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ABSTRACT
Given fixed budgets, companies attempt to obtain maximum
coverage on a social network by targeting at influential in-
dividuals. This viral marketing is often modeled by the in-

dependent cascade model. However, identifying the most in-
fluential people by computing influence spread is NP-hard,
and various approximate algorithms are developed. In this
paper, we emphasize the probabilistic nature of influence
propagation. We propose to use exact probabilistic solutions
and prove an inclusion-exclusion principle for computing in-
fluence spread. Our probabilistic solutions can significantly
speed up the computation of influence spread. We also give
a probabilistic-additive incremental search strategy to solve
the influence maximization problem, i.e., to find a subset of
individuals that has the largest influence spread in the end.
Experiments on real data sets demonstrated the effective-
ness and efficiency of our methods.

Categories and Subject Descriptors
F.2.2 [Analysis and Algorithms and Problem Com-

plexity]: Non-numerical Algorithms and Problems

Keywords
social influence, viral marketing, inclusion-exclusion theo-
rem, probabilistic additive

1. INTRODUCTION
Different from other marketing strategies, viral marketing

targets at a certain number of consumers at the beginning,
and relies on communications and trust between individuals
within close social networks [10] [11] to enlarge the social in-
fluence. Nowadays, web 2.0 enables convenient communica-
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tions among people within or between different social circles
through online social networks, such as Twitter, Facebook,
Linkedin, and so on. They provide a large and facilitating
platform for viral marketing strategies. Information or in-
novations can propagate from a small number of individuals
to a huge number of users of social networks in a short time.

Before companies can apply real viral marketing strategies
on those online social networks, some challenges need to be
addressed: (1) how to determine the edge weights between
different users; (2) how to calculate the social influence given
a set of activated nodes (seed set); (3) how to select the op-
timal seed set, which has the maximum social influence, i.e.,
the number of activated nodes in the end is the largest. This
problem is defined as influence maximization problem in [7].
In this paper, we concentrate to solve the second and third
challenges. To address the problem of how to calculate the
social influence given each seed set, we first need to present
a social influence model defining how the propagation pro-
ceeds under some circumstances. There are several influence
models which have been proposed and studied, and the most
popular ones are linear threshold model (LT) and indepen-
dent cascade model (IC), which were presented by Kempe
et al. in [7]. We study the influence propagation process
under IC model in this paper. IC Model can be described
as a stochastic process based on some probabilistic settings.
For details, social network can be modeled as one graph
G(V,E) with edge weights P . IC model starts with an ini-
tial active seed node set; in the first step, those active nodes
try to influence their inactivated out-bound neighbors with
probability of the corresponding edge weights; each active
node only has one chance to influence its each inactivated
out-bound neighbor; in next step, the newly activated nodes
continue to influence their own inactivated out-bound neigh-
bors with one single chance to each neighbor; this process
proceeds until no more inactivated nodes become activated.

Kempe et al[7] proved the influence maximization prob-
lem under IC model is NP-hard. and Wei Chen et al [2]
proved that calculating the influence spread of a seed set un-
der IC model is NP-hard too. Kempe et al. applied Monte
Carlo simulation to approximate the influence spread, which
is time-consuming, because Monte Carlo simulation needs to
be run at least thousands of times to reach a good approx-
imation of the true influence spread. Therefore, as the first
challenge, proposing an efficient approximation method to
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calculate the influence spread of a seed set is urgent. To
that end, we present probabilistic solutions to calculate the
influence spread under IC model and propose a probabilistic
additive strategy to reuse the influence spread obtained in
previous steps when calculating the optimal seed set using
greedy methods. Our main contributions are:
(1) We analyze exact solutions of small networks; one key
finding from these analysis is the inclusion-exclusion prin-
ciple which we prove vigorously. We further propose ex-
act probabilistic solutions to influence spread for Directed
Acyclic Graph (DAG) under IC model, which can be gener-
alized to approximate the generic case of IC model.
(2) We propose a probabilistic additive strategy to reuse the
influence spread calculated in the previous steps when de-
termining the optimal seed set using greedy methods, which
speedup influence spread computation.
(3) We also propose an incremental search strategy to con-
tinue refining the seed set, which is first obtained by two
greedy methods. After incremental search, the influence
spread of the selected seed set is improved.

1.1 Related Work
In the past decades, there has been a lot of research work

studying and analyzing the different aspects of social influ-
ence, we group these related work into three categories. The
first category includes research work on influence models.
The second category includes the related work on how to
compute social influence spread. The third category focuses
on solving the ultimate viral marketing goal - find a set of
seed nodes those have the maximal social influence. Usually,
the second and the third categories are solved together, but
with different emphases.

For the first category, Domingos et al. [4] [12] first pro-
posed to mine the customers’ network value, and then based
on customers’ network value to solve the social influence
maximization problem. Kempe et al. [7] first presented the
two basic influence models - LT and IC model [6] [9]. Ag-
garwal et al. proposed a stochastic information flow model
to determine the authoritative individuals in [1], which is
closely related to IC model. Other aspects of influence mod-
els, such as the edge weights between individuals were also
studied in [5]. Tang et al. [13] [14] proposed a Topical Factor
Graph model to analyze social influence.

