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Abstract

Machine learning algorithms have been applied to pre-
dict agent behaviors in real-world dynamic systems,
such as advertiser behaviors in sponsored search and
worker behaviors in crowdsourcing. Behavior data in
these systems are generated by live agents: once sys-
tems change due to the adoption of prediction models
learnt from behavior data, agents will observe and re-
spond to these changes by changing their own behaviors
accordingly. Therefore, the evolving behavior data will
not be identically and independently distributed, pos-
ing great challenges to theoretical analysis. To tackle
this challenge, in this paper, we propose to use Markov
Chain in Random Environments (MCRE) to describe
the behavior data, and perform generalization analy-
sis of machine learning algorithms on its basis. We
propose a novel technique that transforms the origi-
nal time-variant MCRE into a higher-dimensional time-
homogeneous Markov chain, which is easier to deal
with. We prove the convergence of the new Markov
chain when time approaches infinity. Then we obtain
a generalization bound for the machine learning al-
gorithms on the behavior data generated by the new
Markov chain. To the best of our knowledge, this is the
first work that performs the generalization analysis on
data generated by complex processes in real-world dy-
namic systems.

1 Introduction
In this Internet era, more and more data are generated by
self-interested agents in interactive systems. For example,
in sponsored search, advertisers generate a large volume of
bidding log data in their daily competitions with each other
in attracting search users to click their ads; in crowdsourc-
ing, workers generate a lot of behavior data when competing
with other workers in getting tasks from the employers, and
when completing the tasks assigned to them.

In many real cases including the aforementioned ones,
there are three kinds of players in the systems: platform,
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users, and self-interested agents. Platform is the owner of
the system, who designs the mechanism of the system and
takes care of its execution. Users arrive at the platform in
random, with their particular needs to be fulfilled. Agents
behave strategically in order to attract the attention of the
users so as to realize their own utilities. Taking both user
needs and agent behaviors into consideration, the platform
matches users with agents, extracts revenue from this pro-
cedure, and gives agents feedback on their performances
(which depend on both the behaviors of agents and random-
ness in users). Upon the feedback, agents will adjust their
behaviors in order to be better off in the future. To design a
good mechanism, it is very important for the platform to un-
derstand and predict agent behaviors. With accurate predic-
tion of agent behaviors, the platform can also provide tools
to help agents to optimize their performances and therefore
attract more agents to the system. Thus, predicting agent be-
haviors is an important task for the platform. For ease of
reference, we call the problem of predicting agent behaviors
in an interactive system “agent behavior prediction (ABP)”.

1.1 Examples of ABP
Here we take sponsored search systems as an example for
illustration. More examples can be found in the full version
of the paper(Tian et al. 2014).

In a sponsored search system, platform, users, and agents
correspond to the search engine, search users, and adver-
tisers respectively. Advertiser behaviors are the bid prices
on their ads. When a search user issues a query, the search
engine will run a GSP auction (Edelman, Ostrovsky, and
Schwarz 2005) among all advertisers who bid on the query,
rank their ads according to the product of the bid price and
predicted click-through rate, and then charge the winning
advertisers if the user clicks on their ads. After a period of
time, the search engine will provide feedback to the adver-
tisers about their performances (which we usually call Key
Performance Indicators, or KPIs for short). The KPIs usually
contain numbers of impressions and clicks, average rank po-
sitions, and costs per click of their ads. Many advertisers will
adjust their bid prices based on the feedback they receive,
either by themselves or with the help of third-party search
engine marketing companies. By logging the bid prices in a
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sufficiently long period of time, the search engine can pre-
dict how advertisers behave, and consequently enhance its
click prediction algorithm and auction mechanism.

