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ABSTRACT
Recent years have witnessed the rapid prevalence of online serials,
which play an important role in our daily entertainment. A critical
demand along this line is to predict the popularity of online seri-
als, which can enable a wide range of applications, such as online
advertising, and serial recommendation. However, compared with
traditional online media such as user-generated content (UGC), on-
line serials have unique characteristics of sequence dependence,
release date dependence as well as unsynchronized update regu-
larity. Therefore, the popularity prediction for online serials is a
nontrivial task and still under-addressed. To this end, in this pa-
per we present a comprehensive study for predicting the popular-
ity of online serials with autoregressive models. Specifically, we
first introduce a straightforward yet effective Naive Autoregressive
(NAR) model based on the correlations of serial episodes. Further-
more, we develop a sophisticated model, namely Transfer Autore-
gressive (TAR) model, to capture the dynamic behaviors of audi-
ences, which can achieve better prediction performance than the
NAR model. Indeed, the two models can reveal the popularity gen-
eration from different perspectives. In addition, as a derivative of
the TAR model, we also design a novel metric, namely favor, for
evaluating the quality of online serials. Finally, extensive experi-
ments on two real-world data sets clearly show that both models
are effective and outperform baselines in terms of the popularity
prediction for online serials. And the new metric performs better
than other metrics for quality estimation.
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1. INTRODUCTION
With the rapid development of online content-sharing Websites,

more and more people would like to become online audiences in
their daily entertainments. A recent trend of the over-the-top (OTT)
subscription services (e.g., Hulu1and Youku2) is to provide online
serials, such as TV shows and Webisodes, to attract more online
audiences. Different from the user-generated content (UGC) and
movies, online serials often have many regularly updated episodes,
which will continuously capture the audiences’ preference. Indeed,
an interesting and practical problem for this online serial service is
to predict the popularity of online serials, which can help with a
wide range of applications, such as serial recommendation [21, 29],
online advertising [22, 14, 29, 1, 23], user behavior analysis [1, 13,
8, 32], as well as online traffic management [7, 2, 9].

In the literature, although many efforts have been devoted to the
popularity prediction for traditional online contents [1, 15, 20, 27,
30, 29, 33] and time series prediction [17, 24, 11], few of those
works can be directly used to solve the problem of popularity pre-
diction for online serials due to their unique characteristics. Specif-
ically, online serials have strong sequence dependence and release
date dependence. For example, the plot often evolves between ad-
jacent episodes, thus two adjacent episodes may have similar audi-
ences due to the momentum of popularity. Also episodes released
on weekends or holidays may attract more audiences than those
on workdays. Furthermore, since different episodes are usually re-
leased on different days, online serials have the characteristic of
unsynchronized update regularity. Therefore, the popularity predic-
tion for online serials is a nontrivial task and still under-explored.

To this end, in this paper we present a comprehensive study for
predicting the popularity of online serials by leveraging autoregres-
sive models. Firstly, we find that the popularity of two adjacent
episodes often have a strong linear correlation. Therefore, we in-
troduce a straightforward yet effective Naive Autoregressive (NAR)
model based on the correlation. In this model, the popularity of
a newly released episode is represented by a linear combination
of the popularity of previous episodes. However, this model can-
not explicitly model the dynamic behaviors of audiences, which
play an important role in the popularity generation of online seri-
als. Therefore, we further develop a sophisticated model, namely
Transfer Autoregressive (TAR) model. In this model, we assume
that audiences of an episode consist of two parts, i.e., followers
who have watched previous episodes and also follow the current
episode, and freshers who watch the serial for the first time such as
random surfers and those who have watched the previous episodes

1http://www.hulu.com/
2http://www.youku.com/



of this serial through other ways. Indeed, both of the two models
are effective for predicting the popularity of online serials, but can
reveal the popularity generation from different perspectives. In ad-
dition, as a derivative of the TAR model, we also design a novel
metric, namely favor, for evaluating the quality of online serials. It
can help to find serials of high quality, which have the high poten-
tial to attract audiences to watch.

Specifically, the contributions of this paper can be summarized
as follows.

• To the best of our knowledge, this paper is the first compre-
hensive study for predicting the popularity of online serials
with autoregressive models, which can help various novel ap-
plications, such as online advertising and recommendations.

• To solve the problem, we propose two adapted autoregressive
models, namely NAR and TAR, which can reveal the popu-
larity generation from different perspectives. Particularly, we
also design a novel metric derived from the TAR model for
evaluating the quality of serials.

• We conduct extensive experiments on two real-world data
sets for validating the performance of the proposed models.
The experimental results clearly show that both models are
effective and outperform baselines in terms of the popular-
ity prediction for online serials. And our new quality metric
can lead to a better performance compared with other metrics
such as average views in the first week after release.

Overview. The remainder of this paper is organized as follows.
We introduce the preliminary of popularity prediction for online se-
rials in Section 2. Section 3 and 4 discuss the details of our NAR
and TAR models, respectively. In Section 5, we report the exper-
imental results on two real-world data sets. Section 6 provides a
brief review of related works. Finally, we conclude the paper and
describe possible future works in Section 7.

2. PRELIMINARIES
In this section, we first introduce some preliminaries about on-

line serials and then provide the formal problem statement of the
popularity prediction for online serials.