For the second and third categories, Kempe et al. [7]
presented to use Monte Carlo Simulation to estimate the in-
fluence spread for a given seed set, and proposed a greedy
method to find a good seed set, which is not scalable to
large scale networks, because Monte Carlo Simulation needs
to be run at least tens of thousand times to get a good es-
timation. Then many heuristic algorithms were introduced
for the IC model. Kimura et al. proposed two influence
cascade models based on shortest-path to approximate the
influence spread of a seed set, and present algorithms to give
good approximations to IC model for finding good seed sets
[8]. Chen et al. proposed a heuristic algorithm using de-
gree discount for a limited version of IC model, in which
the edge wieghts/probabilities between any two connected
individuals are the same in [3]. Chen et al. also proposed a
maximum influence arborescence (MIA) heuristic model for
the generic IC model in [2]. In MIA model, maximum influ-
ence paths (MIP) between every pair of two nodes need to
be pre-computed, and then based on these MIPs, local MIA
structures can be formed. The algorithms introduced above

are mostly heuristic methods. We are trying to present an
exact solution on how to compute the influence spread given
a seed set under IC model, which is very challenging. In
this paper we first analyze the exact probabilistic solution
to small networks and then we propose an probabilistic so-
lution for DAG under IC model, which can be applied on
directed graph to approximate the influence spread. We
also present a probabilistic additive strategy to speed up
the influence spread calculation when using greedy method
to select the most influential seed set.

2. INDEPENDENT CASCADE MODEL
In this section, we introduce the IC model.
A social network can be represented by a directed graph

G(V,E) with edge weight/probability P , i.e., P (u, v) or Puv

in short denotes the propagation probability through edge
(u, v) ∈ E from node u to node v. The total number of
nodes in G is n = |V |.

Given an activated seed set S, the independent cascade
model works as follows, S0 = S is the activated node set
at step 0, and St denotes the activated node set at step
t. At step t + 1, every newly activated node u in St, i.e.,
{u|u ∈ St \ St−1}, is trying to influence its out-bound non-
activated neighbors v, which don’t belong to St, i.e. {v|(u �

v) ∩ (v ∈ V \St)} with an independent probability P (u, v).
The process stops when an equilibrium state is reached,
i.e. there are no more nodes being activated in next prop-
agation step. In independent cascade model, each node
{u|u ∈ St(t ≥ 0)} can only influence its out-bound neighbors
once right after it is activated, and the activated nodes will
stay activated ever after. Now, we are ready to define the
influence spread of activated seed set S, denoted by σ(S),
which is the number of activated nodes in the final step (in
the stationary/equilibrium state).

3. EXACT INFLUENCE SPREAD FOR SMALL
NETWORKS

As explained above, most current research on IC Model
focused on developing efficient approximate algorithms to
compute the influence propagation. Our focus here is to
provide exact solutions. Due to the NP-hard complexity,
we obtain exact solution on small networks. In this section,
we give three small network examples to illustrate the exact
influence propagation process. The three small networks are
shown in Figure 1, where node 1 is the seed (shaded in green)
in each case. We present the exact propagation solution for
each network. These exact solutions can be extended to
larger networks.

From these exact results we obtain two important benefits:
(1) We learn the rules of adding contributions from dif-

ferent path of influence propagation. At first glance, these
contributions seems to be statistically independent. But the
exact results show they may not be independent and why.
This introduces the �inclusion-exclusion principle we found
useful in correctly enumerating contributions from different
paths.

(2) The rules we learned in this process are helpful to
formulate an exact computational algorithm in §4.

(3) Exact solutions obtained can be used to evaluate ap-
proximate algorithms in previous studies [3, 8, 1, 15]. This
may lead to refined methods to further improve these exist-
ing approximate algorithms.
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Figure 1: Small networks
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Figure 2: Different stages of influence propagation for a 3-
node network in (a). Graphs (b),(c),(d),(e) are first stage
results of seed node 1 attempting to influence nodes {2, 3}
with corresponding probabilities given. Thick red edges in-
dicate the influence action. Thick circle means the node is
successfully influenced, also indicated by a number 1 or 0
underneath. From graph (c), node 2 tries to influence node
3; results are given in (f),(g).

For those networks, we assume that transition probabili-
ties on the edges already exist and remain fixed during the
influence propagation.

3.1 Solution for 3-node network
The IC influence propagation process for the 3-node net-

work in Figure 1(a) can be illustrated in Figure 2.
We start with Figure 2(a), where node 1 is a seed node and

thus always activated. The four networks of Figure 2(b, c,
d, e) are the four possibilities of node 1 attempts to activate
nodes 2 and 3. The 4 probabilities are indicated next to the
arrow. For example the case where nodes 2 and 3 are both
been successfully activated is shown in Figure 2(b), with
probability P12P13.