1.2 Generalization Analysis for ABP
Because of its importance, ABP has been studied in many
works, including (Cary et al. 2007; Pin and Key. 2011;
Zhou and Lukose. 2007; Xu et al. 2013; He et al. 2013).
Some of them (Xu et al. 2013; He et al. 2013) have adopted
machine learning techniques and attempted to learn an agent
behavior model by means of empirical risk minimization
(ERM) on the behavior logs. Empirical results have shown
that these machine learning techniques can significantly out-
perform previous non-learning approaches. However, de-
spite the experimental success, it still remains an open ques-
tion whether the use of ERM algorithms in behavior predic-
tion is theoretically sound, and whether certain generaliza-
tion ability of such algorithms can be guaranteed.

As far as we know, the answers to the above questions are
unclear yet. This is mainly because of the complication of
the corresponding theoretical analysis. As aforementioned,
the behavior data are generated by self-interested agents, and
dependent on both their previous behaviors and the random
user factors in the system. As a result, the behavior data have
quite complex statistical properties, and the generalization
analysis in such a setting goes beyond the state of the art
of statistical learning theory (Vapnik 1998; Devroye 1996;
Yu 1994).

More detailed introduction of related work towards gen-
eralization analysis for ABP can be found in the full version
of the paper(Tian et al. 2014).

1.3 Our Results
In order to analyze the ERM algorithms on agent behavior
prediction, we propose a set of new techniques in this paper.

First, we model the generation process of the behav-
ior data using a so-called Markov Chain in Random Envi-
ronments (MCRE), whose transition matrix is time-variant
(depending on the random environments). Take sponsored
search as an example. After the current-round auction, the
advertiser observes his/her KPIs, which depend on both the
bids of all the advertisers and the random clicks of the users.
Based on the KPIs, the advertiser will determine how to set
his/her own bid for the next round of auction and for differ-
ent KPI values, the conditional distribution of his/her bid at
the next round will be different. In this sense, the sequence
of advertiser bids can be regarded as an MCRE.

Second, considering that it is difficult to perform gen-
eralization analysis on MCRE, we propose a transforma-
tion that maps the original MCRE to a higher dimensional
time-homogenous Markov chain. Although the new Markov
chain involves more variables, it is more regular and thus
easier to deal with from the perspective of generalization
analysis. We prove that the new Markov chain will con-
verge when time approaches infinity and a Hoeffding-style
inequality holds for the empirical process associated with it.

Third, by exploiting the covering number technique, we
derive a uniform convergence bound for the ERM algo-
rithms on the data generated by the new Markov chain (and

thus by the original MCRE due to the equivalence trans-
formation). As a consequence, we prove that the ERM al-
gorithms on the data generated by MCRE have their theo-
retical guarantees, which explains their good empirical per-
formances reported in previous works. To the best of our
knowledge, this is the first work in the literature that per-
forms formal generalization analysis on the agent behavior
prediction problem.

2 Agent Behavior Prediction
In this section we give a formal description of the Agent
Behavior Prediction (ABP) problem. We first show that the
generation process for the behaviors of self-interested agents
can be described by a Markov Chain in Random Environ-
ments (MCRE), and then formulate ABP as an optimization
problem.

2.1 Agent Behaviors: Markov Chain in Random
Environments

The dynamic interactive systems mentioned in the introduc-
tion share some common properties. (1) The behaviors of an
agent only depend on a finite number of his/her historical
actions due to the limited memory of human being. In other
words, the behaviors have Markovian properties. (2)Ran-
dom users’ behaviors are independent and identically dis-
tributed (i.i.d), for example, in sponsored search, there are
two aspects associated with users: queries issued by users,
and users’ click patterns on ad ranking lists. It is clear that
queries can be regarded as i.i.d. random variables. Click pat-
terns are defined with respect to all possible ad ranking lists
and they are also independent of agent behaviors(which only
determine the selected ranking list), thus can be regarded as
i.i.d. (3) The behavior change of an agent is mainly affected
by the feedback given by the platform. Since the feedback
depends on the users randomly arriving at the system, the
behavior change is not governed by a constant rule, but in-
stead by some random factors.

Taking all the three properties into consideration, we can
regard agent behaviors as generated by a Markov Chain
in Random Environments (MCRE)(Cogburn 1980). Note
that this generation process is much more complicated than
a simple i.i.d. sampling process or a time-homogeneous
Markov process.

