
1550 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 7, JULY 2014

Mobile App Classification with Enriched
Contextual Information

Hengshu Zhu, Enhong Chen, Senior Member, IEEE, Hui Xiong, Senior Member, IEEE,
Huanhuan Cao, and Jilei Tian

Abstract—The study of the use of mobile Apps plays an important role in understanding the user preferences, and thus provides the
opportunities for intelligent personalized context-based services. A key step for the mobile App usage analysis is to classify Apps into
some predefined categories. However, it is a nontrivial task to effectively classify mobile Apps due to the limited contextual information
available for the analysis. For instance, there is limited contextual information about mobile Apps in their names. However, this
contextual information is usually incomplete and ambiguous. To this end, in this paper, we propose an approach for first enriching the
contextual information of mobile Apps by exploiting the additional Web knowledge from the Web search engine. Then, inspired by the
observation that different types of mobile Apps may be relevant to different real-world contexts, we also extract some contextual
features for mobile Apps from the context-rich device logs of mobile users. Finally, we combine all the enriched contextual information
into the Maximum Entropy model for training a mobile App classifier. To validate the proposed method, we conduct extensive
experiments on 443 mobile users’ device logs to show both the effectiveness and efficiency of the proposed approach. The
experimental results clearly show that our approach outperforms two state-of-the-art benchmark methods with a significant margin.

Index Terms—Mobile App classification, web knowledge, real-world contexts, enriched contextual information

1 INTRODUCTION

WITH the wide spread use of mobile devices in recent
years, a huge number of mobile Apps have been

developed for mobile users. For example, as of the end of
July 2013, there are more than 1.9 million Apps and 100
billion cumulative downloads at Apple’s App store and
Google Play. Indeed, mobile Apps play an important role in
the daily lives of mobile users. Intuitively, the study of the
use of mobile Apps can help to understand the user pref-
erences, and thus motivates many intelligent personalized
services, such as App recommendation, user segmentation
and target advertising [17], [19], [20], [29], [34].

However, the information directly from mobile Apps is
usually very limited and ambiguous. For example, a user’s
preference model may not fully understand the informa-
tion “the user usually plays Angry Birds” unless the mobile
App “Angry Birds” is recognized as a predefined App cate-
gory “Game/Stategy Game”. Indeed, due to the large number
and high increasing speed of mobile Apps, it is expected
to have an effective and automatic approach for mobile

• H. Zhu and E. Chen are with the School of Computer Science and
Technology, University of Science and Technology of China, Hefei, Anhui
230026, China. E-mail: zhs@mail.ustc.edu.cn; cheneh@ustc.edu.cn.

• H. Cao and J. Tian are with the Nokia Research Center, Beijing 100010,
China. E-mail: happia.cao@gmail.com; jilei.tian@nokia.com.

• H. Xiong is with the Management Science and Information Systems
Department, Rutgers Business School, Rutgers University, Newark, NJ
07102 USA. E-mail: hxiong@rutgers.edu.

Manuscript received 12 Sep. 2012; revised 11 Aug. 2013; accepted 15 Aug.
2013. Date of publication 22 Aug. 2013; date of current version 2 July 2014.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier 10.1109/TMC.2013.113

App classification. Nonetheless, one may argue that some
mobile Apps are associated with predefined tags or descrip-
tions as metadata in the App delivery platform (e.g., App
Stores) and these data can be directly used for recogniz-
ing the latent semantic meanings. However, these data may
be difficult to obtain by the third party services, especially
in the case that there exist multiple App delivering chan-
nels and it is not able to track the source of a mobile App,
such as the practical scenario of the Android ecosystem.
Also, those tags are usually not very accurate to reflect
the latent semantic meanings behind the use of mobile
Apps. For example, a security mobile App “Safe 360” is
tagged as “Business” in the Nokia Store [3], which is obvi-
ously too general to capture the latent semantic meaning
for understanding the real App usage.

Indeed, mobile App classification is not a trivial task
which is still under-development. The major challenge is
that there are not many effective and explicit features avail-
able for classification models due to the limited contextual
information of Apps available for the analysis. Specifically,
there is limited contextual information about mobile Apps
in their names, and the only available explicit features of
mobile Apps are the semantic words contained in their
names. However, these words are usually too short and
sparse to reflect the relevance between mobile Apps and
particular categories. For example, Fig. 1 shows the distri-
bution of the number of mobile Apps with respect to the
name length in our real-world data set. In this figure, we
can observe that the distribution roughly follows the power
law, and most Apps only contain less than three words in
their names.

To this end, in this paper, we propose to leverage both
Web knowledge and real-world contexts for enriching the

1536-1233 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ZHU ET AL.: MOBILE APP CLASSIFICATION WITH ENRICHED CONTEXTUAL INFORMATION 1551

Fig. 1. Distribution of the number of mobile Apps with respect to the
name length in our real-world date set.

contextual information of Apps, thus can improve the per-
formance of mobile App classification. According to some
state-of-the-art works on short text classification [9], [11],
[23], [25], [27], an effective approach for enriching the orig-
inal few and sparse textual features is leveraging Web
knowledge. Inspired with those works, we propose to take
advantage of a Web search engine to obtain some snippets
to describe a given mobile App for enriching the textual fea-
tures of the App. The leveraged Web search engine can be
a general search engine such as Google or the vertical App
search engine provided by an App store. However, some-
times it may be difficult to obtain sufficient Web knowledge
for new or rarely used mobile Apps. In this case, the rel-
evant real-world contexts of mobile Apps may be useful.
Some observations from the recent studies [14], [17], [19],
[28], [29], [31] indicate that the App usage of a mobile user
is usually context-aware. For example, business Apps are
likely used under the context like “Location: Work Place”,
“Profile: Meeting”, while games are usually played under the
context like “Location: Home”, “Is a holiday?: Yes”. Compared
with Web knowledge, the relevant real-world contexts of
new or rarely used mobile Apps may be more available
since they can be obtained from the context-rich device logs
of the users who used them in mobile devices. Therefore,
we also propose to leverage the relevant real-world con-
texts of mobile Apps to improve the performance of App
classification. To be specific, the contributions of this paper
are summarized as follows.

First, automatic mobile App classification is a novel
problem which is still under-development. To the best of
our knowledge, we are one of the first attempts to study this
problem. Furthermore, we are the first to leverage both Web
knowledge and relevant real-world contexts to enrich the
limited contextual information of mobile Apps for solving
this problem.

Second, we study and extract several effective features
from both Web knowledge and real-world contexts through
the state-of-the-art data mining technologies. Then, we pro-
pose to exploit the Maximum Entropy model (MaxEnt) [7],
[22] for combining the effective features to train a very
effective and efficient App classifier.

Finally, to evaluate the proposed approach, we con-
duct extensive experiments on the context-rich mobile
device logs collected from 443 mobile users, which contain
680 unique mobile Apps and more than 8.8 million App
usage records. The experimental results clearly show that

our approach outperforms two state-of-the-art benchmark
approaches with a significant margin.

