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Abstract—Trajectory regression, which aims to predict the
travel time of arbitrary trajectories on road networks, attracts
significant attention in various applications of traffic systems
these years. In this paper, we tackle this problem with a multi-
task learning (MTL) framework. To take the temporal nature
of the problem into consideration, we divide the regression
problem into a set of sub-tasks of distinct time periods, then
the problem can be treated in a multi-task learning framework.
Further, we propose a novel regularization term with which we
exploit the block sparse structure to augment the robustness of
the model. In addition, we incorporate the spatial smoothness
over road links and thus achieve a spatial-temporal framework.
An accelerated proximal algorithm is adopted to solve the
convex but non-smooth problem, which will converge to the
global optimum. Experiments on both synthetic and real data
sets demonstrate the effectiveness of the proposed method.

Keywords-trajectory regression; multi-task learning; dynam-
ic; structured sparsity;

I. INTRODUCTION

Recent advances in satellites, the Global Positioning Sys-

tem (GPS) and tracking facilities have made it possible to

collect a great amount of traffic data, which allows us to

track a vehicle’s moving path with its consecutive locations

(also known as a trajectory). In this context, new challenges

are introduced to data mining communities and investiga-

tions including trajectory clustering [1], classification [2] and

regression [3]–[5] have been conducted.

In general, trajectory analysis needs to leverage the latent

costs of links on road networks, which are essential infor-

mation for analyzing traffic data. However, traffic cost of

each road segment cannot be obtained easily and reliably

in reality, whereas the total travel time over a complete

trajectory could be measured and recorded more directly [4].

The problem of “trajectory regression” is thus raised as

a recipe to address the issues above, where one seeks to

learn the latent costs of links given a set of trajectories and

the corresponding total costs. It differs from the traditional

regression problem in that the instances (trajectories) are

extremely sparse due to the fact that a driving path always

spans just a small fraction of road segments while the

traffic history data in some regions is extremely insufficient.

Moreover, the data is usually noisy with unavoidable and

unpredictable situations such as terrible weather conditions

and traffic accidents, which makes the task more challeng-

ing.

Various efforts have been devoted to the specific problem

of trajectory regression. The method proposed in [3] adopts

Gaussian process regression to predict the cost of a com-

plete trajectory. The work in [4] essentially enforces spatial

smoothness over links and can be modeled as a simple form

of kernel ridge regression. However, there are noticeable

limitations in these two approaches where the former method

only deals with the situation that all trajectories share the

same origin and destination while the latter one ignores the

fact that the cost of a road segment fluctuates smoothly

most of the time with a few transitions. Taking this dynamic

factor into consideration, a multi-task learning approach is

proposed in [5] to incorporate temporal dynamics, which

treats each time period as a task and introduces a cross-task

regularization term encouraging smoothly changing costs of

successive time slots.

However, there are still issues that remain unaddressed.

Although the link costs fluctuate smoothly most of the time

during a day, there exist noticeably abrupt rises in the values

of traffic costs during rush hours with daily occurrence,

ignoring which may result in biased models with sensitivity

to traffic peaks. In the proposed framework, we formulate

the problem via a multi-task framework, which is known as

a technique to improve the generalization performance by

leveraging the intrinsic relationships among tasks [6]–[12].

Specifically, we represent the multiple regression weights

for the temporal tasks via a matrix, where each column

corresponds to a task (time slot), and each row to a feature

(road segment). We first decompose the weight matrix

into a sum of two components, then penalize the variance

of regression weights of the tasks in the first component

explicitly, following the assumption that the costs of road

segments generally change smoothly during off-peak pe-

riods. Next a graph regularization term is adopted on the

second component as in [4] to enforce the spatial proximity

and the smoothness over road segments. Additionally, the

block sparse �∞,1 norm is employed on columns/tasks of

the third component, which can help to identify the tasks

with significant temporal changes in rush hours and reduce

the influence of outlier tasks on the learned model. An
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accelerated proximal algorithm is designed to solve the

convex but non-smooth optimization problem efficiently.

The proposed method is evaluated experimentally on both

synthetic and real data sets with convincing results.

The rest of the paper is organized as follows. In Sec-

tion III we present the formulated MTL-based framework.

An accelerated proximal algorithm is then proposed in

Section IV to solve the optimization problem, followed by

the experimental results on both synthetic and real data sets

in Section V. The paper is then concluded in Section VI.