Before formally describing the MCRE process for agent
behaviors, we make some assumptions. First, we assume
that both the behavior space and feedback space are fi-
nite. This assumption is reasonable, since in many appli-
cations the behaviors of the agents are either characterized
by categorical profiles (e.g., expertise and functionalities) or
bounded and associated with a minimum unit (e.g., bidding
price, payment requirements, and available time slots). The
same reason holds for the finiteness of the feedback space,
since feedback usually takes discrete values (e.g., number
of clicks, ratings, and number of reviews) as well. Second,
we assume there is a deterministic function that generates
the feedback for a given agent i based on the behaviors of
all the agents and the random arrival of the users. This as-
sumption is also reasonable because the feedback is usually
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provided by the platform using a deterministic algorithm.
With the above assumptions, now let us describe the gen-

eration process of the agent behavior according to (He et
al. 2013). Suppose there are N agents. Let B and H be the
behavior space and feedback space of a single agent respec-
tively, and U be the random factor space induced by users.
We use the mapping ηi : U × BN → H to denote the de-
terministic function that generates the feedback for agent i,
and η : U × BN → HN to denote the joint feedback for all
the agents. At the beginning of the (t + 1)-th time period,
agent i receives feedback hit = ηi(ut, bt) about his/her be-
haviors in the t-th time period. Based on the feedback, agent
i may change his/her behavior to bit+1 in order to be better
off. That is, given the Markov property,

P (bit+1|b1, ..., bt;u1, ..., ut) = P (bit+1|bit;hit) (1)

Note that the above equation implies the one-step Markov
property, which is motivated here mainly due to ease of
statement. Our analysis in this paper can be extended to
higher order Markov chain as well, without too many modi-
fications.

Given the feedback ht, all the agents change their behav-
iors independently, so we have

P (bt+1|b1, ..., bt;u1, ..., ut) =

N∏
i=1

P (bit+1|bit;hit)

= P (bt+1|bt, ht)

(2)

This indicates that {bt} is an MCRE (Cogburn 1980), where
the environmental process is {ht}. According to (2), the one-
step transition matrix of an MCRE is time-variant and de-
pends on the environmental variable.

2.2 Learning Agent Behavior Model
There exist some related works that leverage the empirical
risk minimization (ERM) framework to learn the agent be-
havior model. Mathematically speaking, given a training set
containing the behaviors of agents and the feedback they re-
ceived in T rounds, {(h1, b1) ; (h2, b2) ; ...; (hT , bT )}, one
aims to learn a function f : HN × BN → BN , which
takes the behaviors and feedback at the current round as
inputs and predicts the behavior at the next round. To
this end, one minimizes the empirical risk on the training
set: minf∈F

∑T
t=1 l (f (ht, bt) ; bt+1), where l measures the

loss between the predicted behavior and the real behavior in
the training data. For example, l can be the 0− 1 classifica-
tion loss: l (f (bt, ht) ; bt+1) = 1f(ht,bt)6=bt+1

, and can also
be some surrogate loss functions.

This ERM framework covers the algorithms for predict-
ing advertiser behaviors in many previous works including
(He et al. 2013) and (Xu et al. 2013). For example, in (He
et al. 2013), a truncated Gaussian function is used to model
the Markov transition probabilities and a negative likelihood
function is used as the loss function l. For another exam-
ple, in (Xu et al. 2013), a compound function that considers
the willingness, capability, and constraint of an advertiser is
used as the model f , and again the negative likelihood of the
historical behaviors is used as the loss function f .

As mentioned in the introduction, the ERM algorithms
led to experimental success in the ABP tasks. However, it
is unclear whether these algorithms have desired theoreti-
cal guarantee. In particular, it is unknown (1) qualitatively
whether the ABP problem is learnable through an ERM pro-
cess, and (2) quantitatively what is the relationship between
generalization error and the size of the training data. The rea-
son why the answers to these important questions are miss-
ing lies in that statistical learning theory mainly addresses
learning problems with data generated by an i.i.d. sampling
or a β-mixing Markov chain. This motivates us to formally
study the learning theory with respect to the data generated
by more complicated stochastic processes like MCRE.