Overview. The remainder of this paper is organized as
follows. In Section 2, we provide a brief review of related
works. Section 3 presents an overview of the proposed
approach and some preliminaries. In Section 4, we give
the technical details of extracting Web knowledge based
features and real-world contextual features, respectively.
Furthermore, we also introduce the machine learning model
for training App classifier. Section 5 shows the experimental
results based on a real-world data set. Finally, we conclude
this paper in Section 6.

2 RELATED WORK

Automatic mobile App classification is a novel application
problem, however, it also can be regarded as the problem
of classifying short & sparse texts. Short & sparse texts are
very common in real-world services, such as query terms
and SMS, which often contain limited and sparse textual
information for utilizing. Compared with traditional text
classification tasks, classifying short & sparse text is very
challenging and thus attracts many researchers’ attention.
For example, Phan et al. [23] proposed to leverage hidden
topics to improve the representation of short & sparse text
for classification. The hidden topics are learnt from exter-
nal data set with seeds selection to avoid noise, such as
Web knowledge. Sahami et al. [25] proposed a novel sim-
ilarity measuring approach for short text snippets, which
can also be proven by a kernel function. Specifically, this
approach utilizes a Web search engine to enrich original tex-
tual information, which can be leveraged for short & sparse
text classification. Furthermore, Yih et al. [30] improved the
measuring approach by exploiting an additional learning
process to make the measurement more efficient. Broder et
al. [9] proposed to extract information from the top related
search results of the query from a Web search engine, and
Shen et al. [27] studied using a Web directory to classify
queries. Cao et al. [11] proposed to use Web knowledge for
enriching both the contextual features and local features of
Web queries for query classification.

Indeed, some of above techniques can be leveraged for
our App classification task. For example, recently, accord-
ing to Cao’s work [11], Ma et al. [20] proposed an automatic
approach for normalizing user App usage records, which
can leverage search snippets to build vector space for both
App usages and categories, and classify App usage records
according to the Cosine space distance. Compared with
these works, the work reported in this paper does not only
comprehensively take advantage of more Web knowledge
based features but also leverages the relevant contexts of
mobile Apps which reflect their usage patterns from user
perspective.

In recent years, with rapid development of mobile
devices, many researchers studied leveraging real-world
contexts to improve traditional services, such as person-
alized context-aware recommendation [17], [19], [29], [34],
context-aware user segmentation [20] and user context-
aware tour guide [14], [28]. As a result, researchers have
found many user behaviors are usually context-aware, that
is, some user behaviors are more likely to appear under

1552 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 7, JULY 2014

Fig. 2. Example of the mobile App taxonomy.

a particular context. For example, Cao et al. [10] proposed
an efficient approach for mining associations between user
App usage and real-world contexts. A different metric to
count support is developed for addressing the unbalanced
occurrences of App usage records and context data. Bao
et al. [6] studied leveraging unsupervised approaches for
modeling user context and App usage. In this work, the raw
context data and App usage records are first segmented and
then modeled by topic models. Ma et al. [20] studied how to
leverage the associations between contexts and user activ-
ities for discovering similar users with respect to habit by
addressing the sparseness of such associations. Inspired by
these works, we argue that the types of mobile Apps that a
user will use may be relevant to his (or her) contexts. Thus,
in this paper we propose to leverage the relevant contextual
information of mobile Apps for improving the performance
of App classification.

3 OVERVIEW

Here, we introduce several related notions and give an
overview of our mobile App classification approach.

3.1 Preliminary
• App Taxonomy. To recognize the semantic meanings of
Apps, we can classify each App into one or more cate-
gories according a predefined App taxonomy. Specifically, an
App taxonomy ϒ is a tree of categories where each node
corresponds to a predefined App category. The semantic
meaning of each App can be defined by the category labels
along the path from the root to the corresponding nodes.
Fig. 2 shows a part of the App taxonomy used in our
experiments.
• Search Snippets. In our approach, we propose to lever-
age the Web knowledge to enrich the textual information
of Apps. To be specific, we first submit each App name
to a Web search engine (e.g., Google or other App search
engines), and then obtain the search snippets as the addi-
tional textual information of the corresponding App. A

Fig. 3. Snippets in the result pages from Google.

search snippet is the abstract of the Web page which are
returned as relevant to the submitted search query. The
textual information in search snippets is brief but can effec-
tively summarize the corresponding web pages. Thus, they
are widely used for enriching the original textual informa-
tion in the short text classification problem. Fig. 3 shows
some examples of search snippets for the App “Plant Vs.
Zombies” from Google.
• Context Log. Smart mobile devices can capture the histor-
ical context data and the corresponding App usage records
of users through context-rich device logs, or context logs
for short. For example, Table 1 shows an example of con-
text log which contains several context records, and each
context record consists of a timestamp, the most detailed
contextual information at that time, and the correspond-
ing App usage record captured by the mobile device. The
contextual information at a time point is represented by
several contextual features (e.g., Day name, Time range, and
Location) and their corresponding values (e.g., Saturday,
AM8:00-9:00, and Home), which can be annotated as con-
textual feature-value pairs. Moreover, App usage records can
be empty (denoted as “Null”) because users do not always
use Apps. In Table 1, location related raw data in the con-
text logs, such as GPS coordinates or cell IDs, have been
transformed into semantic locations such as “Home” and
“Work Place” by a location mining approach [20]. The basic
idea of such approach is to find the clusters of user posi-
tions and recognize their semantic meanings through the
time pattern analysis.

TABLE 1
Example of Context Log from a Mobile User in Our Real-World Data Set

ZHU ET AL.: MOBILE APP CLASSIFICATION WITH ENRICHED CONTEXTUAL INFORMATION 1553

Fig. 4. Framework of our App classification approach.

3.2 Overview of Our Approach
The proposed approach for mobile App classification con-
sists of two main stages. First, we collect many context logs
from mobile users, and extract both Web knowledge based
features and real-world contextual features for the Apps
appearing in these logs. Second, we take advantage of the
machine learning model for training an App classifier. Fig. 4
illustrates the main framework of the proposed approach.
To be specific, given a target taxonomy ϒ , an App a and
a system-specified parameter K, our approach incorporates
the features extracted from both the relevant Web knowl-
edge and contextual information of a to classify a into a
ranked list of K categories ca

1, ca
2, . . . , ca

K, among Nc leaf
categories {c1, . . . , cNc} of ϒ .

When we utilize the machine learning model to train
App classifiers, the most important work is to select effec-
tive features. Intuitively, given an App a and its category
label c, the basic features that can reflect the relevance
between a and c are the words contained in the name of
a. Suppose that the name of App a consists of a set of
words {wa

i }, each wa
i can be considered as a relevant boolean

feature to the category label c. That is, the occurrence of
a word w can be denoted as f (w) = 1 while vise versa
we denote f (w) = 0. The weights of these features can
be learned in the training process of the machine learning
model.

