
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013 1271

Task Allocation on Nonvolatile-Memory-Based
Hybrid Main Memory

Wanyong Tian, Yingchao Zhao, Liang Shi, Qingan Li, Jianhua Li, Chun Jason Xue, Member, IEEE,
Minming Li, and Enhong Chen, Senior Member, IEEE

Abstract— In this paper, we consider the task allocation
problem on a hybrid main memory composed of nonvolatile
memory (NVM) and dynamic random access memory (DRAM).
Compared to the conventional memory technology DRAM, the
emerging NVM has excellent energy performance since it con-
sumes orders of magnitude less leakage power. On the other
hand, most types of NVMs come with the disadvantages of much
shorter write endurance and longer write latency as opposed to
DRAM. By leveraging the energy efficiency of NVM and long
write endurance of DRAM, this paper explores task allocation
techniques on hybrid memory for multiple objectives such as
minimizing the energy consumption, extending the lifetime, and
minimizing the memory size. The contributions of this paper
are twofold. First, we design the integer linear programming
(ILP) formulations that can solve different objectives optimally.
Then, we propose two sets of heuristic algorithms including three
polynomial time offline heuristics and three online heuristics.
Experiments show that compared to the optimal solutions gener-
ated by the ILP formulations, the offline heuristics can produce
near-optimal results.

Index Terms— Hybrid main memory, integer linear program-
ming (ILP), nonvolatile memory (NVM).

I. INTRODUCTION

ENERGY consumption is an important issue in the design
of embedded systems. While the main processor has

Manuscript received December 15, 2011; revised March 21, 2012; accepted
June 12, 2012. Date of publication August 14, 2012; date of current version
June 21, 2013. This work was supported in part by the Research Grants
Council of the Hong Kong Special Administrative Region, China, under
Project CityU 123609 and Project CityU 123811, the City University of
Hong Kong under Project 7002611, the Natural Science Foundation of China
under Grant 61073110, the National Major Special Science and Technology
Project under Grant 2011ZX04016-071, the HeGaoJi National Major Special
Science and Technology Project under Grant 2012ZX01029001-002, and the
Research Fund for the Doctoral Program of Higher Education of China under
20113402110024.

W. Tian, L. Shi, and J. Li are with the School of Computer Science and
Technology, University of Science and Technology of China, Hefei 230026,
China, with the Department of Computer Science, City University of Hong
Kong, Hong Kong, and also with USTC-CityU Joint Research Institute,
Suzhou 215123, China.

Y. Zhao is with the Department of Computer Science, Caritas Institute of
Higher Education, Hong Kong.

C. J. Xue, and M. Li are with the Department of Computer Science, City
University of Hong Kong, Hong Kong.

Q. Li is with the Computer School, Wuhan University, Wuhan 430072,
China.

E. Chen is with the School of Computer Science and Technology,
University of Science and Technology of China, Hefei 230026, China
(e-mail: cheneh@ustc.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2012.2208129

always been the primary energy-consuming device, the main
memory has become a significant energy dissipator in recent
years. Research [1] shows that the main memory accounts
for up to 40% of total energy consumption on modern
server systems. Thus, optimizing energy consumption of
the main memory is crucial to the overall energy budget
of the system. Dynamic random access memory (DRAM)
has been widely used as the main memory of computer
systems for decades. Recently, several emerging nonvolatile
memory (NVM) technologies such as phase change random
access memory (PRAM) [2], [3] and spin transfer torque
RAM (STT-RAM) [4], [5] have been proposed. Compared
to DRAM, these emerging NVMs have more promising
characteristics for future universal memory. PRAM has bet-
ter power efficiency but shorter write endurance and longer
access latency. STT-RAM is faster than PRAM. The write
endurance of STT-RAM is about 1015, which is much
longer than that of PRAM. Sun et al. [6] and Li et al.
[7] have proposed the STT-RAM-based hybrid cache which
can reduce energy consumption and improve performance.
Hu et al. [8] have designed a novel NVM-based scratch
pad memory to take advantage of the ultralow leakage con-
sumption of NVM. Dong et al. [9] have presented the NVM
cache model to exploit the low leakage dissipation of NVM.
Table I shows the comparison of the characteristics of DRAM
and PRAM.

Since NVM has the disadvantages of long write latency
and limited lifetime, it is not desirable to be directly
employed as the main memory. Otherwise, the system per-
formance will be adversely impacted and lifetime will be
severely reduced. Recently, hybrid memory has become a
hot research topic. As NVMs usually have limited endurance
based on the number of writes, different mechanisms to
reduce writes on NVM in order to extend the lifetime have
been proposed in [10]–[12]. Qureshi et al. [13] have ana-
lyzed a PRAM-based hybrid main memory composed of
PRAM storage with a small DRAM buffer. They showed
that such an architecture has not only the latency ben-
efit of DRAM but also the capacity benefit of PRAM.
Dhiman et al. [14] have proposed a novel energy-efficient
main memory architecture based on PRAM and DRAM,
and designed a low-overhead hybrid hardware/software solu-
tion to manage this new main memory. Their experimental
results showed that the new memory system could save 30%
energy on average at negligible overhead compared with tra-
ditional DRAM-based main memory. Mogul et al. [15] have

1063-8210/$31.00 © 2012 IEEE

1272 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013

TABLE I

CHARACTERISTICS OF DRAM AND PRAM (SOURCES INCLUDE NVSIM [16], CACTI, [17])

Tech. Write Access latency (ns) Access energy (nJ/bit) Leakage power
Endurance (cycles) Read Write Read Write (mW)

DRAM ∞ 104.4 104.4 3.26 3.26 1924
PRAM 108 − 109 143.5 270.53/135.05 (SET/RESET) 0.043 10.05/10.98 (SET/RESET) 194

presented an OS-level management policy for hybrid memory
to hide the disadvantages of PRAM while exploiting its ideal
attributes.

In this paper, we consider the task allocation problem on
hybrid main memory as follows: given a set of tasks to be
placed in the hybrid main memory for execution, each task
is characterized by arrival time, finish time, size, number
of reads, and number of writes, and these tasks need to be
allocated to the hybrid main memory to optimize different
given objectives. The objectives of this paper are: 1) minimiz-
ing energy consumption; 2) minimizing number of writes in
NVM; and 3) minimizing the NVM size of the main memory.
According to the properties of the different parts of the hybrid
main memory, this paper proposes techniques that strive to
assign each task to the most suitable memory location to
achieve different objectives. This paper targets the embedded
systems that often use physical addresses and do not apply
techniques such as virtual memory. The proposed algorithms
will calculate the allocated memory locations to determine the
physical address of each task. Using the proposed management
mechanisms, we can reduce energy dissipation while extend-
ing the lifetime of NVMs. To the best of our knowledge,
this is the first paper on task allocation level to exploit the
hybrid main memory consisting of NVM and DRAM. The
main contributions of this paper are as follows.

1) We propose an integer linear programming (ILP) model
for optimizing NVM-based hybrid main memory. Differ-
ent objectives such as minimizing energy consumption,
NVM writes, and NVM size are considered.

2) We present efficient offline and online heuristic algo-
rithms for different objectives. The offline heuristics
could produce near-optimal results compared to the
optimal solutions generated by the ILP formulations.

In the rest of this paper, PRAM will be used as a repre-
sentative of NVM in the hybrid main memory. However, the
methodologies introduced in this paper are also suitable for
other types of NVMs.

The remainder of this paper is organized as follows.
Section II presents the problem description and gives three
motivational examples to show the effectiveness of the pro-
posed algorithms. In Section III, the ILP formulations and opti-
mal solutions of the target problem are proposed. Section IV
presents the heuristics to minimize energy consumption, num-
ber of writes on PRAM, and PRAM size. Section V shows
the experimental results. In Section VI, we present the related
work on hybrid memory problem. Finally, we conclude this
paper and point out the future work in Section VII.