The cases in Figure 2(b) and 2(e) are terminal, i.e., there
are no further possibilities. In 2(c), node 2 (been success-
fully activated by node 1) will attempt to activate node 3.
The results are shown in Figure 2(f) and Figure 2(g) with
the appropriate probabilities indicated next to the arrows.
Similarly, in Figure 2(d), node 3 (been successfully activated

by node 1 will attempt to activate node 2. The results are
shown in Figure 2(h) and Figure 2(i) with the appropriate
probabilities indicated next to the arrows

Now, we can compute the activation probabilities. Let’s
consider node 2. There are 3 cases where node 2 becomes
activated:
(i) Figure 2(b) with probability P12P13.
(ii) Figure 2(c) with probability P12(1−P13). Note that this
is equal to the sum of probabilities of Figure 2(f) and Figure
2(g).
(iii) Figure 2(h) with probability (1−P12)P13P32. This prob-
ability for the influence flow path to Figure 2(h) equals to
the probability to reach Figure 2(d) multiplied by the prob-
ability to further reach Figure 2(h).
Therefore, by adding these 3 probabilities, the activation
probability for node 2 is,

π2 = P12 + P13P32 − P12P13P32. (1)

Another way to compute π2 is by directly counting influence
flow paths. First, node 2 can be influenced by node 1 di-
rectly, with probability P12 (this is the sum of probabilities
of Fig.2(b),(c)). Second, If node 1 fails to influence node
2, there is another path node 2 can be activated, which is
illustrated by Figure 2(a) → 2(d) → 2(h). For this influence
path the probability is (1 − P12)P13P32. Adding these two
we get the same result in Eq.(1).
Inclusion-exclusion. The above two counting methods
rely on the detailed influence propagation stages shown in
Figure 2. The result of Eq.(1) can be obtained without rely-
ing on Figure 2. We compute probabilities of different paths
together with an inclusion-exclusion principle. For node
2, there are two paths:
(i) 1 → 2, with probability P1→2 = P12.
(ii)1 → 3 → 2, with probability P1→3→2 = P13P32 .
These two events are not independent because in (ii) we
did not include the factor (1− P12).

We use inclusion-exclusion principle to correct for over-
counting, i.e., we set

π2 = P1→2 + P1→3→2 − P1→2P1→3→2. (2)

This gives the same result of Eq.(1).
For node 3, the probability can be calculated similarly,

π3 = P13 + P12P23 − P12P13P23. (3)

3.2 Solution for 4-node network
Let us look at a more complicated case — the 4-node net-

work of Figure 1(b). The IC influence propagation process
is illustrated in Figure 3. The settings in Figure 3 are the
same as those of Figure 2.

We start with Figure 3(a), where node 1 is a seed node.
The four networks of Figure 3(b, c, d, e) are the four possi-
bilities of node 1 attempts to activate nodes 2 and 3. The 4
probabilities are indicated next to the arrow.

The cases in Figure 3(e, f, i, j) are terminal, i.e., there
are no further possibilities. In Figure 3(b), node 2 and 3
(been successfully activated by node 1) will attempt to ac-
tivate node 4. The successful result is shown in Figure 3(f)
with the appropriate probabilities indicated next to the ar-
rows, figures for failure results are not shown here. We will
compute the activation probabilities by directly counting in-
fluence flow paths, so the failure results will reach irrelevant
terminal cases. In Figure 3(c), node 2 (been successfully
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Figure 3: Different stages of influence propagation from a 4-
node network of (a). Node 1 is the seed. Symbols are same
as Figure 2. From graph (c), node 2 attempts to influence
node 4. Only successful result graph (g) is shown. Results
of all unsuccessful attempts are skipped.

activated by node 1) will attempt to activate node 4. The
successful result is shown in Figure 3(g) with the appropriate
probabilities indicated next to the arrows, and the failure re-
sult will reach an irrelevant terminal case, so we didn’t show
the figure here. In Figure 3(g), node 4 will attempt to acti-
vate node 3. The successful result is shown in Figure 3(i).
Similarly, in Figure 3(d), node 3 (been successfully activated
by node 1 will attempt to activate node 4. The successful
result is shown in Figure 2(h) with the appropriate proba-
bilities indicated next to the arrows, while the failure result
is not shown here. In Figure 3(h), node 4 will attempt to
activate node 2. The successful result is shown in Figure
3(j).

Now, we compute the activation probabilities. We com-
pute π2 by counting influence flow paths. For node 2, first,
it can be influenced by node 1, with results given in Fig.

3(b, c). The corresponding probability is π
(1)
2 = P12.

If node 1 fails to influence node 2, there is another path
node 2 can be activated, which is illustrated by Figure 3(a)
→ 3(d) → 3(h) → 3(j). For this influence path, the prob-

ability is π
(2)
2 = (1 − P12)P13P34P42. Adding these two we

get the following result,

π2 = P12 + P13P34P42 − P12P13P34P42. (4)

We note again that we may directly compute the proba-
bilities of two paths (i) P1→2 = P12, and (ii) P1→3→4→2 =
P13P34P42 and use inclusion-exclusion to correct for the non-
independence to obtain

π2 = P1→2 + P1→3→4→2 − P1→2P1→3→4→2. (5)
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Figure 4: First stages of influence propagation of the 5-node
network. Node 1 is the seed. Symbols are same as in Figure
2.

which gives the same result.
For node 3, the probability can be calculated symmetri-

cally,

π3 = P13 + P12P24P43 − P12P13P24P43.

For node 4, it can be activated by
(i) node 2 only, shown in Figure 3(g);
(ii) node 3 only, shown in Figure 3(h);
(iii) nodes 2 and 3 simultaneously, shown in Figure 3(f).
The total activation probability for node 4 is

π4 =(1 − P13)P12P24 + (1 − P12)P13P34 + P12P13(P24 + P34 − P24P34)

=P12P24 + P13P34 − (P12P24)(P13P34).

(6)

Once again, this results can be derived using the inclusion-
exclusion principle mentioned above, without counting de-
tailed influence propagation stages in Figure 3.