II. PROBLEM DEFINITION

This section summarizes the trajectory regression problem

with relevant background. We start with the definitions in

road networks following [3].

Definition 1 (LINK). A link is a road segment between two
neighbor intersections.

Definition 2 (TRAJECTORY). A trajectory is a sequence of
links, where any two consecutive links share an intersection.

We are given a set of N trajectory-cost pairs on a road

network consisting of d links,

D ≡ {(xi, yi)|i = 1, 2, . . . , N}
where xi ∈ R

d represents the i-th trajectory with each

feature corresponding to a link, and yi is the observed travel

time over the trajectory xi. Specifically, the k-th entry in xi

is the distance actually traveled along the k-th link if the

trajectory has passed that link, and 0 otherwise. Now the

goal is to learn the weights w ∈ R
d and then predict the

total travel cost for an arbitrary trajectory.

III. ROBUST DYNAMIC TRAJECTORY REGRESSION WITH

MULTI-TASK LEARNING

Intuitively, the traffic costs of road segments are not

static over different time periods. To model the temporally

changing link costs, we can divide D into m disjoint subsets

ordered by time: D = D1 ∪ D2 · · · ∪ Dm, Dt1 ∩ Dt2 = ∅
(t1, t2 = 1, 2, . . . ,m, t1 �= t2), where ti represents the ti-th
time period.

By assuming the Gaussian noise σt for the t-th task, we

have p(yti |xt
i) = N(yti |wt · xt

i, σ
2
t ), the problem can then

be modeled by maximizing the likelihood combining all the

tasks and formulated as

min
W
L(W ) = min

W

m∑
t=1

‖Y t −Xtwt‖22 (1)

where Y t = [yt1, . . . y
t
nt
]� ∈ R

nt×1, Xt = [xt
1, . . .x

t
nt
]� ∈

R
nt×d, with nt denoting the number of samples in Dt,∑m
t nt = N .

Note that the bias term is left out in the model since

intuitively the cost of any trajectory that spans no links

will be 0. All parameters across the entire time domain are

integrated in the matrix W = [w1,w2, ...,wm] ∈ R
d×m

where the t-th column represents the time cost per distance

unit for each link during the t-th time period, while the

k-th row describes the dynamic fluctuations of the cost

on link k. Thus, W captures both temporal and spatial

heterogeneity over the road network with its columns and

rows respectively.

A. The Additive Model for Multi-Task Learning

In the specific context of trajectory regression, the amount

of training data of trajectory-cost pairs is generally limited.

As a consequence, it is necessary to leverage the relation-

ships between the temporal tasks to alleviate the sparsity

problem for individual tasks.

In multi-task learning literature, additive models [13]–[15]

exploit multiple forms of relationships among tasks, and

fit naturally with the trajectory regression problem where

we want to capture the temporal and spatial variations

simultaneously. Specifically, following the idea of additive

models, in the proposed framework the weight matrix W is

decomposed into two components W = P + Q where P
models the global similarities over links and time, and Q
captures the outliers including rush hours.

B. Global Temporal and Spatial Regularization

1) Global Temporal Smoothness: From the global per-

spective, the link costs change smoothly most of the time.

Therefore we penalize the variance of regression weights of

the tasks with the following regularization term:

tr(PL1P
�) =

m∑
t=1

‖P:,t − 1

m

m∑
r=1

P:,r‖22 (2)

where P:,t represents the t-th column of P , and L1 =
I− 1

m11�. The regularization term (2) calculates the sum of

the element-wise variance of P:,1, P:,2, . . . , P:,m, enforcing

the columns of P or the tasks to be similar with some

discrepancy.

2) Global Spatial Smoothness: We adopt a graph regu-

larization term to enforce spatial smoothness following the

recipe in [4]:

tr(P�L2P ) =

d∑
i,j=1

Sij‖Pi,: − Pj,:‖22 (3)

where Pi,: represents the i-th row of P and S is the similarity

matrix of links and can be calculated as in [4]. Essentially,

L2 is the Laplacian matrix of the link graph, with the effect

of enforcing spatial smoothness, and can be calculated as

(L2)i,j = δij
∑d

k=1 Sik − Sij where δij = 1 if i = j and 0

otherwise.
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C. Temporal Block Sparse Structure

In addition to the global smoothness, Q is designed to

model the non-global patterns and capture the outliers. One

can observe that the significant temporal transitions in traffic

usually appear in a few specific time periods densely with

large values in link costs. On the other hand, the other

type of outliers, which are caused by data contamination

and measurement errors, usually appear randomly, which

should be zeroed out. The two factors essentially imply

simultaneously dense columns and a block sparse structure

in Q as shown in Fig. 1.
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Figure 1. Two types of outliers in Q: the useful patterns of peak traffic
(red) to be identified, and the random outliers (yellow) to be removed.