II. PROBLEM ANALYSIS

In this section, we first give the background information
of PRAM, and then present the problem description and task

Fig. 1. PRAM cell array [18].

allocation principle. Finally, we give a motivational example
to show the effectiveness of the proposed offline heuristic
MinE.

A. PRAM Background Information

1) PRAM Basis: PRAM is one type of NVM that exploits
the unique behavior of a chalcogenide alloy to store infor-
mation [2]. A PRAM cell usually consists of a thin layer of
chalcogenide such as Ge2Sb2Te5 (GST) and two electrodes
attached to the chalcogenide from each side (Fig. 1). The
chalcogenide has two stable states, i.e., crystalline and amor-
phous.

Two operations can change the resistance of a PRAM cell
and thus its stored information. As shown in Fig. 2, the
SET operation has the GST heated above the crystallization
temperature (300 ◦C) but below the melting temperature
(600 ◦C) over a period. This turns the GST into the low-
resistance crystalline state (logic “1”); the RESET operation
gets GST heated above the melting temperature and quenched
quickly. This places the GST in the high-resistance amorphous
state (logic “0”).

2) PRAM Write: With repeated heat stress applied to the
phase change material, a PRAM cell survives only a limited
number of write cycles. Referred to as write endurance, it is
a key parameter in designing PRAM-based memory systems.
A typical PRAM cell can sustain 108−109 writes before it gets
stuck at the SET or RESET states [2]. PRAMs write endurance
is worse than that of DRAM (1015 or ∞ write cycles before
failure).

PRAM write requires a higher voltage than conventional
Vdd. Therefore, a PRAM chip usually separates read and
write circuits, and integrates charge pumps to boost the write
voltage [19]. Thus, PRAM has larger peripherals and con-
sumes more write energy than DRAM. Fortunately, technology
scaling decreases the volume of the phase change material.
It requires smaller current and less energy to program future
PRAM cells.

TIAN et al.: TASK ALLOCATION ON NVM-BASED HYBRID MAIN MEMORY 1273

Fig. 2. RESET and SET operations [18].

B. Problem Description

The problem that this paper targets to solve is described as
follows: We are given a task set T = {τ1, τ2, . . ., τn}, and each
task τi is characterized by 〈ai , fi , si , Nri , Nwi 〉, where ai

means the arrival time, fi means the finish time, si denotes the
size, Nri represents the number of reads, and Nwi represents
the number of writes of the task. In the time interval [ai , fi),
τi should be allocated si continuous memory bytes. In this
paper, we assume that each task could be entirely allocated
in one part or occupy continuous physical locations across
the two parts. Besides, τi will be read Nri times and written
Nwi times. Reads and writes are evenly distributed across the
address space of a task. If any of the above constraints is
violated, τi fails.

The notations used in this paper are summarized in Table II.
The energy consumptions1 for each read and write on PRAM
are denoted by Er p and Ewp. The energy consumptions for
each read and write on DRAM are denoted by Erd and Ewd .
Several prototypes of PRAM have been presented recently [3],
[13], [20]. To be independent of specific PRAM and DRAM
prototypes, we utilize abstract PRAM and DRAM models with
the parameters set as follows: Ewd = Erd = 5; Ewp = 15;
Er p = 1.

We will strive to allocate each task in proper locations
of PRAM or DRAM to ensure no task failure such that the
following objectives will be achieved.

1) Case 1: Given the sizes of PRAM and DRAM and a
threshold of number of writes on PRAM, minimize the
energy consumption.

2) Case 2: Given the sizes of PRAM and DRAM and a
threshold of energy consumption, minimize number of
writes on PRAM.

3) Case 3: Given the size of DRAM, a threshold of energy
consumption, and number of writes on PRAM, minimize
the PRAM size.

C. Task Allocation Principle

The hybrid memory consists of two parts: DRAM and
PRAM. The two parts form a combined homogeneous address
space. The size of the hybrid memory is Dt + Pt . The first
Dt bytes belong to DRAM, while the last Pt bytes belong to

1In this paper, the two parts of the main memory are always in “active”
mode, i.e., the leakage energies of PRAM and DRAM are fixed. Thus, only
access energy (write/read) is considered.

TABLE II

NOTATIONS USED IN THIS PAPER

Notation Description
T The task set.

τi The ith task.

ai Arrival time of τi .

fi Finish time of τi .

si Size of τi .

Nri /Nwi Number of reads/writes of τi .

xi /zi Tag of whether τi is totally assigned in
DRAM/PRAM.

yi Starting location of τi .

Spatial order of τi and τ j that have
fi, j temporal overlaps. 0 represents yi > y j ;

1 represents yi < y j .

Erp/Ewp Energy consumption of each read/write on PRAM.

Erd/Ewd Energy consumption of each read/write on DRAM.

Edi Energy consumption of τi when entirely allocated
on DRAM. Edi = Nri · Erd + Nwi · Ewd

Epi Energy consumption of τi when entirely allocated
on PRAM. Epi = Nri · Erp + Nwi · Ewp

�Ei Energy consumption difference of τi on PRAM
and DRAM. �Ei = Edi − Epi

D-task Task τi with �Ei < 0.

P-task Task τi with �Ei ≥ 0.

di /pi Size of τi allocated in DRAM/PRAM.

Ei Energy consumption of τi when allocated across
DRAM and PRAM. Ei = (di /si) · Edi + (pi/si) · Epi

Ni Number of writes on PRAM of τi .
Ni = (pi /si) · Nwi

P/D Used size of PRAM/DRAM.

Pt/Dt Threshold of PRAM/DRAM size.

E Energy consumption of all tasks.

Et Threshold of energy consumption

N Number of writes on PRAM.

Nt Threshold of number of writes on PRAM.

PRAM. A task can either be entirely allocated in one part, or
can occupy continuous locations across the two parts.

For each task τi entirely located in PRAM or DRAM, there
are two energy values: Edi , Epi

Edi = Nri · Erd + Nwi · Ewd

Epi = Nri · Er p + Nwi · Ewp

where Edi (Epi) represents the energy consumption of τi

when τi is entirely assigned to DRAM (PRAM).
If task τi is assigned across DRAM and PRAM, the energy

consumption (Ei) of τi is

Ei = di

si
· Edi + pi

si
· Epi (1)

and the number of writes on PRAM (Ni) of τi is

Ni = pi

si
· Nwi (2)

where di (pi) represents the size in DRAM (PRAM). Obvi-
ously, 0 ≤ di , pi ≤ si , di + pi = si .

We define �Ei = Edi − Epi . Two notations are given as
follows.

1274 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013

… ... … ...
DRAM PRAM

fragment

… ...
DRAM PRAM

… ...

(a)

(b)

Fig. 3. Task allocation principle.

1) D-task: If Edi < Epi (�Ei < 0), τi is a D-task.
2) P-task: If Edi ≥ Epi (�Ei ≥ 0), τi is a P-task.
If the two parts of the memory both start allocation from the

lowest free address, there might be fragments in the last bytes
of DRAM [as shown in Fig. 3(a)]. To reduce fragmentation,
location of each task assigned in DRAM and PRAM begins
from different addresses; tasks assigned to DRAM begin from
the lowest free address, while tasks assigned to PRAM begin
from the highest free address [as shown in Fig. 3(b)]. Thus,
the used PRAM size P could be calculated as follows:

P = Pt − Plu

where Plu is the largest unallocated address.
In the rest of this paper, task allocation will follow the above

principle.

D. Motivational Example

In this section, a motivational example is presented to show
the effectiveness of the proposed offline heuristic MinE. Notice
that a task τi is characterized as τi = 〈ai , fi , si , Nri , Nwi 〉,
�Ei = Edi−Epi = Nri ·(Erd−Er p)+Nwi ·(Ewd−Ewp).
The parameters are set as follows: Ewd = Erd = 5, Ewp =
15, Er p = 1.