3.3 Solution for 5-node network
As the last example, we compute activation probabilities

for the 5-node network in Figure 1(c). The first stages of
node 1 attempts to influence nodes 2,3 are shown in Figure
4(b,c,d).

Let us compute the activation probability for node 2. The
contributions are shown in graphs Fig.4(b,c,d). The contri-
butions of Fig.4(b,c) is P12.

The contribution of Fig.4(d) is computed as the following.
The probability to reach Fig.4(d) is (1 − P12)P13. Starting
from Fig.4(d), we may ignore node 1 and consider the re-
maining network with nodes {2, 3, 4, 5}, and node 3 is acti-
vated. This situation is identical to Figure 3, and we need
to compute π2. Following the results of Eq.(5), we obtain

P32 + P35P54P42 − P32(P35P54P42).

The contribution to node 2 of Fig.4(d) is a result of com-
bining two paths 3 → 2 and 3 → 5 → 4 → 2 with the
inclusion-exclusion principle. Therefore the final score for
node 2 is

π2 = P12 + (1− P12)P13

[
P32 + P35P54P42 − P32(P35P54P42)

]
.

(7)
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Now we compute activation probability for node 4. It can
be activated by the following 3 paths:

(1) Starting from the situation in Figure 4(b) and activate
node 4;

(2) Starting from the situation in Figure 4(c) and activate
node 4; This is the same as the 4-node graph in Figure 3
and the node of interest is node 2.

(3) Starting from the situation in Figure 4(d) and activate
node 4; This is the same as the 4-node graph in Figure 3 and
the node of interest is node 4.
The total probability for node 4 being activated is

π4 =P12P13(P24 + P35P54 − P24P35P54)

+ P12(1− P13)(P24 + P23P35P54 − P24P23P35P54)

+ (1− P12)P13(P32P24 + P35P54 − P32P24P35P54)

(8)

We note that the 5-node network in Figure 1(c) includes
both the 3-node network and the 4-node network cases, for
example, 5-node network results become the results of the
3-node network, when P24 = P35 = P54 = P42 = P53 =
P45 = 0; when P54 = P45 = 1, the results become those of
the 4-node network.

When it comes to much more complicated large-scale net-
work, the exact propagation solution is hard to derive. It’s
an exponential growth case along the number of nodes in V .
Therefore, in this paper, we propose an approximation solu-
tion to IC model, which is exact solution for directed acyclic
graph (DAG) and approximation solution for generic graphs.
The exact solution for generic case is under development.

4. INCLUSION-EXCLUSION THEOREM
The lessons we learned in previous section on exact so-

lution are useful. One of the most important lessons is the
inclusion-exclusion principle that we briefly mentioned in §3.
Here we formalize the concept and prove it vigorously.

Let πv(0 ≤ πv ≤ 1) denote the activation probability for
each node {v|v ∈ V \S0}, which means to what extent v is
activated.

We have the following Theorem, which is called inclusion-
exclusion theorem,

Theorem 1. Given fixed seed set S and edge weights P ,

for every non-seed node v and its in-bound neighbors Nv =
(u1, · · · , uk), i.e., Nv = {ui|ui � v}, πv, the stationary

probability of v being activated, is related to {πui
}, station-

ary probabilities of its in-bound neighbors, with the following

relationship,

πv =
∑
ui�v

πui
Puiv −

∑
ui,uj�v,

i<j

(πui
Puiv)(πuj

Pujv)

+
∑

ui,uj,ul�v,

i<j<l

(πui
Puiv)(πuj

Pujv)(πul
Pulv)

+ · · ·+ (−1)k(πu1
Pu1v)(πu2

Pu2v) · · · (πuk
Pukv). (9)

To better understand this result, we compare it to a sim-
pler model of random walk. In this random-walk model, all
neighbors of v can activate v any time it walks towards v.

In this model, the activated probability would be

π(k)
v =

∑
ui�v

πui
Puiv. (10)

In contrast to the random walk model, in the IC model,
any actor can only attempt to affect v once. Thus the acti-
vation probability in IC model is lower than that in random
walk model. Comparing Eq.(9) and Eq.(10), we see that
the reduction from random walk model to IC model are the
second term and later terms in Eq.(9). They are exactly the
inclusion-exclusion principle.

Figure 5 illustrates the propagation process of IC model.
In this figure, node v is the target node. Its in-bound neigh-
bors Nv = {u1, · · · , uk} attempts to influence it. Suppose
there is only one activated neighbor u1 in step 1, then u1

tries to influence v. If u1 fails to influence v in step 1, then
newly activated u2 tries to activate v in step 2. If u2 fails
to influence v in step 2, then newly activated u3 tries to
activate v in step 3, and so on so forth.
Proof of Theorem 1

To simplify the notations, we define σui
= πui

Puiv.
Step 1 : The probability that v is activated by u1 is

π(1)
v = πu1

Pu1v = σu1
. (11)

Step 2: If u1 failed to activate v in step 1, the failure prob-

ability is 1−π
(1)
v . Now u2 attempts to influence v; the prob-

ability that u2 succeed in this is πu2
Pu2v = σu2

; Therefore,
the conditional probability that u1 failed but u2 succeed in

activating v is (1 − π
(1)
v )σu2

. This should be added to the
total probability that v becomes activated. Thus

π(2)
v = π(1)

v + (1− π(1)
v )σu2

= σu1
+ σu2

− σu1
σu2

. (12)