A critical problem of this type of features is that the
lengths of App names are usually too short and the con-
tained words are very sparse. As a result, it is difficult
to train an effective classifier by only taking advantage of
the words in App names. Moreover, the available training
data are usually with limited size and may not cover a
sufficiently large set of words for reflecting the relevance
between Apps and category labels. Therefore, a new App
whose partial, or all words in name do not appear in the
training data will not obtain accurate classification results if
the classifier is only based on the words in App names. To
this end, we should also take consideration of other effec-
tive features which can capture the relevance between Apps
and category labels. In the following section, we introduce
the features extracted from both the relevant Web knowl-
edge and real-world contextual information for training an
App classifier.

4 EXTRACTING EFFECTIVE FEATURES FOR
APP CLASSIFICATION

In this section we first introduce how to extract effective
textual and contextual features for App classification from
both Web knowledge and real-world contextual informa-
tion, respectively. Then we also introduce how to inte-
grate these features into a state-of-the-art machine learning
model for training App classifier.

4.1 Extracting Web Based Textual Features
In this subsection, we introduce how to leverage Web
knowledge for extracting additional textual features of
mobile Apps. To be specific, we investigate two such kinds
of textual features to capture the relevance between Apps
and the corresponding category labels, namely, Explicit
Feedback of Vector Space Model and Implicit Feedback of
Semantic Topics.

4.1.1 Explicit Feedback of Vector Space Model
This type of features exploits the top M results (i.e., search
snippets) returned by a Web search engine through leverag-
ing the explicit feedback of Vector Space Model (VSM) [26].
Given an App a and its category label c, we first submit a’s
name to a Web search engine (e.g., via Google API in our
experiments). Then, for each of the top M results, we map
it to a category label in the App taxonomy ϒ by building
a Vector Space Model. There are three steps in the process
of mapping snippets to categories by VSM.

First, for each App category c, we integrate all top
M snippets returned by a Web search engine for some
pre-selected Apps labeled with c as a category profile dc.
Particularly, we remove all stop words (e.g., “of”, “the”) in
dc and normalize verbs and adjectives (e.g., “plays → play”,
“better → good”).

Second, we build a normalized words vector −→wc = dim[n]
for each App category c, where n indicates the number of
all unique normalized words in all category profiles. To be
specific, here we have

dim[i] = freqi,c∑
i freqi,c

(1 ≤ i ≤ n), (1)

where freqi,c indicates the frequency of the i-th word in the
category profile dc.

Finally, for each snippet s returned for App a, we remove
the words which do not appear in any category profile and
build its normalized word vector −−→wa,s in a similar way. Then
we calculate the Cosine distance between −−→wa,s and −→wc as
similarity, that is,

Similarity(
−−→wa,s,

−→wc) =
−−→wa,s · −→wc

||−−→wa,s|| · ||−→wc||
. (2)

According to the similarity, we can map each snippet s to
the category c∗, which satisfies,

c∗ = arg max
c

Similarity(
−−→wa,s,

−→wc). (3)

Through the VSM, we can calculate a general label confi-
dence score introduced in [11] by:

GConf (c, a) = Mc,a

M
, (4)

1554 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 7, JULY 2014

Fig. 5. Graphical model of LDA, where M, N, and K are the number of
category profiles, words, and latent topics, respectively; α and β are the
prior parameters.

where Mc,a indicates the number of returned related search
snippets of a whose category labels are c after mapping.
Intuitively, the GConf score reflects the confidence that a is
labeled as c gained from Web knowledge. The larger the
score, the higher the confidence.

However, sometimes GConf score may not accurately
validate the relevance between c and a due to the noise cat-
egory labels contained in the mapping list. In practice, we
find the more unique category labels contained in the map-
ping list, the more uncertainty for classification. Therefore,
we further define another score named general label entropy
to measure the uncertainty of App classification, which can
be calculated as follows:

GEnt(c, a) = −
∑

ci �=c

P(ci) log P(ci), (5)

where P(ci) = GConf ∗(ci, a) = M¬c
ci,a

M¬c , where M¬c is the
number of returned documents without category label
c. Intuitively, the GEnt score implies the effectiveness of
GConf score.

4.1.2 Implicit Feedback of Semantic Topics
Although the explicit feedback of VSM can capture the rel-
evance between App and category label in terms of the
occurrences of words, it does not take consideration of the
latent semantic meanings behind words and may not work
well in some cases. For example, in VSM, the following
words “Game”, “Play” and “Funny” are treated as totally
different measures to calculate the distance between word
vectors. However, these words indeed have latent seman-
tic relationships because they can be categorized into the
same semantic topic “Entertainment”. According to [23],
the latent semantic topics can improve the performance
of short & sparse text classification. Thus, here we study
the textual features which consider the implicit feedback of
semantic topics.

To be specific, we propose to leverage the widely used
Latent Dirichlet Allocation (LDA) model [8] for learning
latent semantic topics. Therefore, according to LDA, a cate-
gory profile dc is assumed to be generated as follows. First,
before generating a category profile, K prior conditional dis-
tributions of words given latent topics {φz} are generated
from a prior Dirichlet distribution β. Second, a prior latent
topic distribution θc is generated from a prior Dirichlet dis-
tribution α for each category c. Then, for generating the
j-th word in dc denoted as wc,j, the model firstly generates
a latent topic z from θc and then generates wc,j from φz.
Fig. 5 shows the graphical model of LDA.

The process of training LDA model is to learn proper
latent variables θ and φ for maximizing the posterior distri-
bution of category profiles, i.e., P(dc|α, β, θ, φ). In this paper,

we take advantage of a Markov chain Monte Carlo method
named Gibbs sampling [15] for training LDA model. This
method begins with a random assignment of latent topics
to words for initializing the state of Markov chain. In each
of the following iterations, the method will re-estimate the
conditional probability of assigning a latent topic to each
word, which is conditional on the assignment of all other
words. Then a new assignment of latent topics to words
according to those latest calculated conditional probabilities
will be scored as a new state of Markov chain. Finally, after
several rounds of iterations, the assignment will converge,
which means each word is assigned a final latent topic.

After learning latent topics, we extract the features based
on the implicit feedback of semantic topics as follows.
Given an App a, we first leverage a Web search engine
to obtain the top M relevant snippets and remove the
words which do not appear in any category profile. Then,
we map each snippet s to a category by calculating the
KL-divergence between their topic distributions as:

DKL(P(z|s)||P(z|c)) =
∑

k

P(zk|s)ln P(zk|s)
P(zk|c) , (6)

where P(zk|c) = P(zk|dc) and P(zk|s) ∝ P(z)
∏

P(ws|z) can be
obtained through the LDA training process. The category
c∗ with the smallest KL-divergence will be selected as the
label of s, that is,

c∗ = arg min
c

DKL(P(z|s)||P(z|c)). (7)

Finally, we calculate the topic confidence score for a given
category c as follows:

TConf (a, c) = Ta,c

M
, (8)

where Ta,c indicates the number of returned snippets for a
with the category label c. Intuitively, the TConf score reflects
the confidence that a is labeled as c with respect to latent
semantic topics. The larger the score, the higher the con-
fidence. Moreover, we also calculate the topic based general
label entropy in similar way according to Equation 5.