For Case 1, assume Nt = 10, Pt = 20, Dt = 20, T =
{τ1, . . . , τ8}. The tasks shown in Fig. 4(a) are as follows:

τ1 = 〈1, 8, 4, 7, 2〉, �E1 = 8

τ2 = 〈0, 10, 2, 10, 3〉, �E2 = 10

τ3 = 〈2, 8, 5, 13, 4〉, �E3 = 12

τ4 = 〈1, 6, 2, 14, 4〉, �E4 = 16

τ5 = 〈1, 12, 3, 1, 1〉, �E5 = −6

τ6 = 〈5, 13, 6, 1, 1〉, �E6 = −6

τ7 = 〈4, 14, 12, 0, 1〉, �E7 = −10

τ8 = 〈7, 13, 2, 1, 2〉, �E8 = −16.

We compare the solutions generated by the proposed offline
heuristic MinE and the simple heuristic MinE_CP. The prin-
ciples of these two algorithms are similar: all P-tasks and
D-tasks are originally assigned to PRAM and DRAM, respec-
tively, which might lead to N > Nt , P > Pt , D > Dt . Then
tasks are iteratively migrated between PRAM and DRAM until
none of the three former inequalities holds. The difference
lies in the following: MinE considers not only parameter
�Ei but also si and Nwi . It migrates the task with the
smallest (|�Ei |/Nwi) or (|�Ei |/si) iteratively. MinE_CP
merely migrates the task with the smallest |�Ei | at each step.

Fig. 4(a) lists the attributes of all tasks. The two algorithms
proceed as follows. First, as shown in Fig. 4(b), all P-tasks

and D-tasks are originally assigned to PRAM and DRAM,
respectively. Fig. 4(c) depicts that MinE_CP sequentially
migrates τ1, τ5, τ2, and τ6 between PRAM and DRAM,
energy consumption EMinE_CP = Eo + |�E1| + |�E5| +
|�E2| + |�E6| = 309. From Fig. 4(d) we can see MinE
only requires to migrate τ3 (with the smallest (|�Ei |/Nwi))
and τ7 (with the smallest (|�Ei |/si)), energy consumption
EMinE = Eo + |�E3| + |�E7| = 301, which is smaller than
EMinE_CP.

III. ILP FORMULATIONS

In this section, the ILP formulations of the three cases
are given. General constraints are presented in Section III-A.
Constraints for the three cases are proposed in Section III-B.

A. General Constraints

The size of PRAM is Pt and the size of DRAM is Dt . We
introduce a constant M = n

∑n
i=1 si , which is a large enough

number. The objective is to find the optimal location for each
task.

For each task τi , there are three variables xi , yi , and zi .
Variable yi represents the starting location of task τi . Variable
xi represents whether task τi is totally located in DRAM.
Variable zi represents whether task τi is totally located in
PRAM

xi =
{

0, if task τi is not totally assigned in DRAM
1, if task τi is totally assigned in DRAM

(3)

zi =
{

0, if task τi is not totally assigned in PRAM
1, if task τi is totally assigned in PRAM.

(4)

The two memories can be considered together as a whole
memory with the size Dt + Pt . The first Dt bytes belong to
DRAM, while the last Pt bytes belong to PRAM. A natural
constraint for yi is as follows:

yi ≥ 0 ∀i ∈ {1, . . . , n}. (5)

Another natural constraint is

0 ≤ xi + zi ≤ 1. (6)

To make sure that each task is assigned within the suitable
part of the memory, we give the following constraints:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yi ≤ Dt − si + (1− xi) · M
yi ≥ Dt + (zi − 1) · M
yi ≤ Dt + Pt − si

yi > Dt − si − (xi + zi) · M
yi < Dt + (xi + zi) · M

∀i ∈ {1, . . . , n}. (7)

In the above constraints, if xi = 1 and zi = 0, which
means that task τi is assigned to DRAM, the first inequality
implies that yi ≤ Dt − si and the second inequality will
always hold because of inequality (5). If xi = 0 and zi = 1,
which means that task τi is assigned to PRAM, the first
inequality will always hold because M is very large while
the second inequality implies that yi ≥ Dt . The fourth and
fifth inequalities deals with the case where one task crosses
two types of memories.

TIAN et al.: TASK ALLOCATION ON NVM-BASED HYBRID MAIN MEMORY 1275

Fig. 4. Motivational example to minimize energy consumption. (a) Attributes of all tasks. (b) Original tasks. (c) Result of “MinE_CP.” (d) Result of “MinE.”

Next, we introduce another two variables for each task. Let
di be the size of τi allocated in DRAM and pi be the size of
τi allocated in PRAM. First, we have

di + pi = si . (8)

We enforce the following two sets of constraints which will
guarantee that the values of di and pi are correctly decided
for different combinations of xi and zi

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

di ≥ 0
di ≥ xi · si + (xi − 1) · M
di ≥ (Dt − yi)− (xi + zi) · M
pi ≥ 0
pi ≥ zi · si + (zi − 1) · M
pi ≥ si − (Dt − yi)− (xi + zi) · M

∀i ∈ {1, . . . , n}. (9)

We can see that, if xi + zi = 0, which means task τi is
crossing the boundary of two types of memories, the above
constraints give di ≥ Dt − yi and pi ≥ si − (Dt − yi) which
forces di + pi = s. When xi = 1, the above constraints give
di ≥ si and pi ≥ 0. When zi = 1, the above constraints give
di ≥ 0 and pi ≥ si . Therefore, it fits all the three cases.

To make sure that any two tasks overlapping in time do not
overlap in the memory space, we introduce a new variable fi j

to indicate the spatial order between tasks that have temporal
overlap. For any two tasks τi and τ j such that their execution
times have overlap, the variable

fi j =
{

0, if yi > y j

1, if yi < y j .
(10)

From the definition of fi j , we can get the following property
directly:

fi j + f j i = 1. (11)

Since fi j indicates the location order for tasks that have time
overlap, variable fi j and yi , y j have the following relation:

y j − yi < fi j · M. (12)

For two tasks τi and τ j that have overlap in their execution
time, if yi < y j , then there must be yi + si ≤ y j . We use the
following inequality to guarantee this property:

y j ≥ yi + si + (fi j − 1) · M. (13)

Notice that we do not consider fi j if task i and task j have
no overlap in their execution time and we even do not care
about the relation between corresponding yi and y j .

The above constraints (3)–(13) restrict the spatial relations
of tasks according to their execution times and ensure that
no violation will take place. For the proposed three problems,
additional constraints should be added.

B. Three Cases

1) Case 1: Minimizing Energy Consumption: To minimize
the energy consumption (E) when Dt , Pt , and Nt are given,
the added constraint is

n∑

i=1

pi

si
· Nwi ≤ Nt . (14)

The objective is

min
n∑

i=1

(
di

si
· (Nri · Erd + Nwi · Ewd)

+ pi

si
· (Nri · Er p + Nwi · Ewp)

)

. (15)

2) Case 2: Minimizing Number of Writes on PRAM: To
minimize the number of writes on PRAM (N) when Dt , Pt ,
and Et are given, the added constraint is

n∑

i=1

(
di

si
· (Nri · Erd + Nwi · Ewd)

+ pi

si
· (Nri · Er p + Nwi · Ewp)

)

≤ Et . (16)

The objective is

min
n∑

i=1

pi

si
· Nwi . (17)

3) Case 3: Minimizing PRAM Size: To minimize the PRAM
size (P) when Dt , Nt , and Et are given, the added constraints
include (14) and (16). Besides, the third inequality of con-
straint (7) should be modified as follows:

yi ≤ Dt + P − si ∀i ∈ {1, . . . , n}. (18)

The objective is

min P. (19)

1276 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013

IV. ALGORITHMS

The objective is to exploit the advantages of DRAM and
PRAM while hiding their disadvantages. However, such objec-
tives are conflicting with the task allocation problem. For
instance, minimizing energy consumption prefers to place all
P-tasks into PRAM, the side effect of which is increasing the
writes on PRAM. Therefore, careful balancing is crucial.

