. Lemma 9 implies
that the sibling u of v0 has rmax(u) = min{r−, rmax(v0)} = rmax(v0) = r− + 6 − 7 =
r− − 1. Hence cap(v1) ≤ 7f (r− − 1) ≤ 7f (r−). This completes the proof. �

Until now, we only focus on the candidate trees in category 1. By Lemma 11
and 12 we have proved the capacity bound of candidate trees in category 1, i.e
g1(R) ≤ (R − 2r−) · f (r−). We then prove that candidate trees in category 2 has
a capacity no greater than that of category 1.

Note that the following fact holds for candidate trees T in category 2.

Fact 9 Given a candidate tree T in category 2, suppose that u1, u2 are the two leaves
(from subtree T1) whose replacement cost equals R, i.e. c(u1) + c(u2) − c(v) − dv =
R where v is the nearest common ancestor of u1, u2 and c(u1) = ST . In order to find
an optimal tree, among candidate trees in category 2, we only need to search among
those trees satisfying c(u2)−c(v)−dv < OPT1(n1) where n1 is the number of leaves
in T1.

Proof If on the contrary in the optimal tree, we have c(u2) − c(v) − dv ≥ OPT1(n1),
then we have DT = c(u1) + c(u2) − c(v) − dv ≥ 2OPT1(n1) + d since c(u1) =
ST1 + d ≥ OPT1(n1)+ d . In this case, if we transform T into T ′ by replacing subtree
T1 with a 2-3 tree with the same number of leaves, we have DT ′ ≤ DT because ST ′

1
=

OPT1(n1) ≤ ST1 and DT ′
1
+d < 2OPT1(n1)+d ≤ c(u1)+c(u2)−c(v)−dv = R. We

know that T ′ is either a candidate tree in category 1 or a candidate tree in Category 2
satisfying c(u2) − c(v) − dv < OPT1(n1). Thus the fact follows. �

Lemma 13 A candidate tree in category 2 has capacity g2(R) ≤ g1(R).

Proof Given a candidate tree T in category 2, we have ST1 + ST2 + d < DT1 + d =
R = DT . By the monotone property in Lemma 6, the d subtrees satisfy ST1 ≥ ST2 ≥
· · · ≥ STd

. If ST1 = ST2 , then DT1 + d ≤ 2ST1 + d = ST1 + ST2 + d which leads to a
contradiction. Thus we have ST1 ≥ ST2 + 1. Note that the ordinary branches are 2-3
trees, we do a tree expansion by adding one leaf to each of the ordinary branches
(where each resulting subtree is still a 2-3 tree). In this way, we increase the number
of leaves in the tree without affecting the 2-replacement cost.

The resulting subtree’s 1-replacement cost will increase by at most 1. Suppose that
two leaves in the resulting tree T ′ whose replacement cost achieves the 2-replacement
cost are u1 and u2. We discuss three cases. If u1, u2 are both from T1, then replacing

J Comb Optim (2013) 26:44–70 61

u1, u2 incurs a cost DT1 + d = R. If one of the two leaves is from T1 while the other
is from Ti , then replacing u1, u2 incurs a cost at most ST1 + ST2 + 1 + d ≤ R. If
u1, u2 are both from the ordinary branches, then replacing u1, u2 incurs a cost at
most 2(ST2 + 1) + d ≤ ST2 + 1 + ST1 + d ≤ R.

We can apply the above tree expansion until ST1 +STi
+ d = R (The tree becomes

a candidate tree of category 1) and denote the final tree as T ′′. We will prove that
T ′′ is a candidate tree of category 1. To show this, we only need to prove that in T ′′
subtree T ′′

2 has the number of leaves less than T1. This follows because OPT1(n
′′
2) =

ST ′′
2

= R − ST1 − d = c(u2) − c(v) − dv < OPT(n1) implies n′′
2 < n1.

Therefore, with 2-replacement cost R fixed, there is always a candidate tree of
category 1 which has more leaves than any candidate tree of category 2. This finishes
the proof of g2(R) ≤ g1(R). �

Lemma 13 implies that the maximum capacity can always be achieved by the
candidate trees in category 1. Thus the capacity bound is (R − 2r−) · f (r−) and
Theorem 8 is then proved.

In the following, among these candidate trees we study the optimal structure which
achieves the maximum capacity for different values of 2-replacement cost R. We will
only elaborate the proof for R = 6i + 6 due to the similarity of other proofs. The
correctness of other proofs can be referred to in Table 1. The following fact is used
in our proofs.