Step 3: Now u3 attempts to activate v under the condition
that neither u1 nor u2 activated v. The probability that
u3 succeed in this is πu3

Pu3v = σu3
; The probability that

neither u1 nor u2 activated v is 1 − π
(2)
v . Therefore, the

conditional probability that u1, u2 failed but u3 succeed in

activating v is (1 − π
(2)
v )σu3

. This should be added to the
total probability that v becomes activated. Thus

π(3)
v = π(2)

v + (1− π(2)
v )σu3

= σu1
+ σu2

+ σu3
− σu1

σu2
− σu1

σu3
− σu2

σu3

+ σu1
σu2

σu3
. (13)

Using induction, we can include the value of πv in step k.
Step k: Now uk attempts to activate v under the condition
that none of v’s previous in-neighbors activated v. The total
probability that v becomes activated is,

π(k)
v = π(k−1)

v + (1− π(k−1)
v )σuk

=
∑

ui∈Nv

σui
−

∑
ui,uj∈Nv,

i<j

σui
σuj

+
∑

ui,uj,ul∈Nv,

i<j<l

σui
σuj

σul

+ · · ·+ (−1)k−1σu1
σu2

· · ·σuk
. (14)

This completes the proof.

4.1 Computing Activation Probability on a Sin-
gle Node

Based on the inclusion-exclusion theorem, we can get the
following Lemma,
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Figure 5: Illustration of the propagation process of IC
model: v is the target node

Lemma 2. Given a single node v’s in-bound neighbors

{ui|ui � v} and edge weights P , to calculate the proba-

bility that node v becomes activated, we have the following

iterative update equation,

π(i+1)
v = π(i)

v + (1− π(i)
v )σui+1

, i = 1, · · · , k − 1. (15)

Thus, now we can present the algorithm to compute the
activation probability of single node v in the following,

Input: Nv = {ui|ui � v}, {σui
}, k = |Nv| denotes

the number of in-bound neighbors of v

Output: π∗
v = π

(k)
v

Initialize i = 1, π
(1)
v = σu1

for i = 1 : k − 1 do

π
(i+1)
v = π

(i)
v + (1− π

(i)
v )σui+1

end

Algorithm 1: Activation probability on v

4.2 Computing Activation Probability on En-
tire Network

Now we are ready to describe the algorithm to compute
activation probability on entire network. Given fixed seed
set S and edge weights P , the activation probability to IC
model for each node v can be represented in the following,

π∗
v = F (π∗

Nv
), v = 1, · · · , n. (16)

which can be obtained by the following updating strategy,
where πNv denotes a vector whose elements are the activa-
tion probabilities of v’s in-bound neighbors.

π(t+1)
v = F (π

(t)
Nv

), v = 1, · · · , n. (17)

where, F (·) denotes a function, which is represented in Eq.(15).
The detailed algorithm for computing activation probabil-

ities for all nodes V is given in Algorithm 2, where π denotes
the activation probability vector whose elements are activa-
tion probabilities for all nodes.

4.3 Inclusion-Exclusion Theorem Provides Ap-
proximate Solution for Generic Networks

Let’s consider the 3-node undirected network in Figure
1(a) and the IC propagation process given seed set {1} for
this network in Figure 2, suppose π∞

2 and π∞
3 are the prob-

abilities that node 2 and node 3 are activated, respectively,

they have exact solution in the following,

π∞
2 = P12 + P13P32 − P12P13P32 (18)

π∞
3 = P13 + P12P23 − P12P13P23 (19)

However, if we solve this propagation problem using Inclusion-
Exclusion Theorem, π∞

2 and π∞
3 have the following relation-

ship,

π∞
2 = P12 + π∞

3 P32 − P12π
∞
3 P32

π∞
3 = P13 + π∞

2 P23 − P13π
∞
2 P23

(20)

By solving the above binary linear equation group, we get
the following solution,

π∞
2 =

P12 + P13P32 − P12P13P32

P23P32(1− P13)(1− P12)
(21)

π∞
3 =

P13 + P12P23 − P12P13P23

P23P32(1− P13)(1− P12)
(22)

We note that the numerator in Eq.(21) is the same with
that of Eq.(18) and the numerator in Eq.(22) is the same
with that of Eq.(19). The denominators are apparently both
less than 1; this indicates the Inclusion-Exclusion Theorem
over-counts the influence for non-DAG network. However,
experiments show that the results using Inclusion-Exclusion
Theorem is very close to those using Monte Carlo simulation
on real world networks.

4.4 Selecting Seed Set for Viral Marketing
To this end, we can define the objective function of max-

imizing the social influence as follows,

max
S

σ(S) =

n∑
v=1

πv (23)

s.t. |S| = m,

πv = F (πNv ), v = 1, · · · , n.

where, m is the size of seed set. We will present an proba-
bilistic additive strategy to solve the above social influence
maximization problem using greedy methods.

5. GREEDY METHOD TO SOLVE SOCIAL
INFLUENCE MAXIMIZATION

As discussed above, influence maximization is to deter-
mine m activated seeds at the beginning of the information
propagation, in order to maximize the social influence in

Input: G(V,E), n = |V |, edge weight P , activated
seed set S0 = S, m = |S|, maxIter

Initialize π
(0)
v∈S = 1, π

(0)
v/∈S = 0

for l = 1 : maxIter do

for i = 1 : n, vi /∈ S do

π
(l)
vi ← Activation probability on vi

end

if ‖π(l) − π(l−1)‖1 < δ then
break;

end

end

Output: stationary activation probability for each
node π = π(l)

Algorithm 2: Activation probability on entire network
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the end. We first propose an probabilistic additive strategy
and two greedy methods, then based on these two greedy
methods, another efficient incremental search strategy will
be introduced.