There are four constraints in total: 1) a threshold of
energy consumption (Et); 2) a threshold of PRAM size (Pt);
3) a threshold of DRAM size (Dt); and 4) a threshold of the
number of writes on PRAM (Nt). By fixing any three of the
constraints, we can optimize the fourth one. Thus, naturally
four problems exist. Since it is similar to minimizing the
PRAM size or the DRAM size, we only select to minimize
the PRAM size.

The three problems are listed as follows.
1) To minimize energy consumption (E) when Pt , Dt , and

Nt are given.
2) To minimize the number of writes on PRAM (N) when

Pt , Dt , and Et are given.
3) To minimize the PRAM size (P) when Dt , Et , and Nt

are given.
In this section, two sets of algorithms are proposed to tackle

the above problems. The first set consists of three offline
algorithms: MinE, MinN, and MinP. The second set includes
three online algorithms: MinE′, MinN′, and MinP′.

A. Offline Algorithms

Three offline heuristics MinE, MinN, and MinP are pre-
sented in this section. All these heuristics are polynomial time
solvable. The most time-consuming part lies in computing
P/D, i.e., the PRAM/DRAM size used by all allocated tasks,
which is a well-known NP-hard problem—the dynamic storage
allocation (DSA) problem [21]. We use the polynomial time
approximation algorithm proposed by Buchsbaum et al. [22],
which can present the best and worst case performance among
all existing algorithms.

1) Minimizing Energy Consumption: Algorithm 1 presents
the methodology to minimize energy consumption offline.
First, all P-tasks and D-tasks are assigned in PRAM and
DRAM, respectively. Thus, the energy consumption E will be
the lower bound of this problem, while the used PRAM size
P , used DRAM size D, and the number of writes on PRAM N
might surpass the thresholds Nt , Pt , and Dt , respectively. To
avoid violating the constraints, some tasks need to be migrated
between PRAM and DRAM. Naturally, the tasks needing large
sizes or many writes will be selected. Since N , P , and D
might all be larger than the thresholds Nt , Pt , and Dt , each
time the most “urgent” task should be selected for migration.
Two ratios are defined: R1 = (N/Nt), R2 = (P/Pt), R3 =
(D/Dt). Comparing R1–R3, we determine which task should
be migrated first. For example, if R1 is the largest, we would
prefer to select the task with the largest Nwi to migrate.
But it is not enough to only consider the parameter Nwi ;
energy consumption Ei should also be taken into account with
regard to the objective of “minimizing energy consumption.”
As a result, P-task τi with the smallest ratio (|�Ei |/Nwi)

Algorithm 1 MinE (offline): Minimizing Energy Consumption
Require: Task set T = {τ1, τ2, . . .}, Nt, Pt, Dt.
Ensure: Energy consumption (E) of the hybrid memory.
1: Place all P-tasks in PRAM and all D-tasks in DRAM,

Compute P, D, N;
2: R1 ← (N/Nt), R2 ← (P/Pt), R3 ← (D/Dt);
3: while R1 > 1 or R2 > 1 or R3 > 1 do
4: if R1 ≥ R2 and R1 ≥ R3 then
5: Migrate P-task τi with the smallest (|�Ei |/Nwi) from

PRAM to DRAM;
6: end if
7: if R2 > R1 and R2 ≥ R3 then
8: Migrate P-task τi with the smallest (|�Ei |/si) from

PRAM to DRAM;
9: end if

10: if R3 > R1 and R3 > R2 then
11: Migrate D-task τi with the smallest (|�Ei |/si) from

DRAM to PRAM;
12: end if
13: Recompute R1, R2, R3;
14: end while
15: Compute E;
16: Return E;

will be migrated from PRAM to DRAM.2 Similarly, if R2
(R3) is the largest, P-task (D-task) τi with the smallest ratio
(|�Ei |/si) will be migrated from PRAM to DRAM (from
DRAM to PRAM). In each iteration, the most “urgent” task
is selected, and R1–R3 are recomputed for the next iteration.
The process will not terminate until R1–R3 are all smaller
than 1. Finally, the resulting E will be the desired energy
consumption.

2) Minimizing Number of Writes on PRAM: The heuristic
MinN with the objective to minimize number of writes on
PRAM offline is shown in Algorithm 2, the principle of which
is as follows. First, all tasks are assigned in DRAM. Thus,
D > Dt and E > Et might hold. Then, tasks need to be
iteratively migrated from DRAM to PRAM until neither of
these inequalities holds. At each iteration step, if R1 > R2,
the task τi with the largest (si/Nwi) will be migrated from
DRAM to PRAM. Else, (R1 ≤ R2), P-task with the largest
(|�Ei |/Nwi) will be selected for migration from DRAM to
PRAM. When the iteration terminates, we check if P ≤ Pt
holds. If yes, N will be the desired solution. Otherwise, no
result can be derived.

3) Minimizing PRAM Size: For Case 3, the heuristic MinP
with the objective to minimize the PRAM size offline is similar
to MinN. Thus, MinP is omitted here. The approach proceeds
as follows. All the tasks are initially assigned to DRAM, and
two inequalities D > Dt and E > Et might hold. Then,
at each iteration, the task τi with the smallest size si (if
(D/Dt) > (E/Et)) or the P-task with the largest (|�Ei |/si)
(if (D/Dt) ≤ (E/Et)) is iteratively migrated from the DRAM

2P-task τi in PRAM could be entirely or partially allocated in PRAM. For
P-task τi which is partially in PRAM, si = pi , Ei , and Ni could be computed
as (1) and (2). |�Ei | = |Ei − Edi |, Nwi = Ni . This principle also holds in
the following heuristic algorithms.

TIAN et al.: TASK ALLOCATION ON NVM-BASED HYBRID MAIN MEMORY 1277

Algorithm 2 MinN (offline): Minimizing Number of Writes
on PRAM
Require: Task set T = {τ1, τ2, . . .}, Et, Pt, Dt.
Ensure: Number of writes on PRAM (N).
1: Place all tasks in DRAM, compute D, E;
2: R1 ← (D/Dt), R2 ← (E/Et);
3: while R1 > 1 or R2 > 1 do
4: if R1 > R2 then
5: Migrate τi with the largest (si/Nwi) from DRAM to

PRAM;
6: else
7: Migrate P-task τi with the largest (|�Ei |/Nwi) from

DRAM to PRAM;
8: end if
9: Recompute R1, R2;

10: end while
11: Compute N, P;
12: if P ≤ Pt then
13: Return N;
14: end if

to the PRAM until neither of the inequalities holds. When the
iteration stops, check if N is smaller than Nt . If yes, P will
be the solution. Otherwise, no result can be derived.

4) Minimizing Both E and N:

f = α · E + β · N. (20)

The combined overhead of E and N is defined as (20). To
minimize both E and N , i.e., to minimize f , we can proceed
as follows. For each N , invoke Algorithm MinE, so we can
get an energy consumption E, Then the overhead f can be
computed from (20). Given a series of E , we can get a series
of N and f . Among all the values of f , the minimum value
will be the desired objective. Notice that the coefficients α and
β are set according to the relative importance of N and E.

B. Online Algorithms

In this section, three online algorithms are devised for
different objectives. Due to lack of global information of tasks,
a different mechanism—a first-fit policy—is adopted to place
all the tasks. The first-fit policy proceeds as follows. For all
tasks to be assigned in DRAM (PRAM), the task with earlier
start time is allocated to lower (higher, see Section II-C)
address, and all later tasks will be assigned one by one to
the address consecutively after (before) the prior one. At each
time instant t , each task τi with finish time fi equal to t will
be freed and the occupied memory locations will be available
to other tasks from then on. Then, each task τ j with start time
equal to t will be allocated to memory according to the First-fit
policy.

As shown in Table I, the access latency of reads and writes
on the two memories is different. Considering the different
read/write performance on the two memories, we make an
assumption as follows. For each task τi , the given finish time
fi refers to the time instant τi should finish if τi is totally
or partly assigned to PRAM (the slower memory). Otherwise

(τi is totally assigned to DRAM), the finish time fi will be
brought forward to

fi = ai + (fi − ai) · 0.8 (21)

where ai is the arrival time of τi . We applied this principle in
the online algorithms.