Fact 10

(s + 2t) · f (r − t) ≤ s · f (r) when

⎧
⎪⎪⎨

⎪⎪⎩

r = 3i, t ≥ 1, s ≥ 4
r = 3i + 1, t ≥ 2, s ≥ 4
r = 3i + 1, t ≥ 1, s ≥ 6
r = 3i + 2, t ≥ 1, s ≥ 4.

Proof We only need to prove f (r−t)
f (r)

≤ s
s+2t

. Since s
s+2t

is a monotonously increasing

relative to s, thus when s ≥ 4 it is sufficient to prove f (r−t)
f (r)

≤ 4
4+2t

. By the definition
of function f (·), we discuss about three cases.

Case 1: r = 3i.
We have

f (3i − t)

f (3i)
=

⎧
⎪⎪⎨

⎪⎪⎩

f (3i−1−3j)
f (3i)

= 6·3i−2/3j

3i = 2
3 · 1

3j ≤ 4
4+2(3j+1)

if t = 3j + 1
f (3i−2−3j)

f (3i)
= 4·3i−2/3j

3i = 4
9 · 1

3j < 4
4+2(3j+2)

if t = 3j + 2
f (3i−3−3j)

f (3i)
= 3·3i−2/3j

3i = 1
3 · 1

3j < 4
4+2(3j+3)

if t = 3j + 3

Thus in this case, we have (s + 2t) · f (r − t) ≤ s · f (r) when s ≥ 4 and t ≥ 1.
Case 2: r = 3i + 2.
We have

f (3i + 2 − t)

f (3i + 2)
=

⎧
⎪⎨

⎪⎩

2
3 · 1

3j ≤ 4
4+2(3j+1)

if t = 3j + 1
1
2 · 1

3j ≤ 4
4+2(3j+2)

if t = 3j + 2
1
3 · 1

3j < 4
4+2(3j+3)

if t = 3j + 3

62 J Comb Optim (2013) 26:44–70

Table 1 Capacity bound for different values of R

R d = 7 d = 6 d = 5 d = 4

6i + 6 (8+2t)f (3i −1− t)

≤ 8 · f (3i − 1)

(6 + 2t)f (3i − t)

≤ 6 · f (3i)

(6 + 2t)f (3i − t)

≤ 6 · f (3i)

(4 + 2t)f(3i + 1 − t)
≤ 4 · f(3i + 1)

= 16 · 3i−1 = 18 · 3i−1 = 18 · 3i−1 = 16 · 3i−1

6i + 5 (7+2t)f (3i −1− t)

≤ 7 · f (3i − 1)

(7+2t)f (3i −1− t)

≤ 7 · f (3i − 1)

(5 + 2t)f (3i − t)

≤ 5 · f (3i)

(5 + 2t)f (3i − t)

≤ 5 · f (3i)

= 14 · 3i−1 = 14 · 3i−1 = 15 · 3i−1 = 15 · 3i−1

6i + 4 (8+2t)f (3i −2− t)

≤ 8 · f (3i − 2)

(6+2t)f (3i −1− t)

≤ 6 · f (3i − 1)

(6+2t)f (3i −1− t)

≤ 6 · f (3i − 1)

(4 + 2t)f (3i − t)

≤ 4 · f (3i)

= 32
3 · 3i−1 = 12 · 3i−1 = 12 · 3i−1 = 12 · 3i−1

6i + 3 (7+2t)f (3i −2− t)

≤ 7 · f (3i − 2)

(7+2t)f (3i −2− t)

≤ 7 · f (3i − 2)

(5+2t)f (3i −1− t)

≤ 5 · f (3i − 1)

(5+2t)f (3i −1− t)

≤ 5 · f (3i − 1)

= 28
3 · 3i−1 = 28

3 · 3i−1 = 10 · 3i−1 = 10 · 3i−1

6i + 2 (8+2t)f (3i −3− t)

≤ 8 · f (3i − 3)

(6+2t)f (3i −2− t)

≤ 6 · f (3i − 2)

(6+2t)f (3i −2− t)

≤ 6 · f (3i − 2)

(4+2t)f (3i −1− t)

≤ 4 · f (3i − 1)

= 8 · 3i−1 = 8 · 3i−1 = 8 · 3i−1 = 8 · 3i−1

6i + 1 (7+2t)f (3i −3− t)

≤ 7 · f (3i − 3)

(7+2t)f (3i −3− t)

≤ 7 · f (3i − 3)