Online serials include various kinds of contents, such as TV se-
ries (teleplays), Webisodes and serial novels. Let us take TV se-
ries, one of the most important components of online serials, as an
example. As a convention, TV series providers always release lim-
ited (e.g., one or two) episodes at each broadcast time, and the new
episodes will be released regularly (e.g., per day or per week). The
episodes can be viewed by online audiences anytime after they are
released. Therefore, views of released episodes at different time
compose the popularity records of TV series.

Formally, each online serial sn contains Mn episodes, i.e., sn =
{e1, e2, · · · , eMn}, where episode ei is released at timestamp ti,
and ∀i ∈ [1,Mn] we have ti − ti−1 = ∆T , which is the release
interval between two adjacent episodes. Particularly, sometimes
the online serial providers may release two or more episodes at
the same time. In this case, the episodes which are released at the
same time can be regarded as one episode, without loss of gen-
erality. After its release, the views intuitively constitute the pop-
ularity of an episode. Therefore, if we sample every unit time
after its release time ti, the popularity record of ei can be rep-
resented by a time series ϕi = {vi1, vi2, ...}, where vij denotes
the popularity of the episode ei within the j-th unit time inter-
val after release. The granularity of unit time depends on the de-
mands of popularity modeling, which can be one day, one week,

Figure 1: The popularity records of an online serial, where vij
denotes the popularity of the i-th episode within the j-th unit
time interval after it is released.

and etc. We will set the unit time interval to be the release inter-
val, ∆T , in the following description. Note that, the popularity
records of different episodes contain different number of observa-
tions at a given timestamp. In other words, for sn, the time series
ϕi (1 ≤ i ≤ Mn) of different episodes ei (1 ≤ i ≤ Mn) may
have different lengths. Furthermore, the popularity record of sn
can be denoted as Φn = {ϕ1, ϕ2, · · · , ϕi} (i ≤ Mn). For exam-
ple, Figure 1 demonstrates the popularity record of a specific online
serial, where the update frequency of episodes is one unit time (i.e.,
∆T = 1).

With the above preliminaries, we can formally define the prob-
lem of popularity prediction for online serials as follows.

PROBLEM 1 (POPULARITY PREDICTION FOR ONLINE SERIALS).
Given an online serial sn with i released episodes and its popular-
ity record Φn = {ϕ1, ϕ2, · · · , ϕi}, the goal is to predict the pop-
ularity record of the next episode after it is released, i.e., ϕi+1 =
{vi+1,1, vi+1,2, · · · }.

According to the above definition, the major task of the proposed
problem is to use the popularity records of historical episodes for
predicting the popularity of online serials. Indeed, the popularity
of different episodes have a strong characteristic of sequence de-
pendence, which can be captured by autoregressive modeling [17].
To be specific, we can formulate the popularity prediction task of
individual serial as the following autoregressive problem:

ϕi+1 = M(ϕ1, ϕ2, · · · , ϕi), (ϕi ∈ Φn). (1)

Therefore, our goal is to build and learn the autoregressive model
M. The above formulation is not equal to the traditional autore-
gressive modeling problem, which only takes consideration of the
historical values of a given variable (e.g., ϕi+1). However, since
all the popularity records (e.g., ϕi) belong to the same serial sn,
the formulation can be regarded as leveraging historical records
of sn for predicting the unknown records of sn. Therefore, our
formulation still satisfies the problem definition of autoregressive
modeling. In the following sections, we will introduce two adapted
autoregressive models for solving this problem.

3. NAIVE AUTOREGRESSIVE MODEL
In this section, we introduce the first novel autoregressive model,

namely the Naive Autoregressive (NAR) model.
Intuitively, if people like the first several episodes of a serial,

they are likely to continue viewing the next episodes. Therefore,
the major audiences of different episodes of a serial are same, and
usually have personalized but relatively stable watching behaviors.
For example, some big fans always watch the new episodes at the
first day after they are released, while some others may watch them
later on weekends due to their work or study. Indeed, according to
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Figure 2: (a) Schematic of the NAR model; (b) The average
Pearson correlation coefficient of the popularity of two adja-
cent episodes in our data set, which is calculated from the re-
lease time to the t-th unit time interval.

some previous reports [31, 16], such personalized watching behav-
iors are especially significant for online serials. Inspired by this,
we propose the NAR model by utilizing the popularity of the al-
ready released episodes to predict the popularity of a new episode
within the same j-th unit time interval after it is released. For ex-
ample, as shown in Figure 2(a), we can use the popularity with the
same color (e.g., v11, v21,. . . , vi−1,1) to predict the popularity of
the newly released episode (e.g., vi1).

To further validate the model, we compute the average Pearson
correlation coefficient between the popularity records of two ad-
jacent episodes (i.e., ϕi and ϕi+1) with one real-world data set.
The results are shown in Figure 2(b). We can observe that there is
a strong linear correlation between the popularity of two adjacent
episodes, and the average correlation coefficient becomes larger as
we consider longer duration. Formally, the popularity of an episode
within the j-th unit time interval (i.e., vij) is a linear combination of
the popularity of previous r episodes (e.g., vi−1,j , vi−2,j , ..., vi−r,j).
Specifically, we can predict vij as

vij = ω0 + ω1vi−1,j + . . .+ ωrvi−r,j = wT V, (2)

where w = (ω0, ω1, . . . , ωr)
T is the model parameters to be learned

and V = (1, vi−1,j , . . . , vi−r,j).
Particularly, to achieve better prediction performance, here we

propose two different kinds of methods for learning the model pa-
rameters, which can fit our model into different application cases.