3 Generalization Bounds for ABP

In this section, we perform generalization analysis on the
ERM algorithms for agent behavior prediction. Our main re-
sult is stated in Theorem (6), which is proved in three steps:
(1) constructing a new Markov chain of higher dimensional-
ity but with more regular properties than the original MCRE;
(2) proving the convergence of the empirical loss to the ex-
pected loss when the data are generated by this new Markov
chain; (3) proving a uniform convergence bound by further
leveraging the technique of covering number. For ease of
reference, we use a Notation Table 1 in the end of the paper
to summarize all notations used in this section.

3.1 Constructing a Higher-Dimensional Markov
Chain

The difficulty of analyzing the ERM algorithms when the
data are generated by an MCRE lies in its time-variant tran-
sition probabilities. To tackle the challenge, we construct a
higher-dimensional chain M = {(ht, bt, bt+1) ; t ≥ 0}, by
grouping correlated variables together. Let Mk(m,n) be
one-step transition probability of {bt} from state m to n
under the environment k ∈ HN . For convenience, we set
zt = (ht, bt, bt+1) to be the t-th state of M. Since the state
space HN × B2N of the chain is finite, we label all the
state values as 1, 2...Z, i.e., M takes value in state space
[Z] := {1, 2, ..., Z}.

The following Lemma (1) and Theorem (2) show that the
new Markov chain is time-homogeneous and has a station-
ary distribution under some mild assumptions.

Lemma 1 We assume the random factors caused by users
ut are i.i.d., then the constructed Markov chain M =
{(ht, bt, bt+1) ; t ≥ 0} is time-homogeneous.

Proof Since both feedback space and behavior space are
finite, the set of their three dimensional Cartesian product
values is also finite.

To show that the process is a time-homogeneous Markov
chain, we consider any two states (j, p, q), (k,m, n) ∈
HN × B2N and write their one-step transition probability
as:
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P (ht = k, bt = m, bt+1 = n|
(hs, bs, bs+1)

t−2
s=1; ht−1 = j, bt−1 = p, bt = q)

=P (ht = k, bt = m, bt+1 = n|ht−1 = j, bt−1 = p, bt = q)

=

{
0 for m 6= q

P (u ∈ U : η(u,m) = k)Mk(m,n) for m = q
(3)

From (3), we know that the value of (ht, bt, bt+1) only de-
pends on (ht−1, bt−1, bt). Therefore the process is a Markov
chain. Furthermore, the one-step transition probability only
depends on the states (j, p, q), (k,m, n) and is independent
of time index t, and therefore the transition probability is
time-invariant.

For ease of statement, we will use M to denote the prob-
ability transition matrix in (3). As we can see from (3), lots
of elements in M are zero. Therefore it is not straightfor-
ward to judge whether Markov chain M will converge or
not. Theorem (2) shows that under some mild assumptions
the convergence can be achieved.

Theorem 2 The Markov chain M composed by {zt}Tt=1 :=
{ht, bt, bt+1}Tt=1 has a stationary distribution under the fol-
lowing assumptions: (A.1) for every fixed value of the feed-
back ht = k, the Markov process with transition matrix
Mk is irreducible and aperiodic; (A.2) the feedback func-
tion η and the random user distribution satisfy ∀m ∈ B, k ∈
H, P (u ∈ U : η(u,m) = k) > 0. 1

To prove this theorem, since the state of (ht, bt, bt+1) is
finite and M is time-homogeneous, we only need to prove
that Markov chain M is irreducible and aperiodic, which is
shown in the following two lemmas respectively.

Lemma 3 Under the assumption (A.1) and (A.2), the
Markov chain M is irreducible.