Before presenting the algorithms, two notations are defined.

1) Ts[t] = {τi |si = t}, refers to the set of tasks with start
time si = t .

2) T f [t] = {τi | fi = t}, refers to the set of tasks with finish
time fi = t .

1) Minimizing Energy Consumption: To minimize energy
consumption online, all D-tasks and P-tasks are preferentially
assigned to the DRAM and PRAM, respectively.3 The process
is shown in Algorithm 3. At each time instant t , first, tasks of
which the finish time equals t are removed from the PRAM
and DRAM, and the locations occupied by these tasks are
freed and available to other tasks. Then, tasks of which the
start time equals t are assigned to the PRAM or DRAM
according to first-fit policy. Compute N , P , and D if tasks in
Ts[t] are (virtually) assigned to PRAM. If R1 = (N/Nt) ≤ 1,
R2 = (P/Pt) ≤ 1, and R3 = (D/Dt) ≤ 1, all P-tasks
and D-tasks in Ts [t] are actually assigned to PRAM and
DRAM, respectively. Otherwise (R1 > 1 or R2 > 1 or
R3 > 1), P-task τi ∈ Ts[t] with the largest (|�Ei |/Ni) (if
R1 is the largest) or P-task with the largest (|�Ei |/si) (if R2
is the largest) or D-task with the largest (|�Ei |/si) (if R3 is
the largest) is preferentially assigned to PRAM (if R1 or R2
is the largest) or DRAM (if R3 is the largest). If τi cannot be
accommodated in the preferential memory, it is allocated to
the other part. Repeat the allocation process until all tasks in
Ts[t] are allocated. Algorithm MinE′ terminates when the task
with the largest finish time completes execution. If all tasks
can be accommodated in PRAM or DRAM, the resulting E
will be the desired energy consumption.

2) Minimizing Number of Writes on PRAM: The algorithm
to minimize the number of writes on PRAM online is shown
in Algorithm 4. At each time instant t , tasks in T f [t] are freed.
Then, task τi with the smallest (si/Nwi) is preferentially
allocated to DRAM (if R1 = (D/Dt) > R2 = (E/Et)) or P-
task with the largest (|�Ei |/Nwi) is preferentially allocated to
PRAM (if R1 ≤ R2). Iterations are similar to those of MinE′.
If all tasks can be accommodated to PRAM or DRAM, N will
be the solution.

3) Minimizing PRAM Size: To minimize PRAM size online,
tasks are preferentially assigned to DRAM. Algorithm MinP′
is similar to MinN′. Thus, the details are omitted here. MinP′
proceeds as follows. At each time t , first, remove all tasks in
T f [t]. Then, preferentially allocate task τi ∈ Ts[t] with the
largest si to DRAM (if R1 = (D/Dt) > R2 = (E/Et)) or
P-task with the largest (|�Ei |/si) to PRAM (if R1 ≤ R2). If τi

cannot be accommodated in its preferential part, it is assigned
to the other part. If all tasks can be held in PRAM or DRAM,
the computed P is the solution.

3Each task can be entirely or partially allocated in the PRAM/DRAM. If τi
is partially in PRAM, si , |�Ei |, and Ni could be calculated as in footnote 3.

1278 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013

Algorithm 3 MinE′ (online): Minimizing Energy Consump-
tion
Require: Task set T = {τ1, τ2, . . .}, Nt, Pt, Dt.
Ensure: Energy consumption (E) of the hybrid memory.
1: for t = 0, 1, 2, . . . do
2: Free PRAM and DRAM locations occupied by tasks in

T f [t];
3: Compute N , P , D if all P-tasks and D-tasks in Ts[t] are

assigned to PRAM and DRAM, respectively;
4: R1← (N/Nt), R2 ← (P/Pt), R3 ← (D/Dt);
5: while R1 > 1 or R2 > 1 or R3 > 1 do
6: if R1 ≥ R2 and R1 ≥ R3 then
7: P-task τi ∈ Ts [t] with the largest (|�Ei |/Ni) is

preferentially assigned to PRAM. If τi cannot be
accommodated in PRAM, then it is assigned to
DRAM;

8: end if
9: if R2 > R1 and R2 ≥ R3 then

10: P-task τi ∈ Ts[t] with the largest (|�Ei |/si) is
preferentially assigned to PRAM. If τi cannot be
accommodated in PRAM, then it is assigned to
DRAM;

11: end if
12: if R3 > R1 and R3 > R2 then
13: D-task τi ∈ Ts[t] with the largest (|�Ei |/si) is

preferentially assigned to DRAM. If τi cannot be
accommodated in DRAM, then it is assigned to
PRAM;

14: end if
15: Ts [t] ← Ts[t] \ {τi };
16: if τi is totally assigned to DRAM then
17: fi ← ai + (fi − ai) · 0.8;
18: end if
19: Compute N , P , D if all P-tasks and D-tasks in Ts[t]

are assigned to PRAM and DRAM, respectively;
20: R1 ← (N/Nt), R2 ← (P/Pt), R3 ← (D/Dt);
21: end while
22: if Ts[t] �= ∅ then
23: Allocate all P-tasks and D-tasks in Ts[t] to PRAM and

DRAM respectively, update each fi as (21) if τi is
totally or partly assigned to DRAM;

24: end if
25: end for
26: Compute E;
27: Return E;

V. EXPERIMENTS

In this section, the experimental evaluation of the proposed
algorithms are presented. We know that in real applications
the number of read operations is often more than the number
of write operations. During random generation of task sets,
we assign the number of reads/writes based on sampling from
MiBench [23] where the number of reads are 3−10 times more
than the number of writes. There are four sets of tasks, with the
task numbers 40, 60, 80, and 100. Table III shows the attributes
of all tasks. Eave = (1/n)

∑n
i=1(Epi + Edi) represents the

Algorithm 4 MinN′(online): Minimizing Number of Writes
on PRAM
Require: Task set T = {τ1, τ2, . . .}, Et, Pt, Dt.
Ensure: Number of writes on PRAM (N).
1: for t = 0, 1, 2, . . . do
2: Free PRAM and DRAM locations occupied by tasks in

T f [t];
3: Compute D and E if all tasks in Ts[t] are assigned to

DRAM;
4: R1 ← (D/Dt), R2 ← (E/Et);
5: while R1 > 1 or R2 > 1 do
6: if R1 > R2 then
7: The task τi in Ts[t] with the smallest (si/Nwi)

is preferentially assigned to DRAM. If τi cannot
be accommodated in DRAM, then it is assigned to
PRAM;

8: else
9: P-task τi in Ts[t] with the largest (|�Ei |/Nwi)

is preferentially assigned to PRAM. If τi cannot
be accommodated in PRAM, then it is assigned to
DRAM;

10: end if
11: Ts [t] ← Ts[t] \ {τi };
12: if τi is totally to DRAM then
13: fi ← ai + (fi − ai) · 0.8;
14: end if
15: Compute D and E if all tasks in Ts[t] are assigned to

DRAM;
16: R1 ← (D/Dt), R2 ← (E/Et);
17: end while
18: if Ts[t] �= ∅ then
19: Allocate each task τi ∈ Ts [t] to DRAM, update fi as

(21);
20: end if
21: end for
22: Compute N, P;
23: if P ≤ Pt then
24: Return N;
25: end if

average energy consumption when all tasks are assigned to
PRAM and DRAM. MaxN refers to the sum of number of
writes of all tasks, MaxN = ∑n

i=1 Nwi . SL B corresponds
to the largest sum of concurrent task sizes among all time
instants, which is the lower bound of the required memory
size.

The techniques under comparison are: 1) the ILP formu-
lations for the three cases; 2) the proposed offline heuristics,
including MinE, MinN, and MinP; 3) the online heuristics,
including MinE′, MinN′, and MinP′; and 4) the simple heuris-
tics for the three cases, including MinE_CP, MinN_CP, and
MinP_CP, which will be illustrated later in this section.