3.1 NAR with Sharing Parameters
This method indicates that all online serials should have the same

model parameters. Specifically, given a training set of online seri-
als S and their popularity records Φ = {Φ1,Φ2, . . . ,Φ|S|}, the
process of learning model parameters can be implemented by min-
imizing the Mean Relative Squared Error (MRSE) [21, 20] loss
function; that is

argmin
w

{L(w) =
1

|Φ|
∑

Φn∈Φ

∑
vij∈Φn

(
wT V
vij

− 1)2}, (3)

where vij is the real popularity. Here, we can transform this or-
dinary least squares problem to the normal equation by setting the
derivative of Equation (3) with respect to w to zero and solving for
w, and then get the optimal solution ŵ [19].

3.2 NAR with Individual Parameters
This method assumes that every serial has its own model param-

eters, which can capture its own popularity trend. However, a criti-
cal challenge along this line is that some serials may only have few
released episodes as training data, which may increase the risk of
over-fitting during model training [4]. To this end, we add a penalty
term to the loss function (i.e., Equation 3) in order to avoid the case

of over-fitting. Indeed, the most widely used form of such penalty
term is the sum of the squares of coefficients [4]. Therefore, the
loss function changes to

argmin
w

{L(w) =
1

|Φn|
∑

vij∈Φn

(
wT V
vij

− 1)2 + λ||w||2}, (4)

where ||w||2 = wT w = ω0
2 + ω1

2 + . . . + ωr
2 and λ keeps

a trade-off between the regularization term and the loss function.
This optimization problem can also be solved by the method used
for learning NAR with sharing parameters. Particularly, in order to
set a most appropriate value for λ, we use the value which mini-
mizes the prediction error on the validation set.

Indeed, sharing parameters can minimize the overall MRSE while
individual parameters lays emphasis on individual popularity trend.
Therefore, when we only know the popularity of a few episodes of
the given serial, it is better to use the former method. In contrast,
when there are enough released episodes of the given serial as train-
ing data, the latter method is better.

4. TRANSFER AUTOREGRESSIVE MODEL
FOR POPULARITY PREDICTION

In this section, we propose a sophisticated model, namely the
Transfer Autoregressive (TAR) model, for popularity prediction.

Although the NAR model can exploit the linear correlation be-
tween different episodes for popularity prediction, it only uses the
popularity of historical episodes with the same color in Figure 2(a).
With the real-world observations, we found that the popularity of
a specific episode always consists of two parts. The first part is
from the followers who have watched the previous episodes and
also would like to follow the current episode. These followers are
loyal fans of this serial and will likely keep watching the following
episodes. However, some of the followers may lose their interests
as time unfolds due to many reasons, such as finding another in-
teresting serial. The second part is from the freshers who watched
the serial for the first time, such as random surfers on the Web and
those who have watched the previous episodes of this serial through
other ways (e.g., TV and other websites). If the freshers like this
serial, they will continue watching the following episodes and be-
come followers. Particularly, instead of watching the new episode
on the first day after it is released, the audiences might watch it
later. The above observations are the basic concepts of our TAR
model. In the following, we will state this idea in a formal way.

ASSUMPTION 1. Audiences of an episode are composed of fol-
lowers and freshers. Both of them will sequentially watch future
episodes from the episode that they start watching in this serial.

Indeed, Assumption 1 can capture the collaborative behaviors
of audiences. For better illustration, here we only take serial sn
as example. Specifically, for an episode ei, we use aij and bij to
denote the popularity from followers and freshers within the j-th
unit time interval after it is released, respectively. In particular,
given i = 1, we have

a1j = 0, ∀j ≥ 1. (5)

It is because that no one has watched this serial before. Further-
more, let pijk and qijk denote the probabilities that followers and
freshers of episode ei within the j-th unit time interval after ei is
released will keep watching the next episode ei+1 on its k-th unit
time interval after ei+1 is released, respectively. Particularly, the
subscripts of the two probabilities should satisfy that ti+1 + k >
ti + j, where ti and ti+1 are the release times of episodes ei and
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Figure 3: Graphical representation of the TAR model.

ei+1, respectively. It is because that only the historical audiences
will transfer to watch the current episode.

Figure 3 shows the graphical representation of the above defini-
tions. In this figure, the two episodes ei and ei+1 are released at the
time index 1 and 2, respectively. Every rectangle denotes the pop-
ularity vij , which contains two circles. The green and blue circles
represent aij and bij , respectively. Except for the last episode, ev-
ery green and blue circles should have many weighted arrows point-
ing to the next episode, such as pi11, qi11, pi12, qi12. The weights
denote the probability of which audiences will transfer from one
circle to another circle, and should be larger for more popular seri-
als. To be more specific, they satisfy the following equations:

v̂ij = aij + bij (6)

aij =
∑
k

(ai−1,k · pi−1,k,j) +
∑
k

(bi−1,k · qi−1,k,j) (7)

∞∑
k

pijk = 1,

∞∑
k=j

qijk = 1. (8)

Intuitively, pijk should become smaller as k increases, since most
people will watch the new episode within the first unit time (e.g.,
the first day) after it is released. To capture this point, we further
make another assumption as follows.

ASSUMPTION 2. The number of freshers for new episodes has
a trend of decreasing as more episodes are released.