Proof According to the definition of irreducibility, we need
to show that any two states (k,m, n) ∈ HN × B2N and
(j, p, q) ∈ HN ×B2N are accessible to each other. To prove
that, we show three simple facts in the following:

• According to assumption (A.2), it is possible to pro-
duce feedback signal k by a one step transition from
state (j, p, q). i.e. ∃x ∈ B, s.t.P (zt+1 = (k, q, x)|zt =
(j, p, q)) > 0.

• In Markov chain Mk where the feedback signal is fixed to
be k, there exists d ∈ {1, 2, · · · }, such that we can build a
d-step transition path from behavior profile x to behavior
profile m, followed by a one step transition to behavior
profile n.
The existence of the d-step path from q to m is due to the
irreducibility of Mk in assumption (A.1). To see that it is
possible to transit from statem to n by one step in Markov
chain Mk, note that if Mk(m,n) = 0, we can simply

1Condition (A.2), which seems not very intuitive, basically says
that every possible value of the feedback is reachable from every
value of the behavior, if there are a very large number of random
users arriving at the platform and they have very high dynamics
and variety.

erase the state (k,m, n) from the state space of Markov
chain M, which does not affect our results, therefore we
only need to consider the case in which Mk(m,n) > 0.
• According to assumtion (A.2), in Marokov chain M, it is

possible to observe d + 1 consecutive states in which the
d+ 1 feedback signals are all k.
Combining the three points, we can obtain:

P (zt+d+2 = (k,m, n)|zt = (j, p, q))

≥P (zt+d+2 = (k,m, n)|zt+1 = (k, q, x))

× P (zt+1 = (k, q, x)|zt = (j, p, q))

=Mk(m,n) · P (u ∈ U : η(u,m) = k)

× · · · ×Mk(q, x) · P (u ∈ U : η(u, q) = k)

>0.

(4)

Therefore state (k,m, n) is reachable from state (j, p, q).
Similarly, we can also prove that state (j, p, q) is reachable
from state (k,m, n). Since (k,m, n) and (j, p, q) are ar-
bitrarily chosen, we actually prove the irreducibility of the
Markov chain M.
Lemma 4 Under the assumption (A.1) and (A.2), the
Markov chain M is aperiodic.
Proof Since the Markov chain is irreducible, all states in
the chain have the same period. Therefore, in order to prove
the aperiodicity, we just need to show that for a given
state (k,m,m) ∈ HN × B2N , its period is one. Accord-
ing to the first assumption in the lemma, ∀d ≥ 1 sat-
isfying M

(d)
k (m,m) > 0. Therefore we can build a d-

step path in Markov chain Mk: m → m1 → m2 · · · →
md−1 → m, such that the transition probability in every
step is positive, i.e., Mk(m,m1) > 0, Mk(m1,m2) >
0, ..., Mk(md−1,m) > 0. As a result,

P (zt+d = (k,m,m)|zt = (k,m,m))

≥P (zt+d = (k,m,m)|zt+d−1 = (k,md−1,m))×
P (zt+d−1 = (k,md−1,m)|zt+d−2 = (k,md−2,md−1))

× · · · × P (zt+1 = (k,m,m1)|zt = (k,m,m))

=Mk(md−1,m) · P (u ∈ U : η(u,md−1) = k)

×Mk(md−2,md−1) · P (u ∈ U : η(u,md−2) = k)

× · · · ×Mk(m,m1) · P (u ∈ U : η(u,m) = k)

>0.
(5)

Hence, a d-step transition path with positive probabil-
ity in Markov chain M can be built as (k,m,m) →
(k,m,m1) → (k,m1,m2) · · · → (k,md−1,m) →
(k,m,m). Then by the definition of period 2, Markov chain
M has the same period as Markov chain Mk, which is
one.

3.2 Convergence Bound
In the previous subsection, we have constructed a new
Markov chain and proved its convergence. In this subsec-
tion, we show that these results can be used to analyze the

2In Markov chain P , state i’s period is defined as the g.c.d. of
all d ∈ 1, 2, · · · satisfying P (d)(i, i) > 0.
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convergence rate of the empirical risk for a specified behav-
ior prediction model, namely f .