The experiments were conducted on a desktop computer
with an Intel Pentium 4 processor (3.39 GHz) and 2 GB
memory. The LP solver used to solve the ILP formulations
is Lingo [24]. We find that, when the constraints are too tight
or the solution space is too large, the ILP formulations cannot

TIAN et al.: TASK ALLOCATION ON NVM-BASED HYBRID MAIN MEMORY 1279

TABLE III

ATTRIBUTES OF FOUR TASK SETS

Task no. Eave MaxN SL B

40 4124 195 160

60 5984 294 234

80 8023 383 310

100 9904 490 385

be optimally solved in finite time. All heuristics in this paper
can be solved in seconds.

A. Simple Heuristics for Comparison

Since task allocation optimization problems on hybrid mem-
ory are brand new, no method exists that can solve these
problems directly. We devise a set of simple algorithms for
comparison: MinE_CP, MinN_CP, and MinP_CP. They are
used to show the effectiveness of the proposed heuristics
MinE, MinN, and MinP, respectively.

Take MinE_CP for example. The procedure is as follows.
Step 1: Allocate all P-tasks and D-tasks into PRAM and

DRAM, respectively.
Step 2: In this case, constraints N ≤ Nt , P ≤ Pt

and D ≤ Dt might be violated. We iteratively
migrate each task with the smallest �Ei among
all unmigrated tasks between PRAM and DRAM.
The migration process will not terminate until all
the three above constraints hold.

Step 3: Compute the energy consumption EMinE_CP.
MinN_CP is analogous to MinE_CP. MinN_CP first assigns

all tasks in DRAM, and then migrates each task τi with the
smallest Nwi from DRAM to PRAM until both D ≤ Dt and
E ≤ Et hold. Finally, check if P ≤ Pt holds. If yes, compute
N.

The only difference between MinP_CP and MinN_CP is as
follows: in step 2 of MinP_CP, we migrate task τi with the
smallest si at each iteration step.

B. Results Comparison

Tables IV–VI depict the results generated by all the ILP
formulations and heuristics. Input parameters Dt, Pt, Nt, Et
represent the threshold of DRAM size, PRAM size, number
of writes on PRAM, and energy consumption, respectively.
Since the ILP formulations are time-consuming to solve while
all heuristics can be solved in negligible time, we only list the
column “time” for ILP solutions. “*” in column “MinP_CP”
and row “80” of Table V means that the heuristic MinP_CP
has no solution, while “*” in column “ILP” of these three
tables means that the ILP program cannot generate optimal
solution in limited time.

In Table IV, EMinE, EMinE_CP, and EILP refer to the energy
consumption generated by heuristic MinE, EMinE_CP, and the
ILP formulations.

1) Dife1 = EMinE−EILP
EILP

· 100%.

2) Dife2 = EMinE_CP−EILP
EILP

· 100%.

3) Dife3 = EMinE′−EILP
EILP

· 100%.

In Table V, NMinN, NMinN_CP, and NILP represent the num-
ber of writes generated by heuristic MinN, EMinN_CP, and the
ILP formulations.

1) Difn1 = NMinN−NILP
NILP

· 100%.

2) Difn2 = NMinN_CP−NILP
NILP

· 100%.

3) Difn3 = NMinN′−NILP
NILP

· 100%.

In Table VI, PMinP, PMinP_CP, and PILP correspond to the
PRAM size generated by heuristic MinP, MinP_CP, and the
ILP formulations.

1) Dif p1 = PMinP−PILP
PILP

· 100%.

2) Dif p2 = PMinP_CP−PILP
PILP

· 100%.

3) Dif p3 = PMinP′−PILP
PILP

· 100%.

We can conclude from Tables IV–VI that all the proposed
offline heuristics perform better than the simple heuristics.
Besides, solutions of the offline heuristics are all within 10% of
the optimal solutions on average while dramatically reducing
the solving time. Performances of the online heuristics are all
within 20% of the optimal solutions.

C. Parameter Sensitivity Study

In this section, we present the parameter sensitivity study
of the proposed heuristics. We conduct experiments on the
40-task set. For each heuristic, there are three inputs. By fixing
two inputs and changing the third one, we can derive different
outputs. Note that in Fig. 5(a) no solutions can be derived
from MinE, MinE_CP, and MinE′ when Dt = 80. The same
scenario appears in Figs. 5(b) and 6(a). From Figs. 5–7, the
following conclusions can be drawn.

1) The offline heuristics perform better than the simple
heuristics and are close to the optimal ILP formulations,
while the online heuristics behave worst among all
heuristics.

2) In each group of experiments, our method proceeds by
fixing two parameters and changing the remaining one.
A notable phenomenon is that, as the free parameter
increases, the result decreases.

3) The parameters have different impacts in the experi-
ments. As depicted in Fig. 7(a), Dt has the largest
impact on P . This reason is obvious: the hybrid memory
consists of PRAM and DRAM. A small DRAM will
require a large PRAM to accommodate all the tasks.
For Fig. 6(c), the hybrid memory is large enough to hold
the tasks, so the energy consumption Et will obviously
impact N .

VI. RELATED WORK

As the size of main memory continually increases, more
and more energy will be consumed by the main memory
subsystem. The conventional DRAM-based main memory has
contributed to as much as 40% of the total system power on
some server machines [1]. Emerging NVMs such as STT-RAM
and PRAM are promising candidates to be employed as main
memory. Take PRAM for example: it has the advantages of
nonvolatility, excellent energy economy, and high density, and
the disadvantages of limited write endurance and long access

1280 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013

TABLE IV

COMPARISON OF MINE′, MINE_CP, MINE, AND ILP

Task Parameter setting MinE′ MinE_CP MinE ILP Dife1 Dife2 Dife3

no. Dt Pt Nt EMinE′ EMinE_CP EMinE EILP Time (s) (%) (%) (%)

40 100 100 75 4597 4297 4167 4023 7 3.6 6.8 14.3

40 100 100 100 4354 4187 4090 3910 15 4.6 7.1 11.4

40 100 100 150 4137 4043 3943 3675 34 7.3 10 12.6

40 150 150 150 4003 3903 3791 3587 12 5.7 8.8 11.6

60 150 150 200 6487 6402 6144 5742 103 7 11.5 13.0

60 200 200 150 6245 6184 5727 5475 87 4.6 12.9 14.1

60 150 150 150 6795 6502 6379 5985 43 6.6 8.6 13.5

60 200 200 200 5993 5824 5606 5314 92 5.5 9.6 12.8

80 200 200 300 8643 8328 7692 7403 25 3.9 12.5 16.7

80 250 250 250 8502 8301 7879 7357 11 7.1 12.8 15.6

80 200 200 200 8943 8549 8208 7765 >7200 5.7 10.1 15.2

80 250 250 200 8449 8302 7874 7513 465 4.8 10.5 12.5

100 200 200 300 10 987 10 749 10 154 9634 1864 5.6 11.6 14.0

100 200 200 400 10 574 10 346 9957 * – – – –

100 250 250 300 10 112 10 043 9646 9023 >7200 6.9 11.3 12.1

100 250 250 400 9986 9787 9513 * – – – –

Ave. (%) – – – – – – – – 5.6 10.3 13.5

TABLE V

COMPARISON OF MINN′, MINN_CP, MINN, AND ILP

Task Parameter setting MinN′ MinN_CP MinN ILP Difn1 Difn2 Difn3

no. Dt Pt Et NMinN′ NMinN_CP NMinN NILP Time (s) (%) (%) (%)

40 150 150 3600 135 131 123 116 267 6.0 12.9 16.4

40 100 100 3800 118 118 112 105 34 6.7 12.4 12.3

40 100 100 4000 96 90 88 81 22 8.6 11.1 18.5

40 150 100 4000 89 85 81 76 14 6.6 11.8 17.1

60 150 150 5800 215 211 200 189 65 5.8 11.6 13.8

60 150 150 6000 167 158 156 143 14 7.7 10.5 16.8

60 200 200 5400 197 195 191 174 32 9.8 12.1 13.2

60 200 200 5600 153 150 143 134 >7200 6.7 11.9 14.2

80 200 200 7500 325 311 301 289 153 4.2 7.6 12.5

80 200 200 8000 200 194 190 178 43 6.7 9.0 12.4

80 250 250 7500 214 210 198 187 13 5.9 12.3 14.4

80 250 250 8000 149 142 135 128 157 5.5 10.9 16.4

100 250 250 9000 280 273 260 245 >7200 6.1 11.4 14.3

100 250 250 9500 189 186 178 165 435 7.9 12.7 14.5

100 300 300 9000 254 245 231 * – – – –

100 300 300 9500 177 173 163 * – – – –

Ave. (%) – – – – – – – – 6.7 11.3 14.8

latency. Limited by these disadvantages, PRAM is not suitable
to be directly employed as main memory.