4.2 Extracting Real-World Contextual Features
In this subsection, we introduce how to extract effective
contextual features of mobile Apps from real-world con-
text logs. To be specific, we study three types of contextual
features, namely, Pseudo Feedback of Context Vectors, Implicit
Feedback of Context Topics and Frequent Context Patterns.

4.2.1 Pseudo Feedback of Context Vectors
The first type of contextual features considers the feed-
back of context vectors. We assume that the usage of a
particular category of Apps is relevant to some contextual
feature-value pairs. To be specific, given the Apps in the
“Game/Strategy Game” category, they may be relevant to the
contextual feature-pairs (Day period: Evening) and (Location:
Home), respectively. Based on this assumption, similar to
the VSM-based approach introduced in Section 4.1.1, we
build a context vector for each App category as follows.

First, for each pre-selected and labeled App a, we collect
all context records which record the usage of App a from
the context logs of many mobile users.

ZHU ET AL.: MOBILE APP CLASSIFICATION WITH ENRICHED CONTEXTUAL INFORMATION 1555

Fig. 6. Graphical model of LDAC, where M, N, F, K are the number of
context profiles, contextual feature-value pairs, contextual features, and
latent context topics, respectively; α, β and γ are the prior parameters.

Second, we extract the contexts in these context records
which consist of contextual feature-value pairs and build a
context profile Ra = {(pi, freqi,a)} for each App a from these
contexts, where pi denotes a contextual feature-value pair
appearing in these contexts and freqi,a indicates the cor-
responding frequency. Similarly, we can build the context
profile Rc for each category c by combining all the context
profiles of the pre-selected Apps labeled with c.

Last, we can define the context vector of App a as−→
�a = dim[m], where m indicates the total number of unique
contextual feature-value pairs and dim[i] = freqi,a∑

i freqi,a
(1 ≤

i ≤ m). Similarly, we can build a context vector
−→
�c for

each category c according to Rc.
After building the context vectors for App categories,

we can take the feedback of the pseudo category based
on context similarity as a contextual feature. To be spe-
cific, given an App a and a category label c, we first
build the context vector of a denoted as

−→
�a and then

calculate the Cosine distance between
−→
�a and all App cat-

egories’ context vectors. Finally, we rank category labels
in descending order according to their Cosine similarity
to

−→
�a. Particularly, we define the pseudo category c∗ by

c∗ = arg max
c

Similarity(
−→
�a,

−→
�c) and calculate the category

rank distance by:

CRDistance(a, c) = Rk(c) − Rk(c∗) = Rk(c) − 1, (9)

where Rk(c) denotes the rank of category c obtained
by comparing vector distances to a. Intuitively, the
CRDistance ∈ [0, Nc), where Nc indicates the number of
leaf nodes in the App taxonomy ϒ . Obviously, the smaller
the distance, the more likely the category label c is the
correct label.

4.2.2 Implicit Feedback of Context Topics
Although the pseudo feedback of context vectors can cap-
ture the relevance between Apps and category labels in
terms of the occurrences of contextual feature-value pairs,
it does not take consideration of the latent semantic mean-
ings behind contextual information. Similarly as discussed
in Section 4.1.2, we observe that many contextual feature-
value pairs have some latent semantic meanings, e.g., (Day
period: Evening), (Is a holiday?: Yes) and (Location: Home)
may all imply the latent context topic “Relax”. Intuitively,
these context topics may capture the relationships between
Apps and category labels more accurately. For example,
we observe that “Games” are often played in the contexts
belong to topic “Relax”, while “Business Apps” are often
used in the contexts belong to topic “Working”. Thus, here

TABLE 2
Context Topic z Learnt by LDAC from Our Real-World Data

Set, Where Each P(p|z) > 0.5

we also investigate the implicit feedback of context topics
for App classification.

An intuitive approach for discovering these context top-
ics is leveraging topic models, i.e., take the context profile
Rc of each category c as document and each contextual
feature-value pairs as words. However, a critical challenge
when utilizing existing topic models, e.g., LDA, for model-
ing contexts is that context values are not only influenced
by latent context topics but also by context features. For
example, BlueTooth information can only be got when user
opens BlueTooth sensor, and location information often
cannot be obtained in underground subways due to the
lack of GPS/cell ID information. Therefore, to accurately
model context information, in this paper we also leverage
the extended Latent Dirichlet Allocation on Context model
(LDAC) [6] for mining latent context topics.

In the LDAC model, a context profile Rc of category c is
generated as follows. Firstly, a prior context topic distribu-
tion θRc is generated from a prior Dirichlet distribution α.
Secondly, a prior contextual feature distribution πRc is gen-
erated from a prior Dirichlet distribution γ . Then, for the
i-th contextual feature-value pair in Rc, a context topic zRc,i
is generated from θRc , a contextual feature fRc,i is generated
from πRc , and the value of fRc,i denoted as vRc,i is generated
from the distribution φzRc,i,fRc,i . Moreover, there are totally
K × F prior distributions of contextual feature-value pairs
{φk,f } which follow a Dirichlet distribution β. Fig. 6 shows
the graphical representation of the LDAC model. According
to the model, we have

P(Rc, θRc , zRc , πRc ,
|α, β, γ)

= P(θRc |α)P(
|β)P(πRc |γ)

×
(N∏

i=1

P(vRc,i|zRc,i, fRc,i,
)P(fRc,i|πRc)P(zRc,i|θRc)

)

,

where
 = {φk,f } and zRc = {zRc,i}. In this paper, we lever-
age the Gibbs sampling based approach introduced in [6]
for training LDAC model. After training process, we can
obtain the probabilities P(p|z) and P(z|Rc), where p is the
contextual feature-value pair. Table 2 shows an example of
a context topic learnt by LDAC from our real-world data
set, which may indicate the context of relax time.

Given an App a, we first obtain its context profile Ra
from historical context log database. Then for each category
label c, we calculate the KL-divergence between their topic
distributions:

1556 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 7, JULY 2014

DKL(P(z|Ra)||P(z|Rc)) =
∑

k

P(zk|Ra)ln
P(zk|Ra)

P(zk|Rc)
, (10)

where P(z|Ra) ∝ P(z)
∏

P(p|z) (p ∈ Ra). Finally, we rank
category labels in ascending order according to their KL-
divergence. Particularly, we define the pseudo category c∗
by c∗ = arg min

c
DKL(P(z|Ra)||P(z|Rc)), and for each given

category label c we calculate the Topical Rank Distance by:

TRDistance(a, c) = Rk(c) − Rk(c∗) = Rk(c) − 1, (11)

where Rk(c) denotes the rank of category label c obtained
by comparing KL-divergences. Intuitively, the TRDistance ∈
[0, Nc), where Nc indicates the number of category labels.
Obviously, the smaller the distance, the more likely c is the
correct label.