5.1 Greedy Method 1
The basic idea is to select each node vi as a single seed,

i.e., S = {vi}, and then compute the stationary activation
probability using Algorithm 2 for all the other nodes {u|u /∈
S}. We let β{i} denote the stationary activation probability
for every node when vi is selected as the seed node. Let B =
(β{1}, β{2}, · · · , β{n}) Obviously, the elements on diagonal of
matrix B are all 1. After getting every stationary activation
probability vector in B, we calculate the influence spread of
each node, denoted by σ(vi), which is the sum of β{i}. The
following Algorithm 3 describes the detailed process on how
to calculate B.

Input: Edge weight P
for i = 1 : n, S = {vi} do

π
(0)
vi = 1, π

(0)
V \vi

= 0,

π ←− Call Algorithm 2(P ,S = {vi}),
β{i} = π.

end

Output: Stationary activation probability matrix B

Algorithm 3: Computing stationary activation proba-
bility vector when each node is selected as the seed node

After we get the social influence spread for each node be-
ing seed node, we sort the influence spread scores in de-
scending order, i.e., σ(v1) > σ(v2) > · · · > σ(vn), and then
select the top m nodes with largest influence scores as the
initialization seed set S.

Greedy method 1 is based on our inclusion-exclusion the-
orem, and it’s much faster than greedy method using Monte
Carlo Simulation, which needs at least thousands of simula-
tions even for calculating the influence score of each vi, not
mention the entire stationary activation probability matrix
B. We will present the time needed for both methods in the
experiment section.

5.2 Greedy Method 2
Before presenting Greedy Method 2, we first introduce a

probabilistic additive strategy when adding more nodes to
a current seed set.

5.2.1 Probabilistic Additive
Suppose we have a current seed set Sc and its activation

probability vector βSc , calculated by Algorithm 2, and now
we are going to add vi to the current seed set, note, v’s
activation probability vector β{i} can be get from matrix B.
We have the following definition,

Definition 1. Probabilistic Additive of vector βSc and β{i}

is defined as follows,

βSc∪{i} = βSc

⊎
β{i} = 1− (1− βSc ). ∗ (1− β{i}) (24)

where .∗means element wise multiplication. Similarly, Prob-
abilistic Additive of m vectors is defined as follows,

β{1}∪{2}···∪{m} = β{1}

⊎
β{2} · · ·

⊎
β{m} = 1−Πm

i=1(1−β{i})

(25)

where Π also means element wise multiplication.
We can use the Probabilistic Additive of each node in S

β∪{i|i∈S} as the initialization when calculating the activation
probability for entire network using Algorithm 2 with seed
set S, which is much faster than 0 or 1 initialization used in
Algorithm 2.

As Greedy Method 1 did, Greedy Method 2 first uses algo-
rithm 3 to calculate the stationary probability distribution
matrix B, and then calculate influence score for each node
σ(vi). Different with Greedy Method 1, Greedy Method 2
adds only one node to seed set at a time, which is described
in the following,
(1) Add node i1 with the largest influence score to seed
set S1, S1 = {i1}, and the activation probability vector is
βS1

= β{i1}.
(2) Add node i2, which can lead to the largest influence
score of seed set S2, S2 = S1 ∪ {i2} = {i1, i2}. Then we use
probabilistic additive of βS1

and β{i2} to initialize π0 when
calculating the activation probability vector for S2 using Al-
gorithm 2, π(0) = βS1∪{i2} = βS1

⊎
β{i2};

(3) Repeat the above process until we need to add node
im, and node im should lead to the largest influence score
of seed set Sm, Sm = Sm−1 ∪ {im} = {i1, · · · , im}. Then
we use probabilistic additive of βSm−1

and β{im} to initialize

π0 when calculating the activation probability vector for Sm

using Algorithm 2, π(0) = βSm−1∪{im} = βSm−1

⊎
β{im};

In this way, we get another seed set S. To get a better
seed set, we do Incremental Search starting from the seed
sets calculated from both greedy methods.

5.3 Incremental Search Strategy
After we get an initialization seed set by those two greedy

methods introduced in last section, we want to keep digging
more efficient seed set by replacing the nodes those have least
contribution in the current seed set to the final influence
score.

First, we give two important procedures, add k node to
current seed set Sc and drop k node from Sc, which are
listed in Algorithm 4 and Algorithm 5, respectively. For k,
we normally choose k = 1, 2, 3.