Let us start from a formal definition of the
problem. Given the T -round training data S =
{(h1, b1, b2); (h2, b2, b3); · · · ; (hT , bT , bT+1)} =
(z1, z2, · · · , zT ), we define the T -round empirical risk
of f with respect to S as follows:

errTS (f) =
1

T

T∑
t=1

l(f(bt, ht), bt+1) =
1

T

T∑
t=1

l(f, zt), (6)

where we assume l to be upper bounded by a constant B >
0.

We then define the T -round expected risk of f as
errTM (f) = 1

T

∑T
t=1Ezt∼π0Mt l(f, zt), where π0 is the

initial distribution of Markov chain M. According to
Theorem(2), the limit of errTM (f) exists:

errπ(f) = lim
T→∞

errTM (f) =
∑
z∈[Z]

l(f, z) · πz, (7)

where π is the stationary distribution of M, and errπ(f) is
the real expected risk of f .

Next we investigate how well the T -round empirical risk
errTS (f) approximates errπ(f). For this purpose, we lever-
age the Hoeffding Inequality for uniformly ergodic Markov
Chains (Glynn and Ormoneit 2002), which is rephrased as
below for completeness.
Proposition 1 (Hoeffding Inequality for uniformly er-
godic Markov Chains) Let X = (Xn : n ≥ 0) be a Markov
Chain taking values in a state space S, if the following as-
sumption holds: (A.3) there exists a probability measure φ
on S, λ > 0, and an integer m ≥ 1 s.t. ∀x ∈ S, P (Xm ∈
·|X0 = x) ≥ λφ(·), then for a function g : S → R with its
norm defined as ||g|| = sup{|g(x)| : x ∈ S} < ∞, define
ST = 1

T

∑T
t=1 g(Xt), for T > 2||g||m/(λε), we have

P (|ST − E(ST )| ≥ ε) ≤ 2exp(−λ
2(Tε− 2||g||m/λ)2

2T ||g||2m2
) (8)

where the expectation E(ST ) is taken on the stationary dis-
tribution of X .

In order to leverage Proposition (1), we need to check
whether its assumption (A.3) holds in our problem. For
this purpose, we note the fact that for an irreducible, aperi-
odic, and finite-state Markov chain with time-invariant tran-
sition probability matrix P , there must exist N such that
∀n ≥ N , all elements of n-step transition matrix P (n) are
non-zero( Lemma 6.6.3 in (Durrett 2010) ). Accordingly in
our setting, for Markov chain M, there exists N0 such that
∀1 ≤ i, j ≤ Z,M

(N0)
i,j > 0. Denote δ as the minimum ele-

ment inM (N0), i.e., δ = min
1≤i,j≤Z

M
(N0)
i,j > 0. Then if we set

m = N0, λ = Zδ and set φ to be the uniform distribution
on [Z], it is easy to see that (A.3) holds. Further noticing
that ||g|| in (8) is B in our setting, where g = l(f ; zt) and
B is the upperbound of function l, we can leverage Propo-
sition (1) to obtain desired convergence bound as Theorem
(5) shows.

Theorem 5 Convergence of Empirical Loss to Expected
Loss Let f : HN × BN → BN be the behavior prediction
function, errTS (f) and errπ(f) be the empirical loss and ex-
pected loss respectively, as defined in equation (6) and (7).
For any ε > 0 and T > 2BN0/(Zδε), we have

P (
∣∣∣errTS (f)− errπ(f)∣∣∣ ≥ ε)

≤2exp(−Z
2δ2 (Tε− 2BN0/(Zδ))

2

2TB2N2
0

)
(9)

Theorem (5) basically states that when the sample size T is
large enough, the empirical risk errTS (f) will converge to
the long-term expected risk errπ(f), and the convergence
rate is exponential in the sample size.