4.2.3 Frequent Context Patterns
When leveraging above contextual features, we regard
each unique context feature-value pair as an indepen-
dent measure for the relevance between contexts and
the usage of a particular category of Apps. However,
recently some researchers pointed out that some context
feature-value pairs are mutually related rather than sep-
arate elements and their co-occurrences are relevant to
App usage as well [10]. To be specific, given a context
“{(Day period: Evening), (Location: Home)}” and a record
of the usage of App a, the usage of a may be rel-
evant to the co-occurrence of feature-pairs (Day period:
Evening) and (Location: Home) but not relevant to (Time
range: PM10:00-11:00) or (Location: Home) separately. Along
this line, we study a contextual feature to capture the
relevance between the co-occurrence of contextual feature-
value pairs and the App usage. Specifically, we take advan-
tage of the frequent context patterns for App classification as
follows.

According to the introduction in Section 3, given an App
a and many context logs {l}, we can find some combina-
tions of contextual feature-value pairs which are relevant
to the usage of a as frequent context patterns from {l}.
However, it is not a trivial work to mine these context pat-
terns. As pointed out by Cao et al. [10], the amounts of
context data and App usage records are usually extremely
unbalanced, which makes it difficult to mine such con-
text patterns through traditional association rule mining
approaches. An alternative approach is only leveraging
the context records with non-empty App usage records.
However, it will lose the discriminative information on
how likely no App will be used under a particular context.
Fortunately, some researchers have studied this problem
and proposed some novel algorithms for mining such
context patterns. For example, Cao et al. [10] proposed
a novel algorithm called GCPM (Generating Candidates
for behavior Pattern Mining) for mining such context
patterns, which are referred to as behavior patterns in
their work, by utilizing different ways of calculating sup-
ports and confidences. In an incremental work of [10],
Li et al [18] proposed a more efficient algorithm named
BP-Growth for solving this problem. In this paper, we
leverage the BP-Growth algorithm for mining frequent
context patterns. The basic idea of the algorithm is par-
titioning the original context logs into smaller sub-context

TABLE 3
Examples of Mined Frequent Context Patterns

logs for reducing the mining space and mining frequent
context patterns in these sub-context logs. Table 3 illustrates
some examples of frequent context patterns mined from
context logs.

It is worth noting that the mining is performed on indi-
vidual users’ context logs because merging all context logs
may normalize the relevance between contexts and App
usage. For example, given several users who usually play
action games in buses and several users usually play other
games in buses. If we try to discover the relevance between
contexts and App usage by merging all users’ context logs,
we may falsely conclude that “In a bus’’ has no signifi-
cant relevance with the usage of any category of Apps.
In contrast, we can discover “In a bus” is both relevant
to action games and other games according to different
people by taking into account each user’s context log sepa-
rately. After mining frequent context patterns, we regard
the occurrences of relevant frequent context patterns as
boolean features for determining a proper category label
for a in a similar way of leveraging the words in App
names.

4.3 Training Mobile App Classifier
After extracting both textual and contextual features, the
remaining work is to train an efficient classifier, which can
integrate multiple effective features for classifying Apps.
Actually, for this problem, a lot of supervised classifica-
tion models, such as Naive Bayes, SVMs, Decision Tree
and Maximum Entropy (MaxEnt) can be taken advantage
of in our framework for App classification. Among them,
in this paper we propose to leverage MaxEnt for training a
mobile App classifier due to three major reasons [23], [24]:
1) MaxEnt is robust and successfully applied to a wide
range of NLP tasks, such as POS tagging, and other
classification problems. It is proven to perform better
than other alternative models in classifying insufficient
and sparse data. 2) Compared with other classification
approaches, MaxEnt is more flexible to incorporate differ-
ent types of features, such as the various features extracted
from a Web search engine and real-world context logs.
3) MaxEnt is very efficient in processes of both training and
testing, which is suitable for deployment on mobile devices.

In our problem, MaxEnt defines the conditional proba-
bility of a category label c given an observation App name
a as:

P(c|a) = 1
Z(a)

exp(
∑

i

λifi(a, c)), (12)

where Z(a) = ∑
c exp(

∑
i λifi(a, c)) is a normalization factor,

each fi(a, c) denotes a feature function, and λi indicates the

ZHU ET AL.: MOBILE APP CLASSIFICATION WITH ENRICHED CONTEXTUAL INFORMATION 1557

TABLE 4
Types of Contextual Information in Our Data Set

weight of fi(a, c). Given a training data set D = {a(i), c(i)}N
i=1,

the objective of training a MaxEnt model is to find a set
of parameters � = {λi} that maximize the conditional log-
likelihood:

L(�|D) = log
∏

d∈D
P�(c(i)|a(i)). (13)

To be specific, we can leverage many machine learn-
ing algorithms to train MaxEnt model, such as Improved
Iterative Scaling (IIS) [13] and Limited-Memory BFGS
(L-BFGS) [21]. In this paper, according to the compari-
son results of algorithms for maximum entropy parameter
estimation in [21], we leverage the most efficient algo-
rithm L-BFGS for model training. Once the parameters
� have been learned by using a training data set, we
can infer the category label c∗

T for the test App aT as
c∗

T = arg max
cT

P(cT|aT,�).

5 EXPERIMENTAL RESULTS

In this section, we evaluate our approach through sys-
tematic empirical comparisons with two state-of-the-art
baselines on a real-world data set.

5.1 Experimental Set Up and Data Set
The data set used in the experiments is collected from
443 volunteers by a major manufacturer of smart mobile
devices (i.e., Nokia Corporation), during the period of
2007 to 2008 in U.K. Specifically, all the volunteers were
requested to install a data collection client in their Nokia
S60 smart phones. The client can run in background and
collect rich context data such as GPS data, system informa-
tion, GSM data, sensor data, and App usage records, with
fixed sampling rate. For each mobile device, the client soft-
ware automatically uploads the collected data to the server
through the GPRS/Wi-Fi Internet. In the server, context logs
are built from the collected context data and interaction

TABLE 5
Predefined Two-Level Taxonomy in Our Experiments

Fig. 7. Distribution of (a) number of mobile Apps with respect to the
name length, and (b) number of unique words in App names with
respect to their appearing frequency in our real-world date set.

records for each volunteer. In this data set, all these 443
users used 680 unique mobile Apps, and their context logs
contain total 8,852,187 context records spanning for from
several weeks to several months. Some similar public data
sets can be found in [1], [2].

Table 4 shows the concrete types of context data the data
set contains. Fig. 7 shows the distribution of the number
of mobile Apps with respect to the name length and the
distribution of the number of unique words in App names
with respect to their appearing frequency in our real-world
date set, which clearly validates the sparseness of textual
information in App names.

In the experiments, we manually define a two-level App
taxonomy based on the taxonomy of Nokia Store, which
contains 9 level-1 categories and 27 level-2 categories.
Table 5 shows the details of our App taxonomy.

We invited three human labelers who are familiar with
smart mobile devices and Apps to manually label the total
680 Apps with the 27 level-2 category labels. For each
App, each labeler gave the most appropriate category label
by his (or her) own usage experience (all the Apps in
the experiments can be downloaded through Nokia Store).
The final label of each App was voted by three labelers.
Particularly, for more than 95% apps, the three labelers
gave the same labels. Fig. 8 shows the category distribu-
tion of the labeled Apps. From this figure, we can observe
that the category labels of the Apps in our data set cover
all nine level-1 categories and the distribution is relatively
even.