Active investigations on the hybrid main memory have been
conducted recently. From different levels, the authors have pro-
posed efficient management mechanisms and evaluated their
performances. From operating system level, Mogul et al. [15]
showed how to manage hybrid memory in order to benefit from
the ideal characteristics and hide the nonideal attributes of
the two parts of hybrid memory. Dhiman et al. [14] proposed
a hybrid hardware/software solution to manage the hybrid
memory which is referred to as PDRAM. Due to the limitation

of PRAM write endurance, they introduced a cost-efficient
book that stores the write frequency to PRAM. Additionally,
they presented an operating-system-level page manager
that exploits the write frequency information provided by
the hardware to perform wear leveling on all the PRAM
pages. They could save 37% energy at a negligible overhead
compared to DRAM architecture and behave better on energy
and performance efficiency over homogeneous PRAM main
memory.

Qureshi et al. [13] studied PRAM-based main memory inte-
grated with a small DRAM buffer. They showed that DRAM

TIAN et al.: TASK ALLOCATION ON NVM-BASED HYBRID MAIN MEMORY 1281

TABLE VI

COMPARISON OF MINP′, MINP_CP, MINP, AND ILP

Task Parameter setting MinP′ MinP_CP MinP ILP Difp1 Difp2 Difp3

no. Dt Et Nt PMinP′ PMinP_CP PMinP PILP Time (s) (%) (%) (%)

40 100 3500 150 137 133 130 123 6 5.7 8.1 11.4

40 100 3800 150 108 107 102 94 15 8.5 13.8 14.9

40 100 4000 150 100 99 91 86 432 5.8 15.1 16.3

40 150 3500 150 116 112 105 101 54 4.0 10.9 14.9

60 150 5500 200 215 210 202 189 23 6.9 11.1 13.8

60 200 5500 200 130 123 122 113 156 8.0 8.8 15.0

60 150 6000 200 170 170 166 151 45 9.9 12.6 12.6

60 200 6000 200 109 107 107 99 654 8.1 8.1 10.1

80 200 7500 300 213 206 199 188 >7200 5.9 9.6 13.3

80 250 8000 300 145 145 140 130 >7200 7.7 11.5 11.5

80 250 7500 200 176 173 169 156 327 8.3 10.9 12.8

80 200 8000 200 203 199 189 176 32 7.4 13.1 15.3

100 200 9000 300 285 284 284 265 563 7.2 7.2 7.5

100 200 9500 350 220 218 213 201 >7200 6.0 9.5 11.4

100 250 9000 300 271 260 251 * – – – –

100 250 9500 350 210 210 201 * – – – –

Ave. (%) – – – – – – – – 7.2 10.7 12.8

(a) (b) (c)

Fig. 5. Parameter sensitivity study of MinE on the 40-task set. (a) Changing Dt. (b) Changing Pt. (c) Changing Nt.

(a) (b) (c)

Fig. 6. Parameter sensitivity study of MinN on the 40-task set. (a) Changing Dt. (b) Changing Pt. (c) Changing Et.

buffer with only 3% of PRAM size can effectively bridge the
speed gap between PRAM and DRAM. To reduce the write
traffic on PRAM, they proposed three techniques: lazy write,
line level writeback, and page level bypass. These techniques
could significantly extend the average life expectancy of
PRAM. In addition to reducing write traffic, a low-overhead
technique—fine grain wear leveling—was proposed to make
the wearout uniform among all lines in a page. Chen et al. [25]

discussed the optimization techniques for PRAM-based main
memory on database systems. They presented analytic met-
rics for PRAM endurance, energy, and latency. Furthermore,
they demonstrated that current approaches such as B+-
trees and Hash-joins are suboptimal for PRAM and pro-
posed improved algorithms to reduce both the execution time
and energy dissipation while increasing write endurance on
PRAM.

1282 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013

(a) (b) (c)

Fig. 7. Parameter sensitivity study of MinP on the 40-task set. (a) Changing Dt. (b) Changing Et. (c) Changing Nt.

cache

PRAM

Hard disk drive

CPU

cache

Hard disk drive

CPU

PRAMDRAM
buffer

cache

Hard disk drive

CPU

PRAM
DRAM cache

cache

Hard disk drive

CPU

PRAMDRAM

(a) (b) (c) (d)

Fig. 8. Architecture designs of integrating PRAM into main memory [24].
(a) Pure PRAM is used as main memory. (b) Hybrid memory manages a
small DRAM buffer by software. (c) Small DRAM is integrated in the hybrid
memory as a transparent hardware cache. (d) Sizes of PRAM and DRAM are
of the same level.

In modern computer systems, a great portion of the main
memory is used for cache to hide disk access latency. Many
conventional caching algorithms, such as least recently used
(LRU), low inter-reference recency set, etc., have been pro-
posed and showed good performance. But these algorithms are
only suitable for DRAM-based main memory whose access
latency is uniform and write endurance is unlimited. For the
new hybrid main memory consisting of PRAM and DRAM,
Seok et al. [26] designed an LRU-based page caching algo-
rithm which adopts page monitoring and migration schemes
to keep read-bound access pages to PRAM. This algorithm
could minimize the write access of PRAM, thereby extending
its life expectation while maintaining high cache hit ratio.

Fig. 8 illustrates the architectures integrating PRAM into
the main memory system in recent investigations [13], [20],
[25], [27]. The main difference is whether a transparent or
software-controlled DRAM buffer is contained in the main
memory. Fig. 8(a) is proposed in [20], which directly employs
PRAM as main memory. By smart optimizations, the authors
could reduce application execution time on PRAM to within
a factor of 1.2 compared with DRAM-based main memory.
Both [13] and [27] integrate a small DRAM with PRAM
with the purpose of keeping frequently accessed data in the
DRAM buffer to improve performance and reduce PRAM
writes. The difference is that (b) manages the DRAM buffer by
software [27] while (c) controls the DRAM buffer as another
level of transparent hardware cache [13]. Recent work [25]

considered an abstract framework that captures all (a)–(c)
for different algorithm purposes. In [28] and this paper, a
hybrid DRAM and PRAM main memory is adopted as shown
in Fig. 8(d). Considering their different characteristics, we
propose heuristics for optimization according to the different
objectives.

VII. CONCLUSION

In this paper, we studied the task allocation problem on
the hybrid main memory composed of PRAM and DRAM.
We exploited the energy efficiency of PRAM and the long
write endurance of DRAM. The objectives were to minimize
the energy consumption, number of writes on PRAM, and the
PRAM size. Two sets of heuristics to solve these problems
were proposed. The experimental results showed that com-
pared with the simple heuristics, the proposed offline heuristics
perform better. Moreover, the offline heuristics could obtain
near-optimal solutions but consume much less time compared
with the ILP formulations.

REFERENCES

[1] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, vol. 40, no. 12, pp. 33–37, 2007.