If some freshers watched an episode of the online serial, but do
not like it, they would not watch the next episodes any more. This
offers an intuitive explanation of Assumption 2. Another meaning
of Assumption 2 is that the number of freshers, i.e., bij , is decreas-
ing as i increases with fixed j. Indeed, for an online serial provider,
the number of users is finite and the freshers for a serial usually
have a maximum number. Therefore we can simplify the problem
and assume that

bij = b0j exp
−αi, (9)

where α is the decay factor and b0j is the initial public attention of
the serial within the j-th unit time interval. Intuitively, α should be
smaller while b0j should be larger for popular serials because they
attract more freshers as more episodes are released. After substi-
tuting Equation (5) and (9) into Equation (6) and 7, we have

v̂ij =f(m, b0, p, q) = b0j ·mi +
∑
k1

b0,k1 ·mi−1 · qi−1,k1,j+∑
k1

∑
k2

b0,k2 ·mi−2 · qi−2,k2,k1 · pi−1,k1,j + . . .+

∑
k1

. . .
∑
ki−1

b0,ki−1 ·m · q1,ki−1,ki−2 · p2,ki−2,ki−3 · · · pi−1,k1,j

(10)

where m = exp−α, b0 = (b01, . . . , b0j), p = (p111, p112, . . . , pi−1,jj)
and q = (q111, q112, . . . , qi−1,jj). Although the above equation
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Figure 4: Graphical representation of the STAR model.

gives us an approach to predict vij , it contains so many parameters
that it is hard to solve with efficient solutions. Therefore, in the fol-
lowing subsection, we will simplify Equation (10) by considering
less transformation situations.

4.1 Single-chain Transfer Autoregressive
Indeed, the probability pijk will become smaller as k increases

when fixing i and j due to the fading of popularity momentum.
Moreover, as mentioned in the NAR model, the major audiences
usually have personalized but relatively stable watching behaviors.
Based on the above, we simplify the original TAR model by con-
straining that aij (or bij) can only horizontally transfer to the next
episode, i.e., ai+1,j (bi+1,j). Consequently, the complex TAR model
in Figure 3 can be simplified to the Single-chain Transfer Autore-
gressive (STAR) model, which is shown in Figure 4.

With the STAR model, the Equation (7) can be rewritten by

aij = ai−1,j · pi−1,j + bi−1,j · qi−1,j , (11)

where pij and qij are the probabilities that the audiences will trans-
fer from the i-th episode to the next episode within the j-th unit
time interval after they are released. Once again, by recursively
substituting Equation (5), (9) and (11) into Equation (6), we can
obtain

v̂ij = aij + bij = ai−1,j · pi−1,j + bi−1,j · qi−1,j + bij

= . . .

=

i−1∑
n=1

(bnjqnj

i−1∏
k=n+1

pkj) + bij .

(12)

In particular, the above parameters can be learned by solving the
following optimization problem.

PROBLEM 2 (TRANSFER OPTIMIZATION PROBLEM).

min
pij ,qij ,m,b0j

{L(pij , qij ,m, b0j) =
1

2|C|
∑
i∈C

(
v̂ij
vij

− 1)2}, (13)

subject to : 0 < pij , qij ,m ≤ 1, b0j > 0,

where v̂ij represents the predicted value of vij , and C is the episodes
of a serial for model training.

For a given serial, pij and qij should change slightly as i in-
creases when fixing j, because its plot evolves steadily so that the
probability that people will keep following the next episodes should
not have sharp changes. Therefore, to make Equation (12) more
simpler, we divide pij and qij into three situations. Specifically, as
i (i ≥ 1) increases when fixing j, we have

1. Both pij and qij are constant.

2. Both pij and qij are increasing; that is

pij =
p0j · i
1 + i

, qij =
q0j · i
1 + i

. (14)



3. Both pij and qij are decreasing; that is

pij =
p0j · (i+ 1)

2i
, qij =

q0j · (i+ 1)

2i
. (15)

In the above equations, p0j and q0j are the initial values. Indeed,
the reason why we set the values of pij and qij like Equation (14)
and (15) is that those formulas can help to understand the changes
of pij and qij , and thus simplify the computation of Equation (12).

To optimize the Problem 2, let us start with the first situation and
rewrite Equation (12) as follows.

v̂ij =

q0j · b0j
(mpi−1

0j −mi)

p0j−m
+ b0j ·mi if p0j ̸= m

q0j · b0j(i− 1)pi−1
0j + b0jm

i if p0j = m
, (16)

where p1j = p2j = . . . = pij = p0j and q1j = q2j = . . . =

qij = q0j . Although the above equation is more simpler than the
original Equation (12), the Problem 2 is still a non-convex opti-
mization problem [6] and its derivatives are not easy to be calcu-
lated. Therefore, if using the classic Gradient Descent algorithm to
solve the problem, we would only get a local minimum solution.

Fortunately, we find that p0j ,q0j and m are all limited within
the range (0, 1]. More importantly, when fixing other parameters
(i.e., p0j , q0j and m), v̂ij is proportional to b0j and the Problem 2
becomes a convex optimization problem with respect to b0j . By
setting the derivative of Equation (16) with respect to b0j to zero
and solving for b0j , we can obtain

b0j =

∑
i∈C

di
vij∑

i∈C

d2i
v2
ij

, (17)

where we have

di =

q0j
(mpi−1

0j −mi)

p0j−m
+mi if p0j ̸= m

q0j(i− 1)pi−1
0j +mi if p0j = m.