To enforce a temporal block sparse structure on Q, we

adopt the �p,1 norm as regularization which is convex [16]

and known as “group lasso”. Specifically, for any matrix Z,

the �p,1 norm can be defined as ‖Z‖p,1 =
∑

j ‖Z:,j‖p where

Z:,j is the j-th column of Z. The �p,1 regularization with

p > 1 is known to facilitate block sparsity.

Here we set p =∞ which results in the �∞,1 norm defined

as ‖Z‖∞,1 =
∑

j ‖Z:,j‖∞, where ‖Z:,j‖∞ = maxi |Zij |.
In our case, this regularization term helps to enforce col-

umn sparsity to identify the useful patterns of peak traffic

while removing the second type of outliers. Moreover, as

mentioned in [17], the �∞,1 norm intuitively contributes

to favorable recovery of the non-zero elements in non-zero

columns. Compared to the �2,1 regularization in which the

�2 norm of all non-zero columns are summed up and all non-

zero elements contribute in those columns, the �∞,1 norm

is only influenced by the maximum elements of the non-

zero columns. This agrees with the nature of the trajectory

regression problem better: the cost of a trajectory is mostly

decided by the link with highest cost during traffic peaks.

Based on the above discussion, we integrate global spatial

and temporal smoothness as well as significant dynamic

changes, and the robust dynamic multi-task trajectory re-

gression (RDMTR) framework can be formulated as:

min
W=P+Q, Q≥0

m∑
t=1

∥∥Y t −Xtwt
∥∥2
2
+ λ1tr(PL1P

�)

+ λ2tr(P
�L2P ) + λ3‖Q‖∞,1 (4)

D. Related Work
Our work is an extension of the static RETRACE mod-

el in [4]. Interestingly, another extension of [4] is pro-

posed in [5] as the DTRTS method in which a vari-

ant of fused lasso regularization term ΩDTRTS(W ) =∑d
i=1 (

∑m
t=2 |Wi,t −Wi,t−1|)2 is employed to model the

dynamic changes. However it ignores the outliers caused by

the rush hours and corrupted data as shown in Fig.1, which

implies sensitivity of the DTRTS model.

IV. OPTIMIZATION

Problem (4) is convex, but the �∞,1 regularization term

is not trivial for optimization due to its non-smoothness and

mixed-norm structure. In this section, we leverage the well-

developed proximal algorithm to solve it effectively.

A. Proximal Methods
Proximal gradient algorithms have received significant

theoretical and empirical success in various problems [18],

[19]. Formally, proximal methods are capable of solving the

general form of optimization as:

min
Z
{F (Z) +R(Z)} (5)

where both F (Z) and R(Z) are both convex; F (Z) is

differentiable but R(Z) is non-smooth. Denoting Z =(
P
Q

)
, we observe that (4) is exactly a specific form of

(5) where F (Z) = �(W ) + λ1tr(PL1P
�) + λ2tr(P

�L2P )
and R(Z) = λ3‖Q‖∞,1.

Proximal algorithms adopt the iterative scheme. Specifi-

cally, given the previous estimate Zr−1, Zr can be updated

with linear approximation of F (Zr) at Zr−1 in the r-th

iteration. Next, by adding R(Z) and we get

Zr = argmin
Z

γr
2
‖Z − CZ(Zr−1)‖2F +R(Z) (6)

in which CZ(Zr−1) is a constant with regard to the previous

point Zr−1. Notice γr is a positive real number representing

the step size. By decoupling P and Q we get two subprob-

lems:

Pr = argmin
P

γr
2
‖P − CP (Pr−1)‖2F (7)

Qr = argmin
Q

γr
2
‖Q− CQ(Qr−1)‖2F + λ3‖Q‖∞,1 (8)

where CP (Pr−1) = Pr−1−
FP (Pr−1)/γr , CQ(Qr−1) =
Qr−1−
FQ(Qr−1)/γr and 
FZ(C) represents the gradi-

ent of F (Z) with regard to Z at point C.
Before describing the procedures of solving the two

subproblems (7) and (8), it is necessary to note that the

proximal framework provides a scheme to estimate the step

size properly, which essentially works by increasing γr while

the inequality below is satisfied.