(5 + 2t)f(3i − 2 − t)
≤ 5 · f(3i − 2)

(5 + 2t)f(3i − 2 − t)
≤ 5 · f(3i − 2)

= 7 · 3i−1 = 7 · 3i−1 = 20
3 · 3i−1 = 20

3 · 3i−1

Hence we have (s + 2t) · f (r − t) ≤ s · f (r) when s ≥ 4 and t ≥ 1.
Case 3: r = 3i + 1.

f (3i + 1 − t)

f (3i + 1)
=

⎧
⎪⎨

⎪⎩

3
4 · 1

3j < 4
4+2(3j+1)

if t = 3j + 1, t �= 1
1
2 · 1

3j ≤ 4
4+2(3j+2)

if t = 3j + 2
1
3 · 1

3j < 4
4+2(3j+3)

if t = 3j + 3

In this case, when s ≥ 4, t = 1, the inequality (s + 2t) · f (r − t) ≤ s · f (r) fails.
However, we still have (s + 2t) · f (r − t) ≤ s · f (r) when s ≥ 4 and t ≥ 2. For
similar reasons, because

f (3i + 1 − t)

f (3i + 1)
=

⎧
⎪⎨

⎪⎩

3
4 · 1

3j ≤ 6
6+2(3j+1)

if t = 3j + 1
1
2 · 1

3j < 6
6+2(3j+2)

if t = 3j + 2
1
3 · 1

3j < 6
6+2(3j+3)

if t = 3j + 3

we have (s + 2t) · f (r − t) ≤ s · f (r) when s ≥ 6 and t ≥ 1. �

Lemma 14 When R = 6i + 6, the maximum capacity is 18 · 3i−1.

J Comb Optim (2013) 26:44–70 63

Proof We only need to consider root degree 4 ≤ d ≤ 7 according to the root degree
bound derived in Sect. 4.2. In the following cases, we first compare the capacity of
candidate trees with the same root degree. We try to prove that the tree at certain
balance point (r+ − r− ≤ 1) has larger capacity in each case.

Case 1: Candidate trees with root degree d = 7.
All these candidate trees have r+ ≥ r− and r+ + r− + d = 6i + 6, thus we have

1 ≤ r− ≤ 3i − 1. Given such a candidate tree, when writing r− as 3i − 1 − t where
0 ≤ t ≤ 3i −1, we have capacity bound (R−2(3i −1− t)) ·f (3i −1− t) = (8+2t) ·
f (3i −1− t) by Theorem 8. We will prove that this capacity is maximum when t = 0.
Hence, we only need to prove (8 + 2t) · f (3i − 1 − t) ≤ 8f (3i − 1). Let r = 3i − 1,
s = 8. Obviously for any t ≥ 1, Fact 10 implies (8+2t) ·f (3i−1− t) ≤ 8f (3i−1) =
16 · 3i−1.

Case 2: Candidate trees with root degree d = 6.
All these candidate trees have r+ ≥ r− and r+ + r− + d = 6i + 6, thus we have

1 ≤ r− ≤ 3i. Given such a candidate tree, when writing r− as 3i − t where 0 ≤
t ≤ 3i, we have capacity bound (R − 2(3i − t)) · f (3i − t) = (d + 2t) · f (3i − t).
We will prove that this capacity is maximum when t = 0. That is, we need to prove
(6+2t) ·f (3i − t) ≤ 6 ·f (3i) when t ≥ 1. Let r = 3i, s = 6. Fact 10 implies (6+2t) ·
f (3i − t) ≤ 6 · f (3i). Hence, the balance point t = 0, r− = 3i, r+ = 3i achieves
maximum capacity in this case.

Case 3: Candidate trees with root degree d = 5.
In this case, we have 1 ≤ r− ≤ 3i. We write r− as 3i − t . Similarly, let r = 3i,

s = 6. Fact 10 implies (6 + 2t) · f (3i − t) ≤ 6f (3i), which further implies that the
capacity is maximized to be 18 · 3i−1 when t = 0.

Case 4: Candidate trees with root degree d = 4.
In this case, we have 1 ≤ r− ≤ 3i + 1. Let r = 3i + 1, s = 4. When t ≥ 2, Fact 10

implies (4 + 2t) · f (3i + 1 − t) ≤ 4 · f (3i + 1). Thus the capacity of candidate tree
which has r− = 3i + 1 − t and t ≥ 2 is at most 4f (3i + 1) = 16 · 3i−1. While for
t = 1, the inequality fails as (4 + 2) · f (3i) = 18 · 3i−1 > 4 · f (3i + 1) = 16 · 3i−1.
However, in this special case, the capacity 6 · f (3i) is equal to that of case 2. Finally,
note that when t = 0 the capacity bound 4f (3i + 1) = 16 · 3i−1 is less than that in
case 2.