(18)

To get the most appropriate values of p0j , q0j , m and b0j , here
we develop an effective algorithm named Partial Grid Search. Specif-
ically, Algorithm 1 demonstrates the pseudo code of our algorithm.

The basic idea of Algorithm 1 is to fix p0j , q0j and m by grid
search, and calculate b0j according to Equation (17). Specifically,
we first set the variable to be +∞ in line 1. Then we use the grid
search method to retrieval the value spaces of p0j , q0j and m. For
every combination of p0j , q0j and m, we get b0j according to Equa-
tion (17). In the innermost for loop from line 7 to 16, we utilize the
fixed p0j , q0j , m and b0j to predict the popularity of every episode
in the training data set and accumulate the Relative Squared Error
(RSE). If the summation of RSE is smaller than the given threshold
minError, we will record the values of p0j , q0j , m and b0j . At
last, the final values of p0j , q0j , m and b0j are those which mini-
mize the sum of RSE.

For another two situations, it is easy to extend by using Equa-
tion (14) or (15) to rewrite Equation (12) and changing Algorithm 1
correspondingly. Particularly, by tuning step, which is used to set
the searching step size, we can improve the precision of the final
solutions of Problem 2. However, larger step means higher time
complexity of the algorithm. Therefore, in Section 5, we will com-
pare the effects of different step on the prediction performance.

Indeed, the transfer of audiences from one episode to another
episode can intuitively explain the correlation between adjacent
episodes. It also reflects the collaborative behavior of audiences.

Algorithm 1: Partial Grid Search(C, j, step)
input : C (the training episode set of a serial)
input : j (views of the new episode within the j-th unit time

interval after it is released)
input : step (the searching step size, e.g., step = 0.01)
output: p0j , q0j ,m, b0j (parameters of the Transfer Model)

1 minError = +∞;
2 for pp = 0; pp ≤ 1; pp = pp+ step do
3 for qq = 0; qq ≤ 1; qq = qq + step do
4 for mm = 0;mm ≤ 1;mm = mm+ step do
5 error = 0;
6 bb = Equation (17);
7 for i ∈ C do
8 real = views of the i-th episode within the

j-th unit time interval after it is released;
9 prediction = Equation (16);

10 error+ = ( prediction−real
real

)2;

11 if error < minError then
12 minError = error;
13 p0j = pp;
14 q0j = qq;
15 m = mm;
16 b0j = bb;

17 return p0j , q0j ,m, b0j ;

4.2 Quality Estimation for Online Serials
Generally, serials of high quality will attract more audiences and

obtain higher ratings. Intuitively, if the serials providers can recom-
mend serials of high quality to audiences, they will obtain more in
revenue. However, how to measure the quality of serials accurately
and automatically is still an open question. So far, there are two
popular and straightforward ways to evaluate the quality of seri-
als, namely popularity and rating. The former takes the popularity
(e.g., views) as a measure of quality and it assumes that more pop-
ularity indicates higher quality. While the latter allows users to rate
serials that they have seen, and assumes that serials of high qual-
ity should get higher ratings. However, both of the metrics contain
obvious drawbacks for quality estimation. Specifically, sometimes
the popularity is not reliable, since some serials of poor quality
may obtain high popularity due to the marketing promotions, such
as advertising. Meanwhile, sometimes the rating is not available in
some online serial Websites. Therefore, it is appealing to find some
new metrics to evaluate the quality of online serials.

Particularly, we find that parameters of the TAR model, namely
p, q, m and b0, have the following characteristics.

• p and q represent the probabilities that followers and freshers
like the serial, and m is the inverse of the exponential decay
factor. Therefore, serials of higher quality should have larger
values of p, q and m, and vice versa.

• b0 can be seen as the initial public attention of the serials
during the corresponding unit time interval.

Therefore, we propose to combine the above parameters for design-
ing a novel metric, namely favor, to evaluate the quality of serials.
Specifically, the metric is defined as

favor ∝ f(p, q,m, b0). (19)

Intuitively, larger favor indicates higher quality and vice versa. Note
that, in the single-chain TAR model, p, q and b0 are decided by
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Figure 5: (a) Average views of teleplays in last five years; (b)
Average views of teleplays during the first week in the Main-
land sublist.

p0j , q0j and b0j . Based on different combinations of p0j , q0j , m
and b0j , there are four straightforward possible forms of favor as
follows.

1. favor1 ∝ p0j · q0j ·m.

2. favor2 ∝ p0j · q0j ·m · b0j .

3. favor3 ∝ p0j + q0j +m.

4. favor4 ∝ (p0j + q0j +m) · b0j .
In particular, favor2 and favor4 consider the initial public atten-
tion of the serial while favor1 and favor3 are not. In the ex-
periment section, we will empirically examine the performance of
these metrics for quality estimation.

5. EXPERIMENTS
In this section, we present experimental results on two real-world

data sets for evaluating the performance of our models in terms of
popularity prediction and quality estimation.