F (Zr) ≤ F (Zr−1) +
γr
2
‖Zr − Zr−1‖2F

+ 〈Zr − Zr−1,
FZ(Zr−1)〉
(9)
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B. Computing P

A closed-form solution of problem (7) can be easily

obtained as Pr = CP (Pr−1).

C. Computing Q

Now we consider the problem (8). By leveraging the

Moreau Decomposition, we get the following proposition:

Proposition 1. Given C ∈ Ra×b, the objective function

min
Q

1

2
‖Q− C‖2F + λ‖Q‖∞,1 (10)

has a closed-form solution, which can be obtained by

Qi,j =

⎧⎪⎨
⎪⎩
λ, Ci,j > λ

Ci,j , −λ ≤ Ci,j ≤ λ

−λ, Ci,j < −λ
(11)

Proof: Denote qi and ci the i-th column of Q and C respec-

tively, Problem (10) can be decomposed into b subproblems

in terms of each column:

min
qi

1

2
‖qi − ci‖22 + λ‖qi‖∞ (12)

With the Moreau Decomposition Property [19], we have c =
proxR(c)+proxR∗(c), where R∗ is the conjugate form of R.

Note that the conjugate form of the �∞ norm is the �1 norm.

Therefore, qi could be obtained by solving the following

qi = min
qi

{
ci −

(
1

2
‖qi − ci‖22 + λ‖qi‖1

)}
(13)

and sequentially we get (11).

Following the accelerated scheme by Nesterov [18], the

algorithm for solving Problem (4) is detailed in Algorithm 1.

D. Time Complexity

Denoting the average number of training samples of tasks

by n̄, the per-iteration time complexity of the proposed

RDMTR is O(n̄dm) since the closed-form solutions only

involve linear operations. Meanwhile, by solving a subprob-

lem of quadratic programming for each decoupled row of

W in every iteration, the per-iteration time complexity of

DTRTS [5] is raised to O(n̄d2m3), which is much higher.

V. EXPERIMENTS

Experiments are conducted to evaluate the proposed

RDMTR on both synthetic and real-world data sets.

A. Competing Algorithms and Measurements

To verify the effectiveness of the proposed RDMTR,

Ridge (ridge regression without splitting the task) and STL-

Ridge (ridge regression conducted on individual tasks sep-

arated by time slots) are treated as baselines. Similarly,

RETRACE and STL-RETRACE represent RETRACE [4]

with one task and multiple single tasks respectively. Other

comparable algorithms include DTRTS in [5], TGL in [11],

Algorithm 1 Accelerated Proximal Method for RDMTR

Input: X1, ..., Xm; Y 1, ..., Y m; λ1; λ2; λ3.

Output: W .

1: Initialize: P0, Q0, P−1, Q−1, γ0,

L > 1, t0 = 0, t1 = 1 , r = 1;

2: repeat
3: α = tr−1−1

tr
;

4: P = (1 + α)Pr−1 − αPr−2 ;

5: Q = (1 + α)Qr−1 − αQr−2;

6: γr = γr−1;

7: while true do
8: Pr = CP (P );
9: Update Qr by (11);

10: Set the negative elements of Qr to be 0s;

11: γr = γrL;

12: if (9) is satisfied:

13: break;

14: end while
15: tr+1 =

1+
√

1+4t2r
2 ;

16: r = r + 1;

17: until convergence

18: W = Pr +Qr;

Dirty in [15] and RDMTR2,1 which adopts �2,1 norm

alternative of the block sparse norm in (4) .

The parameters for all the competing algorithms are

adjusted with 3-fold cross validation. It should be men-

tioned that the parameter which controls the identical spatial

smoothness regularization in RETRACE, STL-RETRACE,

DTRTS and the proposed RDMTD are set to the same value

for fairness. The maximum number of iterations is set to

1500 while the tolerance is 10−5. All results are averaged

over 10 repetitions.