Since in all the four cases, the maximum capacity is 18 · 3i−1, the lemma is
proved. �

Considering other values of R, we finally arrive at our theorem.

Theorem 11 For 2-replacement cost R, the maximum capacity is

g(R) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

6 · 3i−1 if R = 6i

7 · 3i−1 if R = 6i + 1
8 · 3i−1 if R = 6i + 2
10 · 3i−1 if R = 6i + 3
12 · 3i−1 if R = 6i + 4
15 · 3i−1 if R = 6i + 5.

64 J Comb Optim (2013) 26:44–70

Proof Due to the similarity of the proofs for different values R, we only put the key
inequality and capacity bound in Table 1 for R = 6i +1,6i +2,6i +3,6i +4,6i +5.
Notice that in all cases, when t ≥ 2 the inequality holds. In the special case that t = 1,
when R = 6i + 6, d = 4, R = 6i + 1, d = 5 or R = 6i + 1, d = 4, the inequality fails.
The analysis of the case where R = 6i + 1, d = 5 or R = 6i + 1, d = 4 is similar to
that of the case R = 6i + 6, d = 4 as shown in the proof of Lemma 14. For example,
when R = 6i + 1, d = 5 and t = 1, the capacity bound (6i + 1 − 2(3i − 2 − t)) =
7f (3i − 3) is the capacity that can be achieved in the case R = 6i + 1, d = 7. �

After we have obtained the capacity for the 2-replacement cost R, we finally prove
that among the candidate trees with n leaves, the optimal cost can be achieved by
some balanced structure as shown below.

Definition 10 We use the balanced tree to denote a tree with root degree d where
each subtree is 2-3 tree and has number of leaves differed by at most 1.

Theorem 12 Among trees with n leaves,

(1) when n ∈ (15 · 3i−1, 18 · 3i−1], the optimal tree is a balanced tree which has root
degree 6 and 2-replacement cost 6i + 6

(2) when n ∈ (12 · 3i−1,15 · 3i−1], the optimal tree is a balanced tree which has root
degree 5 and 2-replacement cost 6i + 5

(3) when n ∈ (10 · 3i−1,12 · 3i−1], the optimal tree is a balanced tree which has root
degree 6 and 2-replacement cost 6i + 4

(4) when n ∈ (8 · 3i−1,10 · 3i−1], the optimal tree is a balanced tree which has root
degree 5 and 2-replacement cost 6i + 3

(5) when n ∈ (7 · 3i−1,8 · 3i−1], the optimal tree is a balanced tree which has root
degree 6 and 2-replacement cost 6i + 2

(6) when n ∈ (6 · 3i−1,7 · 3i−1], the optimal tree is a balanced tree which has root
degree 7 and 2-replacement cost 6i + 1.

Proof When n ∈ (15 · 3i−1,18 · 3i−1], we have OPT2(n) = 6i + 6. We will prove
that the balanced tree with root degree 6 can always achieve this optimal cost. In the
balanced tree, each subtree Tj (1 ≤ j ≤ 6) has the number of leaves nj = �n−j+1

6 	 ∈
[
 5

2 · 3i−1�,3 · 3i−1]. By function f (·), we have STi
≤ 3i. Thus any two leaves from

the tree will incur a replacement cost at most 2 · 3i + 6 = 6i + 6.
When n ∈ (12 · 3i−1,15 · 3i−1] we have OPT2(n) = 6i + 5. Then we will prove

that the balanced tree with root degree 5 can always achieve the optimal cost. In the
balanced tree, each subtree Tj (1 ≤ j ≤ 5) has the number of leaves nj = �n−j+1

5 	 ∈
[
 12

5 · 3i−1�,3 · 3i−1]. By function f (·), we have STi
≤ 3i. Thus any two leaves from

the tree will incur a replacement cost at most 2 · 3i + 5 = 6i + 5.
When n ∈ (10 · 3i−1,12 · 3i−1] we have OPT2(n) = 6i + 4 and nj = �n−j+1

6 	 ∈
[
 5

3 · 3i−1�,2 · 3i−1]. By function f (·), we have STi
≤ 3i − 1. Thus any two leaves

from the tree will incur a replacement cost at most 2 · (3i − 1) + 6 = 6i + 4.
When n ∈ (8 · 3i−1,10 · 3i−1], we have OPT2(n) = 6i + 3 and nj = �n−j+1

5 	 ∈
[
 8

5 · 3i−1�,2 · 3i−1]. By function f (·), we have STi
≤ 3i − 1. Thus any two leaves

from the tree will incur a replacement cost at most 2 · (3i − 1) + 5 = 6i + 3.