5.1 Datasets
The real-world data sets used in our experiment are collected

from Teleplay List3 of Youku, which includes teleplays of many
countries or areas, e.g., Chinese Mainland, Korea and America.
These teleplays are released in two different ways: 1) Youku re-
leases all episodes of a teleplay one time after this teleplay has
been updated on other sources, such as offline TV broadcast. 2)
Youku updates the episodes periodically and keeps synchronous or
a little later with other sources. Indeed, only teleplays released
in the second way are regarded as online serials according to our
definition. Some statistics of our data sets are shown in Figure 5.
Specifically, Figure 5(a) demonstrates the distribution of average
views of 1, 930 teleplays in last five years, which clearly indicates
the increasing prevalence of online TV series. Figure 5(b) shows
the distribution of average views per episode in the first week af-
ter release of 147 Mainland teleplays released from May 2012 to
October 2013. It indicates that there is obvious difference between
the popularity of different serials, and that very few teleplays own
most of the views. Thus it is needed to predict the popularity of
online serials.

To guarantee the quality of experimental data, we further choose
two sublists (i.e., Mainland and American) as representatives and
only focus on the teleplays which were released from May 2012 to
October 2013.

• Mainland. One or more episodes of most mainland teleplays
are released every day. In other word, the update frequency
of these teleplays is a day.

• American. One episode of most American teleplays is re-
leased every week. Therefore, the update frequency of these
teleplays is a week.

3http://www.youku.com/v_olist/c_97.html

Table 1: Statistics of our data sets

Name # of teleplays # of episodes Average episodes
Mainland 147 5,258 35.7
American 45 513 11.4

The detailed statistics of our two data sets are shown in Table 1.
We can find that Mainland teleplays usually have more episodes
than American ones. Particularly, Youku may update some tele-
plays just around the midnight, which results in incomplete views
of the first day. Therefore, we deleted the records of the first day
and treat the second day as the first day. Moreover, in the experi-
ment, we set the unit time of Mainland teleplays to a day, while the
unit time of American teleplays is set to a day and a week respec-
tively, for evaluating the impact of different unit time with respect
to popularity prediction.

5.2 Baseline Methods and Evaluation Metrics

5.2.1 Baseline Methods
To evaluate the performance of our models in terms of popularity

prediction, we exploit two baselines in our experiments.
• Average method. It uses the average views of previous n

(n ≥ 1) episodes to predict the popularity of a new episode.
• Vector Autoregression (VAR) [17, 26]. Although VAR can

be used to capture the linear interdependencies among multi-
ple time series, it cannot directly be leveraged to predict the
popularity of online serials. Because episodes of online seri-
als are released at different time, which makes the popularity
vector at a timestamp of different episodes contain different
dimensions. Therefore, in our experiments, we extend VAR
by setting the components of a vector without views to be
zero, and use the extended first-order 1-VAR as a baseline
method. Particularly, VAR of other orders cannot be solved
due to the singularity.

5.2.2 Evaluation Metrics
We utilize the Mean Relative Squared Error (MRSE), as widely

used in relevant works [20, 21], to evaluate the performance of pop-
ularity prediction. Specifically, it is defined as

MRSE =
1

|C|
∑
i∈C

(
v̂ij
vij

− 1)2, (20)

where v̂ij is the predicted views of the real value vij , and C is the
test episode set. Note that, here we use the relative error, instead
of the absolute error, because views of teleplays are very different
(e.g., as shown in Figure 5(b)).

Since quality estimation can be seen as a ranking problem that
serials of high quality should be ranked higher, we adopt the widely
used ranking measure, namely Normalized Discount Cumulative
Gain(NDCG)4 as evaluation metric. Specifically, NDCG@k is
defined as follows.

NDCG@k =
DCG@k

iDCG@k
, (21)

where iDCG is the ideal DCG and DCG is defined as

DCG@k = Gain1 +

k∑
n=2

Gainn

log2 n
, (22)

where Gainn is equal to the rating of the n-th teleplay.
4http://en.wikipedia.org/wiki/Discounted_cumulative_gain
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Figure 6: NAR with sharing parameters on different data sets by daily or weekly sampling.
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Figure 7: NAR with individual parameters on different data sets by daily or weekly sampling.

Particularly, smaller MRSE indicates better performance of pop-
ularity prediction while larger NDCG indicates better performance
of quality estimation.

5.3 Performance of the NAR Model
As introduced in Section 3, NAR contains two strategies, namely

sharing and individual parameters, when training the model. There-
fore, we separately validate the two strategies in terms of predicting
the views of the k-th (1≤ k ≤ 5) unit time interval after an episode
is released. And the hyper-parameter λ of individual parameters is
set to λ = 1.6 according to grid search. To reduce the uncertainty
of model training, we utilize a 3-fold cross validation to evaluate
the NAR model with sharing parameters.

Specifically, Figure 6 and 7 show the average MRSE of NAR
with different order r ∈ [1, 7] (i.e., using the popularity of pre-
vious r episodes) on two data sets. From these figures, we can
have the following observations. First, in general, the model with
individual parameters has better prediction performance than the
model with sharing parameters, especially for larger r. For exam-
ple, on the Mainland data set, the 5-order model with individual
parameters for the 1-st day can lead to a 38.5% reduction of MRSE
compared with the model with sharing parameters. Second, for
Mainland teleplays, MRSE of the NAR model, both with sharing
and individual parameters, decreases as the order r increases, and
nearly achieves minimum value when the order r = 3 (i.e., from
Figure 6(a) and 7(a)). Third, for American teleplays, MRSE of the
NAR model with sharing parameters may increase as the order r
increases (i.e., from Figure 6(b) and 6(c)), which is quite different
from the results of Mainland teleplays. We think the possible rea-
son of this phenomenon is that the trends of popularity for different
American teleplays vary dramatically, thus using too much previ-
ous information would magnify the error when sharing parameters.
Fourth, using a week instead of a day as unit time for model train-
ing may obtain better prediction performance, especially for the
NAR model with sharing parameters. Finally, the performance of
popularity prediction within different unit time intervals may be
different. For example, sometimes the 1-st day can achieve the best
prediction performance (e.g., Figure 6(b)), while sometimes will
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Figure 9: The effect of searching step on MRSE.

achieve the worst performance (e.g., Figure 7(a)). This observa-
tion may indicate different types of teleplays usually have different
popularity change rules.