Algorithms are evaluated with measurements including

the normalized mean squared error (nMSE) and the averaged

mean squared error (aMSE) as defined in [14]. Notice

that smaller values of nMSE and aMSE represent better

regression performance.

B. Synthetic Data - Grid20

The synthetic experimental setup follows similar design

as in previous work [4]. A 20× 20 two-dimensional lattice

structure is generated with 760 500-meter-long links. An

individual task corresponds to each hour in a day and we get

24 tasks in total. For each task pi is generated with uniform

distribution U(0,0.5) and then smoothed according to the

topological structure with a convolution operator. To keep

tasks similar with discrepancy, we set pi = αip
i with αi

chosen randomly between 1.0 and 1.1, and 3 time periods

are randomly selected as peak hours with extra costs qi ∼
N (1,10). Assuming that not all links suffer from heavy

traffic during the peak hours, 70% of the elements of qi in
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the peak hours are selected randomly and set to 0; finally

the i-th weight vector is calculated as wi = pi + qi.

Further, 400 samples are generated for each task, by find-

ing the shortest routes with the origin points and destination

points selected randomly, and the trajectory-cost pairs are

generated by Y i = (Xiwi) ∗ N (1,5), where N (1,5) is

the noise factor. Then 10%, 20%, and 30% of the samples

from each task are randomly selected as the training set

respectively, the other 20% as the validation set, and the

remaining are used as the test set. Averaged nMSE and

aMSE values after 10 repetitions are reported in Table I.

The purpose of this experiment is to evaluate the abilities

of capturing temporal changes of the 9 algorithms. Overall,

the proposed RDMTR and alternative RDMTR2,1 perform

the best among all the algorithms, where RDMTR surpasses

RDMTR2,1 with training ratios 20% and 30%. Interestingly,

in this scenario, STL-RETRACE outperforms RETRACE,

implying that the discrepancies among tasks overrule the

similarities. As a result, TGL, Dirty and DTRTS more or

less suffer from negative information transfer among tasks.

C. Suzhou Traffic Data

The Suzhou Traffic Data contains 59593 trajectory records

of 4797 taxies from 7:00 to 19:59 in urban area of Suzhou,

China during the first week in March, 2012. Trajectories oc-

curring in the downtown region which covers 2105 road seg-

ments and about 100 km2 centered at (E120◦37′, N31◦19′)
are recorded. As illustrated in Fig. 2, the traffic load for each

link is extremely unbalanced. After splitting the data by each

hour, 13 regression tasks are entailed.

0 500 1000 1500 2000 2500 3000 3500
0
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8
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Number of Passages

C
o
u
n
t

Figure 2. The distribution of the number of passages per link in Suzhou.

We randomly select 20%, 30%, and 40% of the samples

from each task as the training set and 20% as the validation

set, leaving the rest as the test set. The results after 10

repetitions are reported in Table II, which demonstrates

that the proposed RDMTR approach outperforms the other

algorithms including the alternative RDMTR2,1 in terms of

nMSE and aMSE. Interestingly, compared to Ridge and RE-

TRACE with no separate tasks, most multi-task algorithms

including Dirty and DTRTS are not superior in performance,

which implies negative information transfer among tasks.

To show the comparison more clearly, we further plot the

curves of 6 representative algorithms in nMSE and aMSE

with different training ratios, which again demonstrate the

clear advantage of the RDMTR approach.
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Figure 3. Comparison of different algorithms in terms of nMSE and aMSE.

Moreover, to verify the ability of Q capturing the outlier

costs, we calculate the average of Q over 10 repetitions and

plot the maximum entry of each column in Fig. 4. From the

curves we can observe two peaks at time slots 8 and 17,

which correspond to significantly higher traffic costs in rush

hours around 8:00–8:59 and 17:00–17:59.

6 8 10 12 14 16 18 20
0

50

100

Time Slot (hour)

s
/m

Maximum of Q with Different Time Slots

Figure 4. Maximum value of Q w.r.t. different time slots.

VI. CONCLUSION

This paper focuses on the “trajectory regression” problem.

We propose a multi-task framework that divides the problem

into two components to model the spatial and temporal struc-

ture globally as well as the local patterns of traffic costs in

rush hours. Experiments on both synthetic and real data sets

demonstrate the clear advantage of the proposed framework

over the other state-of-the-art approaches. In future work we

would like to consider the issue of incomplete data in the

trajectory regression problem and explore further into the

inherent structures of the problem.
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