5.2 Benchmark Methods
In this paper, we adopt two state-of-the-art baselines to
evaluate the performance of our classification approach.
To the best of our knowledge, there is only one rele-
vant approach has been reported in recent years, which

Fig. 8. App distribution of different level-1 category labels in our data
set.

1558 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 7, JULY 2014

can be directly leveraged for automatic App classifica-
tion. Therefore, we leverage this approach as the first
baseline.

Word Vector based App Classifier (WVAC) is intro-
duced in [20], which is adapted from the Web query
classification approach proposed by Cao [11] for App usage
record normalization. To be specific, given an App a, it
directly calculates the Cosine similarity between category
word vector −→wc and App word vector −→wa, and label a with
category c∗ i.i.f. c∗ = arg maxc Similarity(

−→wc,
−→wa).

The second baseline is originally developed for short
& sparse text classification, which can be extended for
classifying Apps.

Hidden Topic based App Classification (HTAC) is intro-
duced in [23], whose main idea is to learn hidden topics for
enriching original short & sparse texts. To be specific, this
approach adds semantic topics as additional textual fea-
tures and integrate them with words for classifying short
& sparse texts. To leverage this approach for classifying
mobile Apps, we first extract the semantic topics by the
approach introduced in Section 4.1.2, and then combine
them with the words in App names for training a MaxEnt
classifier.

5.3 Evaluation Metrics
To reduce the uncertainty of splitting the data into train-
ing and test data, in the experiments we utilize ten-fold
cross validation to evaluate each classification approach.
To be specific, we first randomly divide 680 Apps into
ten equal parts, and then use each part as the test data
while using other nine parts as the training data in ten test
rounds. Finally, we report the average performance of each
approach in the ten rounds of tests. To evaluate the classi-
fication performance of each approach, we leverage three
metrics as follows.

Overall Precision@K is calculated by
∑N

n=1 P@Kn
N , where

N indicates the number of apps in the test data set and
P@Kn indicates the precision for the n-th test App with a set
of top K predicted category labels CK from a classification
approach. To be specific, P@K = δ(c∗∈CK)

|K| , where c∗ denotes
the ground truth of category label for a test App, and δ(∗)

denotes a boolean function of indicating whether ∗ is true
(δ(∗) = 1) or false (δ(∗) = 0).

Overall Recall@K is calculated by
∑N

n=1 R@Kn
N , where

R@Kn denotes the recall for the n-th test App with a set
of top K predicted category labels CK from a classification
approach. To be specific, R@K = δ(c∗ ∈ CK).

Overall F1 Score is calculated by
∑N

n=1 F@Kn
N , where F@Kn

denotes the F1 score for the n-th test App with a set of top K
predicted category labels CK from a classification approach.
To be specific, F@K = 2×P@K×R@K

P@K+R@K .

5.4 Overall Results and Analysis
In order to study the contribution of Web knowledge based
textual features and contextual features in our approach,
we compare four MaxEnt models with different features,
namely, ME-W (MaxEnt with Words), ME-T (MaxEnt with
words + Web knowledge based Textual features), ME-C (MaxEnt
with words + Contextual Features) and ME-T-C (MaxEnt with

words + Web knowledge based Textual features + Contextual
Features). Because we treat the words in App names as basic
features, all models take advantage of this kind of features
by default.

In our experiments, we choose Google as our Web search
engine to obtain the relevant snippets of Apps, and set
the number of search results M to be 10, which equals
to the number of search results in one search page. Each
search snippet is normalized by Stop-Words Remover [4]
and Porter Stemmer [5]. The number of latent topic K for
both our approach and baseline HTAC are set to 20 accord-
ing to the estimation approach introduced in [6], [33]. Two
parameters α and β for training LDA model are set to be
50/K and 0.1 according to [16]. The parameters for training
LDAC model are set as similar as [6]. The settings of con-
text pattern mining approach BP-Growth are similar to [18].
To avoid over fitting in the training process of MaxEnt
model, we also use Gaussian prior for parameter � as sim-
ilar as [22]. Moreover, both our approach and the baselines
are implemented by standard C++ and the experiments are
conducted on a 3GHZ×4 quad-core CPU, 3G main mem-
ory PC. Here, we evaluate the overall Precision@K, overall
Recall@K and overall F1 score with different K for each clas-
sification approach. To be specific, we set the maximum K
to be 5.

Fig. 9(a) compares the average overall Precision@K of two
baseline methods WVAC, HTAC and our approach with
different features, namely, ME-W, ME-T, ME-C and ME-T-
C in the ten rounds of tests. First, from the figure we can
observe that the classification performance of only lever-
aging the short & sparse texts in App names (i.e., ME-W)
is very limited. Second, compared with the two baselines
WVAC and HTAC, the average overall Precision@K of our
approaches ME-T, ME-C and ME-T-C is improved con-
sistently. To be specific, for the top 1 results (i.e., given
K = 1), the improvement is more than 9% (ME-T), 6%
(ME-C) and 19% (ME-T-C) with respect to WVAC, and
22%, 19% and 34% with respect to HTAC. Third, comparing
ME-T and ME-C, we can observe that the Web knowledge
based textual features are slightly more effective than con-
textual features though both of them effectively improve
the performance of App classification than ME-W, which
only leverages the words in App names. Last, ME-T-C out-
performs all other approaches in terms of average overall
Precision@K. The average improvement than ME-W across
different K is more than 70% (the improvement exceeds
110% given K = 1), which clearly validates our moti-
vation of leveraging both Web knowledge based textual
features and real-world contextual features for improving
the performance of App classification.

Similarly, Fig. 9(b) compares the average overall
Recall@K of ME-W, ME-T, ME-C, ME-T-C and two baselines
with respect to different K in the ten rounds of tests. From
this figure we can observe that our approaches outper-
form the baselines and ME-T-C has the best performance.
Another observation is that the average overall Recall@K
of each test approach increases with the increase of K,
which is reasonable because the probability that the ground
truth category label is covered by the predicted results will
increase with more predicted category labels. Moreover,
Fig. 9 (c) compares the average overall F1 score of all

ZHU ET AL.: MOBILE APP CLASSIFICATION WITH ENRICHED CONTEXTUAL INFORMATION 1559

Fig. 9. Overall performance of each classification approach with different evaluation metrics in the cross validation. (a) Overall Precision@K. (b)
Overall Recall@K. (c) Overall F1 Score.

test approaches in the ten rounds of tests. From this fig-
ure we can observe that ME-T-C consistently outperforms
other approaches and ME-W has the worst classification
performance in terms of F1 score.

Particularly, we conduct a series of paired T-test of
0.95 confidence level which show that the improvements
of our approaches ME-T-C on overall Precision@K, over-
all Recall@K and overall F1 score with different K to other
approaches are all statistically significant.

We also study the variances of overall Precision@K, over-
all Recall@K and overall F1 score of all test approaches
in the ten-fold cross validation with K ∈ [1, 5]. Table 6,
Table 7, and Table 8 show the mean deviations of these
metric values of each approach in the ten rounds of tests.
From these tables we can observe that the variances of
all other approaches are consistently smaller than ME-W,
which implies that taking advantage of additional fea-
tures other than the limited textual information in App
names can improve the robustness of App classification.
Moreover, ME-T-C has the smallest mean deviations on all
metrics with different K, which implies that it has the best
robustness among all test approaches.