3.3 Uniform Convergence Bound
In this subsection, we prove a uniform convergence bound
for the ABP problem based on covering number,3 as shown
in the following theorem.
Theorem 6 Uniform Convergence Theorem. Let F = {f :
HN ×BN → BN} be the behavior function space and l ◦F
be the composite function class of the loss function l acting
on F . For a behavior function f ∈ F , denote errTS (f) and
errπ(f) as its empirical loss and expected loss respectively,
as defined in equation (6) and (7). For any ε > 0, we have

P (sup
f∈F
|errTS (f)− errπ(f)| ≥ ε)

≤8N (
ε

8
, l ◦ F , 2T )exp(−Z

2δ2 (Tε− 16BN0/(Zδ))
2

128TB2N2
0

)

(10)

for T ≥ max (T0, 16BN0/(Zδε)), where T0 satisfies
Z2δ2(T0ε−4BN0/(Zδ))

2

8T0B2N2
0

≥ ln 4, and N ( ε8 , l ◦ F , 2T ) is the
ε/8-covering number of l ◦ F . N0 and δ are the parame-
ters of Markov chain M (see Notation Table 1), B is the
upper bound of loss function l(f, z), Z is the state number
of Markov chain M.

The proof of the theorem contains two steps. For the first
step, we employ the symmetrization technique to reduce the
probability of the uniform convergence bound to a probabil-
ity involving only two sample sets. For the second step, we
further reduce the case to a finite function class by using the
covering number theory.

Lemma 7 Symmetrization Lemma. Denote S̃ =
(z̃1, z̃2, ..., z̃T ) as a set of ghost samples sampled from
Markov chain M, then we have,

P (sup
f∈F

∣∣∣errTS (f)− errπ(f)∣∣∣ ≥ ε)
≤2P (sup

f∈F

∣∣∣errTS (f)− errTS̃ (f)∣∣∣ ≥ ε

2
)

(11)

3Covering number is one of the common ways to measure
the complexity of a function class. Specifically, covering number
N (ε, l◦F , T ) is defined as max

{zt}Tt=1∈[Z]T
N (ε, l◦F|{zt}Tt=1

, dT ) in

whichN (ε, l ◦F|{zt}Tt=1
, dT ) is the minimum capacity of ε-cover

of (l◦F)’s projection on data {zt}Tt=1, w.r.t. the distance metric be-
tween x ∈ RT , y ∈ RT defined as dT (x, y) := max

1≤t≤T
|xt − yt|.
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for T large enough to satisfy Z2δ2(Tε−4BN0/(Zδ))
2

8TB2N2
0

≥ ln 4.

The proof of the lemma can be found in the full version of
the paper(Tian et al. 2014).

Proof of Theorem (6)
Fixing any sample data (S, S̃), we set zT+t = z̃t, t =

1, 2, ..., T for simplicity. Pick a subset of F G ⊆ F such
that l ◦ G is an ε/8-cover of l ◦ F with respect to the met-
ric d2T (l ◦ f1, l ◦ f2) := max

1≤t≤2T
|l(f1, zt)− l(f2, zt)|. Pick

f ∈ F such that |errTS (f) − errT
S̃
(f)| ≥ ε/2. According

to the definition of G, there exists a function g ∈ G such
that max

1≤t≤2T
|l(f, zt)− l(g, zt)| < ε

8 holds. In fact, as shown

below, such a g satisfies |errTS (g)− errTS̃ (g)| ≥ ε/4:

ε

2
≤
∣∣∣errTS (f)− errTS̃ (f)∣∣∣

≤|errTS (f)− errTS (g)|+ |errTS (g)− errTS̃ (g)|

+ |errTS̃ (g)− err
T
S̃ (f)|

≤|errTS (g)− errTS̃ (g)|+
1

T

2T∑
t=1

|l(f, zt)− l(g, zt)|

≤|errTS (g)− errTS̃ (g)|+ 2 max
1≤t≤2T

|l(f, zt)− l(g, zt)|

<|errTS (g)− errTS̃ (g)|+
ε

4

(12)