J Comb Optim (2013) 26:44–70 65

When n ∈ (7 · 3i−1,8 · 3i−1], we have OPT2(n) = 6i + 2 and nj = �n−j+1
6 	 ∈

[
 7
6 · 3i−1�, 4

3 · 3i−1]. By function f (·), we have STi
≤ 3i − 2. Thus any two leaves

from the tree will incur a replacement cost at most 2 · (3i − 2) + 6 = 6i + 2.
When n ∈ (6 · 3i−1,7 · 3i−1], we have OPT2(n) = 6i + 1. The balanced tree with

root degree 7 where nj = �n−j+1
7 	 ∈ [
 6

7 · 3i−1�,3i−1] can always achieve the opti-
mal cost. By function f (·), we have STi

≤ 3i − 3. Thus any two leaves from the tree
will incur a replacement cost at most 2 · (3i − 3) + 7 = 6i + 1. �

Finally we have fixed the structure of the dominating branch and obtained the
optimal tree structure for the 2-replacement problem. We conjecture the general result
for the k-replacement problem in the next section.

5 Conclusion

In this paper, we study the optimal structure for the key tree problem. The k-deletion
problem is proved to be equivalent with k-replacement problem. We show that the
optimal tree for the 2-replacement problem is a balanced tree which can be computed
in O(n) time.

The capacity f (·) where k = 1 and g(·) where k = 2 stimulates us to conjecture
the general form of capacity Gk(R) which denotes the maximum number of leaves
that can be placed in a tree given the k-replacement cost R in the k-replacement
problem. Based on the form of f (·) and g(·), we conjecture the capacity Gk(R) to be
of the form shown in (1). We believe such a capacity function is generated by some
balanced structure of the trees. Furthermore, if the conjecture is proved to be correct,
it is also possible to obtain the optimal structure in a similar way as in the proof of
Theorem 12 and construct the optimal tree in O(n) time.

Gk(R) =
⎧
⎨

⎩

(3k + α) · 3i−1 if R = 3k · i + α, α ∈ [0, k)

(4k + 2(α − k)) · 3i−1 if R = 3k · i + α, α ∈ [k,2k)

(6k + 3(α − 2k)) · 3i−1 if R = 3k · i + α, α ∈ [2k,3k)

(1)

One of the possible future work is hence to investigate the capacity for the gen-
eral k-replacement problem which indicates a linear time algorithm to compute the
optimal structure. The extension clearly needs some new ideas. We believe that the
concept of capacity will also be very important to this problem.

Appendix: Proof of Theorem 7

Lemma 15 Given a tree T with root degree 2 where two subtrees T1, T2 are both 2-3
trees and |n1 − n2| ≤ 1, when we transform T into 2-3 tree T ′ with root degree 3 as
shown in Fig. 10, we have ST ≥ ST ′ ,DT ≥ DT ′ .

Proof Without loss of generality, we assume that n1 ≥ n2. According to the definition
and optimality of 2-3 tree, when the 1-replacement cost is r , the maximum possible

66 J Comb Optim (2013) 26:44–70

Fig. 10 Transform a tree T where the two subtrees are 2-3 trees into a 2-3 tree T ′

number of leaves on the tree is f (·) where

f (r) =
⎧
⎨

⎩

3 · 3i−1 if r = 3i

4 · 3i−1 if r = 3i + 1
6 · 3i−1 if r = 3i + 2

Notice that T1 and T2 are 2-3 trees which satisfy function f (·). When n1 ∈ (3 ·3i−1,4 ·
3i−1], we have ST2 ≤ ST1 = 3i + 1 and ST = ST1 + 2 = 3i + 3. Since n1 + n2 ≤
8 · 3i−1 < 3 · 3i , we have ST ′ ≤ 3i + 3 = ST . Similarly for n1 ∈ (4 · 3i−1,6 · 3i−1],
we have ST = ST1 + 2 = 3i + 4 and ST ′ ≤ 3i + 4. And for n1 ∈ (6 · 3i−1,9 · 3i−1],
we have ST = ST1 + 2 = 3i + 5 and ST ′ ≤ 3i + 5. Therefore the first inequality of the
lemma holds.