From the above experiments, we can draw the con-
clusions as follows: 1) All other approaches outperform
ME-W, which implies the textual information in App names
is insufficient for classifying Apps effectively and lever-
aging additional features can improve the classification
performance dramatically. 2) The MaxEnt model with Web
knowledge based textual features, i.e., ME-T, outperforms
the two baselines WVAC and HTAC, which indicates that
the combination of multiple Web knowledge based textual
features and basic App name based features is more effec-
tive than single Web knowledge based textual features for
App classification. 3) The MaxEnt model with contextual

TABLE 6
Mean Deviations of Precision@K of Each Classification

Approach with Different K in the Ten-Fold
Cross Validation

features ME-C also outperforms two baselines, which val-
idates the effectiveness of relevant contexts for improving
the App classification performance. 4) The MaxEnt model
which combines the Web knowledge based textual features
and real-world contextual features, i.e., ME-T-C, outper-
forms both ME-T and ME-C, which indicates the integration
of two kinds of additional features in the MaxEnt model can
achieve the best performance.

5.5 The Efficiency of Our Approach
Our approach consists of an offline part and an online part.
In the offline part, the time cost of our approach majorally
comes from the training cost for the MaxEnt model. Fig. 10
shows the convergence curves of ME-W, ME-T, ME-C and
ME-T-C by measuring their log likelihood for the training
data set in one of the ten test rounds. From these figures we
can observe that the L-BFGS training of all approaches con-
verges quickly. We can also find that the objective function
value of ME-T-C converges to a better optima compared
to other approaches, and the objective function value of
ME-W converges to the worst optima point compared with
other approaches. The convergence curves for other test
rounds follow the similar trend. Moreover, each iteration
of L-BFGS training averagely costs 2.8 milliseconds for

TABLE 7
Mean Deviations of Recall@K of Each Classification Approach

with Different K in the Ten-Fold Cross Validation

TABLE 8
Mean Deviations of F1 Score of Each Classification Approach

with Different K in the Ten-Fold Cross Validation

1560 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 7, JULY 2014

Fig. 10. Objective function values per iteration of training ME-W, ME-T,
ME-C and ME-T-C.

ME-W, 8 milliseconds for ME-T, 15 milliseconds for ME-
C and 18 milliseconds for ME-T-C, respectively. We also
show the curves of training accuracy with respect to train-
ing iterations of all above approaches in Fig. 11, where
training accuracy denotes the classification accuracy of the
trained model on the training data. Similarly to the curves
of log likelihood, we can observe that the training accu-
racy curves of all approaches converge quickly and ME-T,
ME-C and ME-T-C can achieve a high training accuracy
while ME-W can only achieve about 65% training accuracy
at best.

In the online part, we need to submit App names to a
Web search engine for getting the relevant snippets. Indeed,
this process can be very fast for a commercial search engine
thus it is not a crucial efficiency problem. The other online
cost of our approach comes from feature generation, such
as calculating label/topic confidence, calculating category
rank distance and mining context patterns. Actually, the
main processes of these tasks can be calculated offline in
advance. To be specific, both VSM and LDA/LDAC models
can be trained offline and the context patterns can also be
mined in advance and stored in the server. In this case, the
online process for generating features will be very fast (less
than 100 millisecond in our experiments).

5.6 Case Study of App Classification
In addition to the studies on the overall performance of all
test approaches, we also manually study the case in which
our approach outperforms the baselines.

For example, Table 9 shows an example of the App clas-
sification results of different test approaches with respect
to different features. In this example, the test App is “Snake
3D”, which is a popular action games thus the ground truth

Fig. 11. Values of training accuracy per iteration of training ME-W, ME-T,
ME-C and ME-T-C.

TABLE 9
Case Study of the App Classification Results of Different

Approaches

category label is “Game/Action Game”. From the results we
can observe that the approach which only leverages the
words in App name, i.e., ME-W, cannot give the correct
label in the top three results. The two baselines (i.e., WVAC
and HTAC) gave the correct label in the third position.
Moreover, the Web knowledge based textual feature and
contextual feature based approaches (i.e., ME-T and ME-C)
gave the correct label in the second position. In contrast,
our approach which combines both Web knowledge based
textual features and contextual features (i.e., ME-T-C) gave
the correct label in the top one position.

We can have some interesting insights from this case.
Specifically, first, the Web knowledge based textual features,
i.e., the relevant snippets and topics, can reflect that the
App is probably a game but cannot determine whether it
is an action game. By further considering the relevant con-
text patterns, we can find that it is usually played in a quiet
and relaxing environment with long time to play (in holi-
day evenings at home with silent profile), which implies it
is probably an action game since such environment eases
users to finish action tasks. Thus, by considering both types
of features, ME-T-C made a more accurate classification
result for the App.

5.7 App Usage based User Segmentation
Except for directly evaluating the classification performance
of our approach (i.e. ME-T-C), we also study its effec-
tiveness of segmenting users with respect to their App
usage. Specifically, the user segmentation aims to cluster

ZHU ET AL.: MOBILE APP CLASSIFICATION WITH ENRICHED CONTEXTUAL INFORMATION 1561

Fig. 12. Distributions of the number of used (a) Apps, and (b) categories
with respect to the number of users.

users according to their similarities of App usage, which
can motivate many useful services, such as App recom-
mendation and user habit analysis. However, it is not a
trivial work to effectively segment users with respect to
their historical App usage, since the original App distri-
bution is very sparse in users’ App usage records. For
example, Fig. 12(a) shows the distribution of the num-
ber of used Apps with respect to number of users in our
data set. From this figure we can observe that the distri-
bution is very sparse, and each App only have 11 users
on average. If we leverage these Apps for measuring user
similarity, it will be very hard to obtain good segmentation
performance. Fortunately, if we map each original App to
a predefined category labels, the sparsity can be reduced.
Fig. 12(b) shows the distribution of the number of used
App categories (i.e., classified by ME-T-C) with respect to
the number of users in our data set. From this figure we can
find that the distribution is relatively even, and each App
category have 270 users on average. Intuitively, using these
category labels for user segmentation may obtain better
performance.

Specifically, in this sub-section we first cluster the users
according to their similarities of App usage which are calcu-
lated by the Cosine similarities between their original App
vectors and App category vectors, respectively, and com-
pare their performance. The original App vector of user u
is denoted as −→ua = dim[n] , where n = 680 is the number
of all unique original Apps. dim[i] = freqi,u∑

i freqi,u
, where freqi,u

is the frequency of i-th App in u’s historical context log.
Similarly, the App category vector of user u is denoted
as −→uc . To efficiently segment users, we utilize a cluster-
ing algorithm proposed in [12], which does not require
a parameter to indicate the number of clusters but only
needs a parameter to indicate the minimum average mutual
similarity Smin for the data points in each cluster. The aver-
age mutual similarity for a user cluster C is calculated as

SC = 2×∑
1≤i<j≤NC

Sim(ui,uj)

NC×(NC−1)
, where NC indicates the number

of users in C and Sim(ui, uj) denotes the Cosine similarity
between the i-th user and the j-th user in C.