Input: Current Seed Set: Sc, the size of Sc: q = |Sc|,
Activation Probability Matrix: B

for i = 1 : Ck
n−q do

Select nodes to add : {vi1 , · · · , vik},
Sn = Sc ∪ {vi1 , · · · , vik},

π(0) = βSc∪{i1}···∪{ik},

π ←− Call Algorithm 2(P , Sn, π
(0)),

σ(Sn) =
∑

v πv.
end

{vi1 , · · · , vik} ←− argmax(σ(Sn)),
Output: Sc = Sc ∪ {vi1 , · · · , vik}, βSc = π,

σ(Sc) = σ(Sn)

Algorithm 4: Add k node

Now, we are ready to present the incremental search strat-
egy in Algorithm 6,

After using incremental search on seed set obtained from
greedy methods, we get a seed set with larger influence sore.
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To validate the performance of our Inclusion-Exclusion
Theorem, we conduct experiments on real data sets to com-
pare the results using Inclusion-Exclusion Theorem (Algo-
rithm 2) and that of using Monte Carlo Simulation. We also
conduct experiments on real world data sets to compare the
influence spread of seed set get from our incremental search
strategy with those of seed sets get from various algorithms.

6.1 Data Sets
We use two real world data sets - p2p-Gnutella08 and wiki-

Vote, which are two directed networks, and downloaded from
SNAP 1. Table 1 lists the detailed information of these two
data sets.

p2p-Gnutella08 is a snapshot of Gnutella peer-to-peer file
sharing network from August 2002. Nodes represent hosts
in the Gnutella network topology and edges represent con-
nections between the Gnutella hosts. We call this network
p2p in this paper.

Wiki-Vote contains the Wikipedia voting data from the
inception of Wikipedia till January 2008. Nodes in the net-
work represent wikipedia users and a directed edge from
node i to node j represents that user i voted on user j.

We also generate one subgraph from p2p-Gnutella08, which
has 223 nodes and 954 edges. We call this subgraph p2p-223.

6.2 Experiment Setup
There are three parts for our experiments. One is to ver-

ify that given a seed set S, the influence spread score σ(S)
using our Inclusion-Exclusion Theorem is almost the same
with the average score of running Monte Carlo Simulation
for thousands of times. The second part is to present the
time needed to compute the influence spread given a set of
seed nodes using Algorithm 2 based on Inclusion-Exclusion

1http://snap.stanford.edu

Input: Current Seed Set: Sc, the size of Sc: q = |Sc|,
Activation Probability Matrix: B

for i = 1 : Ck
q do

Select nodes to drop : {vi1 , · · · , vik},
Sn = Sc\{vi1 , · · · , vik},

π(0) = β∪{j|j∈Sn},

π ←− Call Algorithm 2(P , Sn, π
(0)),

σ(Sn) =
∑

v πv.
end

{vi1 , · · · , vik} ←− argmax(σ(Sn)),
Output: Sc = Sc\{vi1 , · · · , vik}, βSc = π,

σ(Sc) = σ(Sn)

Algorithm 5: Drop k node

Input: Current Seed Set: Sc, the size of Sc: q = |Sc|,
k

for i = 1 : maxIter do
Sa, σ(Sa) ←− Add k nodes,
Sd, σ(Sd) ←− Drop k nodes,
if ‖σ(Sa)− σ(Sd)‖ < δ then

break;
end

end

Output: Sc = Sd

Algorithm 6: Incremental search strategy

Table 1: Description of data sets

Name # Nodes # Edges
p2p-Gnutella08 6301 20,777

wiki-Vote 7115 103,689

Theorem, comparing with that of Monte-Carlo Simulations
[7]. The last part is to compare the social influence of seed
sets selected by our incremental strategies with those of seed
sets selected by other methods. We compare the following
set of algorithms.
(1) Random selection: select m nodes randomly from V as
the seed nodes.
(2) Degree selection: select m nodes with the largest out-
degree as the seed nodes.
(3) Distance selection: select m nodes with smallest average
shortest-path distances to all other nodes as the seed nodes.
(4) Incremental search 1: it’s a combination of greedy method
1 and incremental search.

• Compute activation probability matrix B using Algo-
rithm 3.

• Select m nodes with the largest influence score σ(vi).

• Apply incremental search strategy using Algorithm 6
on seed nodes selected by last step, with parameter
k = [1, 2, 3].

(5) Incremental search 2: it’s a combination of greedy method
2 and incremental search.

• Select m nodes using greedy method 2 introduced in
section 5.3.

• Apply incremental search strategy using Algorithm 6
on seed nodes selected by last step, with parameter
k = [1, 2, 3].

Note, for all the above 5 methods, we apply our Algorithm
2 to compute the influence spread for the entire network for
a given seed set. And edge weight P remains fixed for the
same data set. The experiments are run on a PC with a
3.0GHz Intel Core 2 Duo Processor and 12GB memory.

6.3 Experiment Results
As discussed in last section, first, we present the influence

spread (activation probability for each node) comparison be-
tween IC Monte Carlo Simulation and Inclusion-Exclusion
Theorem (Algorithm 2), to verify the effectiveness of Inclusion-
Exclusion Theorem in approximating the influence spread
for entire network. For demonstration purpose, we first
present the results for each node on p2p-223 subgraph. We
randomly selected 10 nodes as seed nodes. The results from
Monte-Carlo Simulations are the average of 20000 simula-
tions/realizations. Edge weight P is fixed for both meth-
ods. The activation probabilities for each node from two
methods are shown in Figure 6. There are 223 nodes and
954 edges on p2p-223 network, and we omit the nodes with
activation probability 0, which left us less than 90 nodes
presented in the figure. For convenient comparison, we sort
the activation probabilities of Monte Carlo Simulations, and
present their corresponding activation probabilities calcu-
lated by Inclusion-Exclusion Theorem. Apparently, the two
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Figure 6: Activation probability comparison between IC
Monte Carlo Simulation and Inclusion-Exclusion Theorem

Table 2: Mean squared errors (MSE) and mean absolute
errors (MAE) between the two activation probability vec-
tors achieved Inclusion-Exclusion Theorem and Monte Carlo
simulation on p2p-223 network

m = 20 m = 30 m = 40 m = 50

MSE 8.5 × 10−5 7.9 × 10−5 7.8 × 10−5 7.1 × 10−5

MAE 4.8 × 10−4 4.7 × 10−4 4.5 × 10−4 3.8 × 10−4

curves from these two methods almost coincide with each
other.