Suppose that the three subtrees of T ′ are T ′
1, T

′
2, T

′
3 which are also 2-3 trees and

satisfy ST ′
1
≥ ST ′

2
≥ ST ′

3
. Since ST = ST1 +2 and ST ′ = ST ′

1
+3, we have ST ′

1
≤ ST1 −1

and DT ′ ≤ 2ST ′
1
+ 3 ≤ 2ST1 + 1. Note that in tree T , we have ST2 ≥ ST1 − 1 because

both subtrees are 2-3 trees with the number of leaves differed by at most 1. Hence,
we have DT ′ ≤ ST1 + ST2 + 2 ≤ DT . The lemma is finally proved. �

Lemma 16 For the 2-replacement problem, a tree T with root degree 2 can be trans-
formed into a tree with root degree 3 or 4 without increasing the 2-replacement cost.

Proof Lemma 7 implies that we can transform T into a candidate-tree where T2 is a
2-3 tree. We divide our discussion into three cases.

Case 1: DT1 < ST1 + ST2 .
According to Lemma 8, in subtree T1, we have DT1 = ST1 + c(u2) − c(v) − dv <

ST1 + ST2 which implies c(u2) − c(v) − dv ≤ ST2 − 1 where v is the nearest common
ancestor of u1, u2. We discuss in two subcases c(u2) − c(v) − dv ≤ ST2 − 2 and
c(u2) − c(v) − dv = ST2 − 1.

When c(u2) − c(v) − dv ≤ ST2 − 2, we transform T into a tree T ′ which is com-
posed of the dominating branch B1 and T ′

2 (T ′
2 is the same as T2) as shown in Fig. 11.

In T ′, we consider three subcases according to the positions of the two leaves whose
replacement cost reaches DT ′ . For the subcase where two leaves are both from T ′

2,
we have DT ′ = DT ′

2
+ 1 = DT2 + 1 < DT2 + 2 ≤ DT . For the subcase where one

of the leaves is from T ′
1 and the other is from T ′

2, we have DT ′ = ST ′
1
+ ST ′

2
+ 1 =

ST1 + ST2 + 1 < ST1 + ST2 + 2 ≤ DT . For the subcase where both leaves u1 and u2
are from T ′

1, we have DT ′ = DT ′
1
+ 4 = DT1 + 4. Since c(u2) − c(v) − dv ≤ ST2 − 2,

we have DT1 ≤ ST1 + ST2 − 2, which implies DT ′ ≤ ST1 + ST2 + 2 ≤ DT .

J Comb Optim (2013) 26:44–70 67

Fig. 11 Transform a tree T from root degree 2 into degree 4

Fig. 12 Transform a tree T from root degree 2 to degree 3

When c(u2)−c(v)−dv = ST2 −1, we will consider another transformation for T .
Notice that ST1 = c(u1) − 2 ≥ c(u2) − c(v) = ST2 − 1 + dv ≥ ST2 + 1, which means
ST2 ≤ ST1 −1. Assume that Tv0 is the subtree of v which contains leaf u2, then we can
move Tv0 to the root to produce a tree T ′, as Fig. 12 shows. We also consider three
subcases for T ′ according to the positions of the two leaves whose replacement cost
reaches DT ′ . Firstly, if the two leaves are originally from T1, then we have DT ′ ≤
DT1 + 3 ≤ ST1 + ST2 + 2 = DT . Secondly, if one of the two leaves is originally from
T1 while the other is not, then we will prove that replacing a leaf from T ′

1 or Tv0 incurs
cost at most ST1 − 1 which implies DT ′ ≤ (ST1 − 1) + ST2 + 3 = DT . Suppose first
the leaf u is from subtree Tv\Tv0 which is rooted at v. Since dv decreases by 1 in the
resulting tree, the cost to delete u in T ′

1 is at most ST1 − 1. If the leaf u is from Tv0 ,
then the cost to delete u in Tv0 is at most ST1 − dv . Otherwise if the leaf is not from
Tv , then we suppose the leaf u is a leaf descendant of v̂ where v̂ is an ancestor of v,
as shown in Fig. 13. Note that c(u1) + c(u) − c(v̂) − dv̂ ≤ c(u1) + c(u2) − c(v) −
dv = c(u1) + ST2 − 1, thus we have c(u) ≤ ST2 − 1 + c(v̂) + dv̂ ≤ ST2 − 1 + c(v) =
c(u2) − dv ≤ c(u1) − dv = ST1 + 2 − dv ≤ ST1 , which implies c(u) ≤ ST1 . Therefore,
replacing u from T ′

1 is at most ST1 − 2. Finally, if both leaves are originally from T2,
then we have DT ′ < 2ST2 + d + 1 ≤ ST1 − 1 + ST2 + d + 1 = ST1 + ST2 + d ≤ DT .