The above result enables us to reduce the problem to the
case of finite function class. Combining it with Inequality
(11), we obtain

P (sup
f∈F

∣∣∣errTS (f)− errTS̃ (f)∣∣∣ ≥ ε/2)
≤P (max

g∈G

∣∣∣errTS (g)− errTS̃ (g)∣∣∣ ≥ ε/4)
≤N (ε/8, l ◦ F , 2T )max

g∈G
P (
∣∣∣errTS (g)− errTS̃ (g)∣∣∣ ≥ ε/4)

(13)

Further considering the result stated in Theorem (5), we
obtain

P (
∣∣∣errTS (g)− errTS̃ (g)∣∣∣ ≥ ε/4)

≤P (
∣∣∣errTS (g)− errπ(g)∣∣∣ ≥ ε/8)

+ P (
∣∣∣errTS̃ (g)− errπ(g)∣∣∣ ≥ ε/8)

≤4exp(−Z
2δ2 (Tε− 16BN0/(Zδ))

2

128TB2N2
0

)

(14)

for T > 16BN0/(Zδε).
By combining inequalities (11), (13), and (14), we finally

prove the theorem.

Remark: Please note that for most regular function class,
the covering number N (ε, l ◦ F , T ) defined in Theorem 6
can be polynomially bounded. For example,

• If the loss function l is Lipschitz-continuous in its first
argument with Lipschitz constant L > 0, then for any T ,
we have N (ε, l ◦ F , T ) ≤ N (ε/L,F , T ).

• Since we assume the behavior set to be finite, the
ABP problem can actually be regarded as a multi-class
classification problem, where the class number is |B|.
In this case, the covering number N ( ε8/L,F , 2T ) can
be bounded by the growth function of F , defined as

max
{zt}Tt=1∈[Z]2T

∣∣F|{zt}2Tt=1

∣∣. Moreover, the growth function

is bounded by ( 2Te(|B|+1)2

2d )d (Bendavid et al. 1995),
where d is the Natarajan dimension of F (Natarajan
1989). ThusN ( ε8/L,F , 2T ) is at most in T ’s polynomial
order.

4 Conclusion and Future Work
In this paper, we have studied the generalization ability of
ERM algorithms for agent behavior prediction. In particu-
lar, we first develop a new technique that transforms MCRE
to a higher-dimensional but more regular Markov chain and
then give a uniform generalization bound based on the new
Markov chain. As for the future work, we plan to investi-
gate the joint learning problem of the optimal mechanism of
the platform and the optimal prediction model of agent be-
haviors. Generalization analyses for these two cases will be
even more challenging, and the corresponding results will
also have more profound impact on adopting machine learn-
ing techniques in real-world interactive systems.

Notation Meaning
U,B,H Respectively the random user factors space, agent be-

havior space and feedback space
ut, bt, ht Respectively the random users, agents joint behavior

and feedback at round t
N Number of agents in the system
η Feedback function outputting feedbacks to all agents.

η maps from U× BN to HN

Mk Agents joint behavior transition probability matrix un-
der joint feedback k

M The new construocted higher dimensional chain,
M = {(ht, bt, bt+1) ; t ≥ 0}

Z M’s state number. We assume that M takes states
from [Z] = {1, 2, ..., Z}

zt M′’s state value at round t, zt = {ht, bt, bt+1}
M Transition probability matrix of M
π M’s stationary distribution
N0 The elements ofN0-step transition probability matrix

M(N0) of M are all positive
δ Minimum element ofM(N0)

F Function class of behavior prediction functions,F ⊂
{f : HN × BN → BN}

l Loss function w.r.t. behavior prediction function f
and data, e.g, l(f, zt) = 1f(ht,bt)6=bt+1

B Upper bound for loss function l
S, S̃ T -round training data and ghost data sampled from M

respectively, S = (zt)
T
t=1, S̃ = (z̃t)

T
t=1

errTS (f), errπ(f) Respectively denotes the T -round empirical loss on
S and expected loss of an agent behavior prediction
function f

Table 1: Notations
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