We then present more comparisons between activation
probabilities achieved by applying Monte Carlo simulation
and those achieved by Inclusion-Exclusion Theorem. Figure
7 shows the influence spreads by those two methods at dif-
ferent sizes of the same seed set - m = {10, 20, 30, 40, 50}
on the three data sets - p2p-223, p2p and wiki-Vote. The
influence spreads are almost the same on p2p-223 subgraph,
and are very close on p2p and wiki-Vote data sets. As shown
on the figures, the altitudes of the histogram at the same m
are almost the same for those two methods. We also show
the mean squared errors (MSE) and mean absolute errors
(MAE) between two activation probability vectors achieved
by those two methods. Table 2, 3 and 4 show the MSE and
MAE results at m = {20, 30, 40, 50} (results at m = 10 are
omitted due space limit) on the three data sets mentioned
above, which demonstrate that the two vectors are almost
the same when given the same seed set, i.e., the approxi-
mate results achieved by Inclusion-Exclusion Theorem are
effective for generic graphs.

Second, we compare the time needed to compute the in-
fluence spread given different sizes of seed sets. Table 5 and
Table 6 list the time needed for both Inclusion-Exclusion
Theorem and Monte Carlo Simulation on two data sets -

Table 3: Mean squared errors (MSE) and mean absolute
errors (MAE) between the two activation probability vec-
tors achieved Inclusion-Exclusion Theorem and Monte Carlo
simulation on p2p network

m = 20 m = 30 m = 40 m = 50

MSE 7.5 × 10−5 8.5 × 10−5 8.4 × 10−5 8.3 × 10−5

MAE 3.0 × 10−3 3.8 × 10−3 3.7 × 10−3 3.3 × 10−3

Table 4: Mean squared errors (MSE) and mean absolute
errors (MAE) between the two activation probability vec-
tors achieved Inclusion-Exclusion Theorem and Monte Carlo
simulation on wiki-Vote network

m = 20 m = 30 m = 40 m = 50

MSE 5.0 × 10−6 5.1 × 10−6 5.2 × 10−6 5.1 × 10−6

MAE 8.1 × 10−5 8.1 × 10−5 8.2 × 10−5 8.0 × 10−5

Table 5: Time (sec) needed to compute the influence spread
given different sizes of seed sets m on p2p-223 network

Methods m = 10 m = 20 m = 30
Inclusion-Exclusion 0.1079 0.02531 0.01925

Monte Carlo Simulation
(20000 times)

95.3935 94.0613 93.1055

p2p-223 and p2p, at different m, where m denotes the num-
ber of seed nodes selected. And at the same m, the same
seed set is selected for both methods. Let’s look at Table
6, when m = 50, the time for Inclusion-Exclusion Theo-
rem is just 2.8450 seconds, while Monte Carlo Simulation
needs 36945.6 seconds for 20000 realizations. So the time
for Inclusion-Exclusion Theorem is competitive with that
of just one time Monte Carlo Simulation, however, Monte
Carlo Simulations need thousands of times simulations to
reach a steady solution. Therefore, our probabilistic solu-
tions speed up the computation of influence spread, espe-
cially on large data sets, which make greedy methods to
viral marketing scalable to large data sets.

Last but not least, we apply our incremental search method
1 and incremental search method 2 to select the largest in-
fluential nodes (seed set), and compare the influence spread
for the seed set selected by our methods with three simple
heuristic methods. The results on 3 data sets are shown
in Figure 8. Our methods outperform the other methods
significantly. The point is that once we get the activation
probability matrix B, a lot of recalculation can be omitted
by combining our proposed probabilistic additive strategy.

7. CONCLUSIONS
In this paper, we propose probabilistic solutions to the

computation of influence spread under IC model. We show
that our probabilistic solutions can significantly speed up the
computation of influence spread. We also give a probabilis-
tic additive based incremental search strategy to solve the
influence maximization problem. Experiments on real data
sets demonstrate the effectiveness of our probabilistic solu-
tions and incremental search strategy. There are limitations
for our probabilistic solutions, which are targeting at DAG
network. But experiments on real data sets with non-DAG
structures show that our method can provide good approx-

Table 6: Time (sec) needed to compute the influence spread
given different sizes of seed sets m on p2p network

Methods m = 10 m = 30 m = 50
Inclusion-Exclusion 3.2012 3.0126 2.8450

Monte Carlo Simulation
(20000 times)

32345.4 35372.2 36945.6
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Figure 7: Influence Spreads computed by Inclusion-Exclusion Theorem and Monte Carlo Simulation given different sizes of
seed sets
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Figure 8: Influence Spreads of seed sets selected by different methods. Note, the curves corresponding to incremental search
1 and incremental search 2 almost coincide with each other on p2p-223 network

imation to directed graph. We will develop more accurate
probabilistic solutions for IC model in the future work.
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