Hence, when DT1 < ST1 + ST2 , we can transform T into a better tree with root
degree 3 or 4.

Case 2: DT1 = ST1 + ST2 .
Suppose the root degree of T1 is d1. We move a branch B1d1 of T1 to the root

(Fig. 14) to obtain a new tree T ′. We will prove that 2-replacement cost of T ′ does
not change compared to that of T . We also consider three subcases for T ′ according
to the positions of the two leaves whose replacement cost reaches DT ′ . If the two

68 J Comb Optim (2013) 26:44–70

Fig. 13 u belongs to a leaf
descendant of v̂

Fig. 14 Transform a tree T from root degree 2 to degree 3

leaves are originally from T1, we have DT ′ ≤ DT ′
1
+ d + 1 = DT1 − 1 + d + 1 =

DT1 + d ≤ DT . If one of the leaves is originally from T1 while the other is not, the
cost DT ′ is ST ′

1
+ ST2 + d + 1 = ST1 − 1 + ST2 + d + 1 = ST1 + ST2 + d ≤ DT or

ST ′
2
+ ST1d1

+ d + 1 = ST2 + ST1d1
+ d + 1 < ST2 + ST1 + d ≤ DT .

If both leaves are originally from T2, the cost DT ′ is no more than 2ST2 + d + 1.
Furthermore, by Lemma 8, DT1 = ST1 + c(u2) − c(v) − dv ≤ 2ST1 − 1. Since DT1 =
ST1 + ST2 , we have ST2 ≤ ST1 − 1. Therefore, DT ′ ≤ 2ST2 + d + 1 ≤ ST1 − 1 + ST2 +
d + 1 = ST1 + ST2 + d ≤ DT .

Hence, we have DT ′ ≤ DT .
Case 3: DT1 > ST1 + ST2 .
In this case, replacing two leaves from T1 incurs the cost DT . We first transform T

into a tree satisfying case 1 or case 2. In subtree T1, by Lemma 8, if c(u1, u2) = DT ,
we can assume c(u1) = ST . Suppose v is the nearest common ancestor of u1 and
u2, and v’s children v1 and v2 are ancestors of u1 and u2 respectively (vi can be
ui itself), then c(u1) − c(v1) ≥ c(u2) − c(v2). We can exchange subtree Tv2 which
is rooted at v2 with subtree T2, as shown in Fig. 15. Because we have ST1 + ST2 <

DT1 = ST1 + c(u2) − c(v2) = ST1 + STv2
, we know that Tv2 has larger 1-replacement

cost than T2. After the exchange, we have DT ′ ≤ DT because replacing one leaf
from Tv1 and one leaf from Tv2 incurs a cost at most ST ′

1
+ c(u2) − c(v2) + d =

ST1 + c(u2) − c(v2) + d = DT , replacing two leaves from T ′
2 of T ′ incurs a cost at

most 2ST2 + c(v) + dv < ST2 + STv2
+ c(v) + dv ≤ ST1 + ST2 + d < DT and other

combinations of two replaced leaves in T ′ incur at most the same cost as that of T

correspondingly. Note that T ′ has degree 2 and belongs to case 1 or case 2. Hence,
T ′ can be further transformed into a tree with degree 3 or 4 according to case 1 and
case 2.

J Comb Optim (2013) 26:44–70 69

Fig. 15 Exchange two subtrees for the case that DT1 > ST1 + ST2

Fig. 16 Transform a tree T from root degree 3 to root degree 4

Since in all cases, we transform a tree with root degree 2 into a tree with root
degree 3 or 4 without increasing 2-replacement cost, the lemma is finally proved. �

Lemma 17 For 2-replacement problem, a tree T with root degree 3 can be trans-
formed into a tree with root degree 4 without increasing the 2-replacement cost.