[2] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakr-
ishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla,
B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory
technology,” J. Vac. Sci. Technol. B, vol. 28, no. 2, pp. 223–262, 2010.

[3] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R.
M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H.
Lam, “Phase-change random access memory: A scalable technology,”
IBM J. Res. Develop., vol. 52, nos. 4–5, pp. 465–479, 2008.

[4] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K.
Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao,
and H. Kano, “A novel nonvolatile memory with spin torque transfer
magnetization switching: Spin-RAM,” in Proc. IEEE IEDM, 2005, pp.
459–462.

[5] Y. Huai, “Spin-transfer torque MRAM (STT-MRAM): Challenges and
prospects,” AAPPS Bullet., vol. 18, no. 6, pp. 350–355, 2008.

[6] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture of
the 3D stacked MRAM L2 cache for CMPs,” in Proc. 15th Int. Symp.
High Perform. Comput. Arch., 2009, pp. 239–249.

[7] J. Li, C. Xue, and Y. Xu, “STT-RAM based energy efficiency hybrid
cache for CMPs,” in Proc. 19th IEEE/IFIP VLSI Syst. Chip Conf., Oct.
2011, pp. 31–36.

[8] J. Hu, C. Xue, Q. Zhuge, W. Tseng, and E. H.-M. Sha, “Toward energy
efficient hybrid on-chip scratch pad memory with non-volatile memory,”
in Proc. Conf. Des., Autom. Test Eur., 2011, pp. 1–6.

[9] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit and
microarchitecture evaluation of 3D stacking magnetic RAM (MRAM)
as a universal memory replacement,” in Proc. 45th Des. Autom. Conf.,
2008, pp. 554–559.

TIAN et al.: TASK ALLOCATION ON NVM-BASED HYBRID MAIN MEMORY 1283

[10] J. Hu, C. Xue, W.-C. Tseng, Y. He, M. Qiu, and E. H.-M. Sha, “Reducing
write activities on non-volatile memories in embedded CMPs via data
migration and recomputation,” in Proc. 47th Des. Autom. Conf., 2010,
pp. 350–355.

[11] Y. Huang, T. Liu, and C. Xue, “Register allocation for write activity
minimization on non-volatile main memory,” in Proc. 16th Asia South
Pacific Des. Autom. Conf., 2011, pp. 129–134.

[12] L. Shi, C. Xue, and X. Zhou, “Cooperating write buffer cache and virtual
memory management for flash memory based systems,” in Proc. IEEE
Real-Time Embedded Technol. Appl. Symp., Apr. 2011, pp. 147–156.

[13] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in Proc. 36th Int. Symp. Comput. Arch., 2009, pp. 24–33.

[14] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid PRAM and
DRAM main memory system,” in Proc. 46th Des. Autom. Conf., 2009,
pp. 664–669.

[15] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi, “Operating
system support for NVM+DRAM hybrid main memory,” in Proc. 12th
Workshop Hot Topics Operat. Syst., 2009, pp. 14–21.

[16] X. Dong, N. P. Jouppi, and Y. Xie, “PCRAMsim: System-level perfor-
mance, energy, and area modeling for phase-change RAM,” in Proc. Int.
Conf. Comput.-Aided Des., 2009 pp. 269–275.

[17] CACTI [Online]. Available: http://quid.hpl.hp.com:9081/cacti/
[18] C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and H. Li, “Emerging

non-volatile memories: Opportunities and challenges,” in Proc. 7th
IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codes. Syst. Synth., Oct. 2011,
pp. 325–334.

[19] T. Tanzawa and T. Tanaka, “A dynamic analysis of the dickson charge
pump circuit,” IEEE J. Solid-State Circuits, vol. 32, no. 8, pp. 1231–
1240, Aug. 1997.

[20] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable DRAM alternative,” in Proc. 36th Int. Symp.
Comput. Arch., 2009, pp. 2–13.

[21] M. R. Garey and D. S. John, Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York: W. H. Freeman, 1979.

[22] A. L. Buchsbaum, H. Karloff, and C. Kenyon, “OPT versus LOAD in
dynamic storage allocation,” in Proc. 35th Annu. ACM Symp. Theory
Comput., 2003, pp. 556–564.

[23] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Proc. 4th Annu. IEEE Int. Workshop Workload
Charact., 2001, pp. 3–14.

[24] Lingo [Online]. Available: http://www.lindo.com/index.php?option=
com_content&view=article&id=2&Itemid=10

[25] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking database algorithms
for phase change memory,” in Proc. 5th Biennial Conf. Innov. Data Syst.
Res., 2011, pp. 21–31.

[26] H. Seok, Y. Park, and K. H. Park, “Migration based page caching
algorithm for a hybrid main memory of DRAM and PRAM,” in Proc.
26th ACM Symp. Appl. Comput., 2011, pp. 595–599.

[27] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. C. Lee, D. Burger, and
D. Coetzee, “Better I/O through byte-addressable, persistent memory,”
in Proc. 22nd ACM Symp. Operat. Syst. Principles, 2009, pp. 133–146.

[28] T. Liu, C. Xue, Y. Zhao, and M. Li, “Power-aware variable partitioning
for DSPs with hybrid PRAM and DRAM main memory,” in Proc. 48th
Des. Autom. Conf., 2011, pp. 405–410.

Wanyong Tian received the B.E. degree from the
Department of Computer Science and Technology,
Northwest University, Xi’an, China, in 2007. He is
currently pursuing the Ph.D. degree with the School
of Computer Science and Technology, University of
Science and Technology of China, Hefei, China.

His current research interests include algorithm
design and analysis and embedded systems.

Yingchao Zhao received the B.E. and Ph.D. degrees
from the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing, China, in 2004
and 2009, respectively.

She is currently a Lecturer with the Department
of Computer Science, Caritas Institute of Higher
Education, Hong Kong. Her current research inter-
ests include algorithmic game theory, algorithm
designs, and computational complexity analysis and
scheduling.

Liang Shi received the B.S. degree in computer sci-
ence from the Xi’an University of Post and Telecom-
munication, Xi’an, China, in 2008. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Technology, University of
Science and Technology of China, Hefei, China.

His current research interests include embed-
ded systems and emerging non-volatile memory
technology.

Qingan Li received the B.E. degree from the Com-
puter School of Wuhan University, Wuhan, China,
in 2008, where he is currently pursuing the Ph.D.
degree.

His current research interests include compiler
optimization and program analysis for embedded
systems.

Jianhua Li received the B.S. degree from the
Department of Computer Science and Technology,
Anqing Teachers’ College, Anhui, China, in 2007.
He is currently pursuing the Ph.D. degree with the
School of Computer Science, University of Science
and Technology of China, Hefei, China.

His current research interests include computer
architecture, multi-core memory system, and on-chip
networks.

Chun Jason Xue (M’12) received the B.E. degree
from the Department of Computer Science and Engi-
neering, University of Texas at Arlington, Arlington,
in 1997, and the M.E. and Ph.D. degrees from
the Department of Computer Science, University of
Texas at Dallas, Dallas, in 2003 and 2007, respec-
tively.

He is currently an Assistant Professor with the
Department of Computer Science, City University
of Hong Kong, Kowloon, Hong Kong. His current
research interests include optimization for parallel

embedded systems, optimization for DSPs with VLIW or multi-core architec-
ture, hardware and software co-design.

1284 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013

Minming Li received the B.E. and Ph.D. degrees
from the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing, China, in 2002
and 2006, respectively.

He is currently an Assistant Professor with the
Department of Computer Science, City University
of Hong Kong, Kowloon, Hong Kong. His cur-
rent research interests include algorithm design and
analysis in wireless networks and energy efficient
scheduling, combinatorial optimization and compu-
tational economics.

Enhong Chen (SM’12) received the Ph.D. degree
from the University of Science and Technology of
China (USTC), Hefei, China, in 1996.

He is currently a Professor with the School of
Computer Science and Technology, USTC. His cur-
rent research interests include data mining, personal-
ized recommendation systems, and web information
processing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