In conclusion, individual parameters and larger sampling inter-
val can sincerely improve the performance of NAR. But using too
much historical information does not mean better performance with
respect to popularity prediction, and it is better to exploit sharing
parameters for serials which only have released several episodes.

5.4 Performance of the STAR Model
In this subsection, we validate our single-chain transfer autore-

gressive (STAR) model in terms of popularity prediction and qual-
ity estimation on the two data sets.

5.4.1 Popularity Prediction
As discussed in Section 4.1, here we evaluate the STAR model

with different settings of model parameters p and q, i.e., 1) fixing
p&q, 2) increasing p&q, and 3) decreasing p&q. Particularly, for
training the STAR model, we assume that views of the first N = 8
episodes have already been known 5. Figure 8 shows the prediction
performance of the STAR model with respect to different unit time
intervals after the episodes are released. From these results, we can
first find that MRSE of STAR with both fixing and increasing p&q
have a similar trend, which are different with the performance of
5Here N = 8 is a trade-off for model training, since our pre-
experiments show that the models trained with N ≥ 8 have very
similar parameters.
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Figure 11: NDCG@k on different data set.

the STAR model with decreasing p&q. Second, the prediction per-
formance of STAR model on Mainland teleplays is different with
the performance on American teleplays. At last, using a week in-
stead of a day as unit time for model training may obtain better
prediction performance, which is similar to the results of NAR.

In Algorithm 1, we have a parameter, namely searching step, for
learning the appropriate parameters by grid search. Here, we eval-
uate the prediction performance of STAR with different settings of
step when fixing p&q in the algorithm, and the results are shown
in Figure 9. We can observe that the MRSE performance has an in-
creasing trend when the step gets larger. However, larger step can
reduce the running time of Algorithm 1. Therefore, step ≈ 0.1 is
a good trade-off between efficiency and effectiveness.

As a summary, we believe the STAR model with fixing p&q
is the most appropriate model, since it is both effective and sim-
ple. The above also proves that popularity change rules of different
types of teleplays are very different.

5.4.2 Quality Estimation
For quality estimation, we use the ratings from Douban6 as the

ground truth to measure the quality of teleplays. Specifically, larger
rating indicates higher quality. We first filtered out teleplays with-
out Douban Rating in our data sets. The final number of teleplays
in Mainland and American data sets are 116 and 26, respectively.
We sort the teleplays by ratings and calculate the iNDCG. For
each teleplay, views of all episodes on the first day are used to train
the STAR (i.e., with fixing p&q) and different favor metrics can be
computed with the learned parameters. To validate the effective-
ness of our novel metric favor, we compare it with two popular-
ity based metrics, namely views of the first day and views of the
first week of each episode. Also, we use the model parameter b01,
which represents the initial public attention of the teleplay, as the
third baseline. Figure 11 shows the results of quality estimation
on different data sets. From the results, we can observe that the
favor metrics have better NDCG@k performance than other base-
lines, especially at small k. Particularly, favor2 has the highest

6http://movie.douban.com/

NDCG@k performance for almost every k on the Mainland data
set, while favor1 and favor3 have the highest NDCG@k perfor-
mances on the American data set. Therefore, we can claim that the
favor is effective for estimating the quality of online serials.

5.5 Comparison of Models
In this section, we compare our prediction models with base-

lines, the Average method and 1-VAR. Specifically, by carrying out
experiments on two data sets, we find that the Average method can
achieve the best prediction performance when using average views
of previous 4 episodes. Therefore, here we use the 4-order Average
method in comparison, which is denoted as 4-Average. Meanwhile,
for 1-VAR, we set the dimensionality of each vector to be 5, which
can achieve the best prediction performance compared with other
dimensionalities . The settings of our models are the 3-NAR model
with sharing parameters (3-NARSP), 3-NAR model with individual
parameters (3-NARIP) (i.e., the prefix 3 here denotes the order of
the naive autoregressive model) and STAR model with fixing p&q.
The detailed comparison results are demonstrated in Figure 10.

From the results, we can first find that the performance of 4-
average and 1-VAR are very unstable and have the highest MRSE.
The results may indicate that directly extending VAR and using the
Average method to predict the popularity of online serials are not
proper. Second, our NAR and STAR model are not sensitive to the
settings of unit time interval k, and using a week instead of a day
as unit time for model training may obtain better prediction perfor-
mance. Third, the strategy of individual parameters can improve
the performance of the NAR model. Finally, the STAR model out-
performs the NAR model in terms of popularity prediction.

5.6 Case Study
In order to better understand the performance of our methods

in terms of popularity prediction for serials, we conduct some case
studies on the American data set.