Proof Case 1: DT1 < ST1 + ST2 .
Lemma 7 implies that we can transform T into a candidate-tree where T2, T3 are

2-3 trees without increasing 2-replacement cost. We then reallocate the leaves in
T2, T3 so that T2 is a template tree of T3 with 0 ≤ n2 − n3 ≤ 1 and both subtrees
are still 2-3 trees as Fig. 16 shows. First, it is easy to see that this transformation
will not increase 2-replacement cost. We then prove that such a tree can be further
transformed into a tree with root degree 4 without increasing 2-replacement cost.
Consider T ’s two branches B2 and B3 (Suppose these two branches compose a new
tree T̃) in T , according to the proof of Lemma 15, we can transform T̃ into tree
T̃ ′ which is a 2-3 tree and we denote the whole new tree as T ′. The transformation
ensures that S

T̃
≥ S

T̃ ′ ,DT̃
≥ D

T̃ ′ . We can prove that the transformation does not in-
crease the 2-replacement cost. We also consider three subcases for T ′ according to
the positions of the two leaves whose replacement cost reaches DT ′ . If two leaves are
originally from T1, we have DT ′ = DT ′

1
+d +1 = DT1 +d +1 ≤ ST1 +ST2 +d = DT .

If one of the leaves is originally from T1 while the other is from T̃ , we have
DT ′ = ST1 + S

T̃ ′ + 1 ≤ ST1 + S
T̃

+ 1 = ST1 + ST2 + d = DT . If both leaves are
from T̃ , we have DT ′ = D

T̃ ′ +1 ≤ D
T̃

+1 ≤ DT . In all the subcases, we have shown
that DT ′ ≤ DT .

70 J Comb Optim (2013) 26:44–70

Case 2: DT1 = ST1 + ST2 .
The transformation and proof for this case is similar to the case 2 in the proof of

Lemma 16, the only difference is that the original tree has root degree d = 3 instead
of 2 in this case.

Case 3: DT1 > ST1 + ST2 .
The transformation and proof for this case is similar to the case 3 in the proof of

Lemma 16, the only difference is that the original tree has root degree d = 3 instead
of 2 in this case.

Since in all cases, we transform a tree from root degree 3 into root degree 4 without
increasing 2-replacement cost, the lemma is finally proved. �

References

Chan A, Rajaraman R, Sun Z, Zhu F (2009) Approximation algorithms for key management in secure mul-
ticast. In: Proceedings of the 15th annual international conference on computing and combinatorics
(COCOON), pp 148–157

Chan Y-K, Li M, Wu W (2010) Optimal tree structure with loyal users and batch updates. J Combin Optim
1–10

Chen ZZ, Feng Z, Li M, Yao FF (2008) Optimizing deletion cost for secure multicast key management.
Theor Comput Sci 401:52–61

Goodrich MT, Sun JZ, Tamassia R (2004) Efficient tree-based revocation in groups of low-state devices.
In: Proceedings of the twenty-fourth annual international cryptology conference (CRYPTO), pp 511–
527

Graham RL, Li M, Yao FF (2007) Optimal tree structures for group key management with batch updates.
SIAM J Discrete Math 21(2):532–547

Li XS, Yang YR, Gouda MG, Lam SS (2001) Batch re-keying for secure group communications. In:
Proceedings of the tenth international conference on world wide web, pp 525–534

Snoeyink J, Suri S, Varghese G (2001) A lower bound for multicast key distribution. In: Proceedings of
the twentieth annual ieee conference on computer communications, pp 422–431

Wallner D, Harder E, Agee RC (1999) Key management for multicast: issues and architectures, RFC 2627,
June

Wong CK, Gouda MG, Lam SS (2000) Secure group communications using key graphs. IEEE/ACM Trans
Netw 8(1):16–30

Wu W, Li M, Chen E (2008a) Optimal tree structures for group key tree management considering insertion
and deletion cost. In: 14th annual international computing and combinatorics conference

Wu W, Li M, Chen E (2008b) Optimal key tree structure for deleting two or more leaves. In: ISAAC08
Zhu F, Chan A, Noubir G (2003) Optimal tree structure for key management of simultaneous join/leave in

secure multicast. In: Proceedings of military communications conference, pp 773–778

	Optimal key tree structure for two-user replacement and deletion problems
	Abstract
	Introduction
	Preliminaries
	Relationship between the k-deletion problem and the k-replacement problem
	Two-user replacement problem
	First step: loose degree bound for the k-replacement problem
	Tight degree bound for 2-replacement problem
	Linear time algorithm: balanced structure of 2-replacement problem

	Conclusion
	Appendix: Proof of Theorem 7
	References