Here, we run the 3-NAR model with sharing parameters (3-NARSP),
3-NAR model with individual parameters (3-NARIP) and STAR
model with fixing p&q on a specific American teleplay, namely
Zero Hour Season 1, respectively. Specifically, Figure 12 shows the
prediction results of different episodes on different days after they
are released. From the results, we can have the following observa-
tions. First, for small episode IDs, the relative errors of the NAR
model with individual parameters are larger than the NAR model
with sharing parameters. It is because that there are not enough
episodes for learning the individual parameters. Second, the STAR
model can achieve a significant improvement over the NAR model
in terms of popularity prediction, especially for the first few days.
For example, in Figure 12(a), the relative error of the STAR model
of the 9-th episode on the 1-st day after it was released is 0.055,
while the other two corresponding relative errors of the NAR model
are 0.262 and 0.419.
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Figure 10: Comparison of models on different data sets by daily or weekly sampling.
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Figure 12: Popularity prediction of different episodes on the k-th (1 ≤ k ≤ 4) day after release for a specific American teleplay.

6. RELATED WORK
Generally, the related works of this paper can be grouped into

two categories, namely popularity prediction for online content and
time series forecasting.

Popularity Prediction. There have been a lot of efforts devoted
to popularity analysis and prediction for online contents. For ex-
ample, [7] analyzed the popularity distribution, popularity evolu-
tion, and content duplication of YouTube videos. Particularly, they
found that leveraging information filtering can increase the total
views of nice contents as much as 45% and caching the most popu-
lar contents can offload server traffic by 50%. [8] studied the relax-
ation response of a social crowd after endogenous and exogenous
bursts of activity and clustered the patterns into four main classes,
namely memoryless, viral, quality and junk. Besides, [10] charac-
terized the growth patterns of video popularity on YouTube and the
types of the referrers that most often attracted users to each video.
[5] developed a methodology which can accurately assess the im-
pacts of various content-agnostic factors on video popularity. They
found a strong linear “rich-get-richer” behavior with the total num-
ber of previous views when controlling for video content.

On the other hand, [21] discovered that there is a correlation be-
tween early votes and future popularity of online contents up to
a normally distributed noise. They used a logarithm linear model
to fit the correlation. [20] extended their work [21] and proposed
the multivariate linear model and multivariate radial basis function
model. The former uses the number of views received per sampling
interval as features, instead of the total number of early views. The
latter extracts more features by utilizing radial basis functions to
measure the similarity between different videos. Furthermore, [1]
first designed two new types of features, i.e., SA (capturing the
Share of Attention of videos) and nROC (capturing the normal-
ized Rate of Change in the attention attracted). Then they clustered
views in each sampling interval according to the above features and
took advantage of the maximum likelihood path to predict the pop-
ularity of a given content. While [29] exploited the latent conform-
ing and maverick personalities to develop a conformer-maverick
model and used it to rank top-k potentially popular items based on
the early votes they received.

In addition, [18] constructed both content and contextual features
for hashtag popularity prediction from tweets containing the hash-
tag. Whereas [28] presented a novel task of Citation Count Predic-
tion given papers’ citation patterns (such as paper content, author
expertise and venue impact) and discovered that authors have bi-
ases in citing references.

Time Series Forecasting. Models for time series forecasting
have many forms and can describe different stochastic processes.
For example, the autoregressive model (AR) [25] can describe the
process of a single time series. It assumes that the current value
linearly depends on its own previous values. While vector autore-
gression (VAR) models [17] generalize AR and can capture the lin-
ear interdependencies among multiple time series. “A VAR model
describes the evolution of a set of k variables (called endogenous
variables) over the same sample period (t = 1, ..., T) as a linear
function of only their past values” [26]. Furthermore, [3] addressed
how to include exogenous variables in a VAR model, and what the
consequences are for the innovation response analysis. In particu-
lar, [12] exploited the VAR models to forecast house prices for the
four census regions and the aggregate US economy in a data-rich
environment.

However, these methods cannot work well in our scenario. Dif-
ferent from previous works, we are interested in predicting the pop-
ularity of online serials. They usually contain several regularly up-
dated episodes, which have unique characteristics of sequence de-
pendence, release date dependence as well as the unsynchronized
update regularity. Different release dates lead to that vectors of
popularity at different time have different dimensionalities, which
restrains the utility of techniques in time series forecasting. There-
fore, in this paper we propose two novel autoregressive models,
namely the Naive Autoregressive (NAR) model and Transfer Au-
toregressive (TAR) model, to capture these characteristics and pre-
dict the popularity of online serials.

7. CONCLUSION AND FUTURE WORK
In this paper we studied the problem of predicting the popular-

ity of online serials by leveraging autoregressive models. We de-
veloped two novel models, namely Naive Autoregressive (NAR)
and Transfer Autoregressive (TAR) model, which can reveal the



popularity generation of online serials from different perspectives.
Specifically, the NAR model is based on the episode correlations of
serials, which is straightforward but effective, and the TAR model
can capture the dynamic behaviors of audiences. As a derivative of
the TAR model, we also designed a novel metric, namely favor, for
evaluating the quality of online serials. Finally, the experimental
results on two real-world data sets clearly demonstrated the effec-
tiveness of the proposed models and metric.

In the future, we will study more possible solutions of the TAR
model. Moreover, we plan to integrate some external information
into our models for popularity prediction, such as search volume,
rating information and user reviews from social networks.
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