For the clusters based on App category vectors, Smin is
empirically set to be 0.8. However, for the clusters based on
original App vectors, it is difficult to select a proper Smin
because there exist rare pairs of users whose similarities
are relatively big when the similarity is calculated based on
the sparse original App space. Through several trials, we
choose Smin = 0.3 for those clusters since in this case the
results look relatively good. After clustering, the clusters

Fig. 13. Segmentation performance based on (a) original App vectors,
and (b) App category vectors.

number of App category vectors and original App vectors
based approaches are 7 and 15, respectively.

To evaluate the segmentation performance, we leverage
the provided questionnaires in the data set. The question-
naires are filled by the 443 volunteers, which contain serval
App usage related questions, which can indicate the user
preferences accurately. The main questions include Which
(kinds of) Apps do you use most frequently?, Which (kinds of)
Apps do you most interested in? and Which (kinds of) Apps do
you dislike most?. In this experiment, we also invite three
human evaluators to judge the segmentation performance.
Specifically, for each user cluster C, the three evaluators
should first read the questionnaires filled by users belong
to C, and judge the segmentation performance with a score
from 0 (worst) to 2 (best) according to their own perspec-
tive. At last, we use the average score for judging the
performance of user segmentation.

Fig. 13(a) and (b) show the evaluation results for each
user cluster mined based on original App vectors and App
category vectors, respectively. From these figures we can
observe that the App category vector based segmentation
outperforms the original App vectors based segmentation,
which is because the App categories can reduce the spar-
sity of original App space and thus can capture the user
similarity much better. It also indicates the effectiveness of
our approach ME-T-C.

We also study the user clusters based on App cate-
gories and find all of them have obvious relevance with
particular App category preferences. For example, Fig. 14
shows the values of each App category dimension for the
users in one randomly selected clusters C5 with box plots.
From this figure we can clearly see that the users in the
cluster dramatically have high values in some App cate-
gory dimensions, which implies they have the preferences
of the corresponding App categories. To be specific, the

Fig. 14. Values of each App category dimension for the users in C5 with
box plots.

1562 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 7, JULY 2014

users in C5 seem to like the 9-th and 10-th App cate-
gories which indicate the categories “Game/Action Game”
and “Game/Strategy Game”.

6 CONCLUDING REMARKS

In this paper, we studied the problem of automatic App
classification. A critical problem along this line is the con-
textual information in App names is insufficient and sparse
for achieving a good classification performance. To this
end, we proposed a novel approach for classifying mobile
Apps by leveraging both Web knowledge and relevant real-
world context. To be specific, we first extracted several Web
knowledge based textual features by taking advantage of
a Web search engine. Then, we also leveraged real-world
context logs which record the usage of Apps and corre-
sponding contexts to extract relevant contextual features.
Finally, we integrated both types of features into a widely
used MaxEnt model for training an App classifier. The
experiments on a real-world data set collected from 443
mobile users clearly show that our approach outperforms
two state-of-the-arts baselines.

Although our current approach is both efficient and
effective for solving the problem of automatic App classi-
fication, it is still an open problem about how to embed
this approach into mobile devices. Since mobile devices
have very limited computing resources, it is necessary to
design a more effective service framework. Moreover, dif-
ferent users may have different App usage behaviors, thus
how to integrate such personal preferences into contextual
feature extraction will be an interesting research direction.
Finally, in our future research, we also plan to combine
our classification approach with other context-aware ser-
vices, such as context-aware App recommender system, to
enhance user experiences.

ACKNOWLEDGEMENTS

This work was supported in part by grants from National
Science Foundation for Distinguished Young Scholars of
China (Grant No. 61325010), Natural Science Foundation
of China (NSFC, Grant No. 71329201), National High
Technology Research and Development Program of China
(Grant No. SS2014AA012303), Science and Technology
Development of Anhui Province (Grants No. 1301022064),
the International Science and Technology Cooperation Plan
of Anhui Province (Grant No. 1303063008). This work was
also partially supported by grants from US National Science
Foundation (NSF) via grant numbers CCF-1018151 and
IIS-1256016. This is a substantially extended and revised
version of [32], which appears in Proceedings of the 21st
ACM Conference on Information and Knowledge Management
(CIKM 2012).

REFERENCES

[1] [Online]. Available:
http://realitycommons.media.mit.edu/realitymining.html

[2] [Online]. Available: http://research.nokia.com/page/12000
[3] [Online]. Available: http://store.ovi.com/
[4] [Online]. Available:

http://www.lextek.com/manuals/onix/index.html
[5] [Online]. Available:

http://www.ling.gu.se/l̃ager/mogul/porter-stemmer

[6] T. Bao, H. Cao, E. Chen, J. Tian, and H. Xiong, “An unsupervised
approach to modeling personalized contexts of mobile users,” in
Proc. ICDM, Sydney, NSW, Australia, 2010, pp. 38–47.

[7] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra, “A maxi-
mum entropy approach to natural language processing,” Comput.
Linguist., vol. 22, no. 1, pp. 39–71, Mar. 1996.

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Lantent dirichlet
allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022, Jan. 2003.

[9] A. Z. Broder et al., “Robust classification of rare queries using
web knowledge,” in Proc. SIGIR, Amsterdam, Netherlands, 2007,
pp. 231–238.

[10] H. Cao, T. Bao, Q. Yang, E. Chen, and J. Tian, “An effective
approach for mining mobile user habits,” in Proc. CIKM, Toronto,
ON, Canada, 2010, pp. 1677–1680.

[11] H. Cao et al., “Context-aware query classification,” in Proc. SIGIR,
Boston, MA, USA, 2009, pp. 3–10.

[12] H. Cao et al., “Context-aware query suggestion by mining click-
through and session data,” in Proc. KDD, Las Vegas, NV, USA,
2008, pp. 875–883.

[13] S. Della Pietra, V. Della Pietra, and J. Lafferty, “Inducing features
of random fields,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19,
no. 4, pp. 380–393, Apr. 1997.

[14] Y. Ge, Q. Liu, H. Xiong, A. Tuzhilin, and J. Chen, “Cost-aware
travel tour recommendation,” in Proc. KDD, San Diego, CA, USA,
2011, pp. 983–991.

[15] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proc.
Nat. Acad. Sci. U.S.A., vol. 101, no. Suppl. 1, pp. 5228–5235,
Apr. 2004.

[16] G. Heinrich, “Paramter stimaion for text analysis,” University of
Lipzig, Leipzig, Germany, Tech. Rep. 2008.

[17] M. Kahng, S. Lee, and S.-G. Lee, “Ranking in context-aware rec-
ommender systems,” in Proc. WWW, Hyderabad, India, 2011,
pp. 65–66.

[18] X. Li, H. Cao, H. Xiong, E. Chen, and J. Tian, “BP-growth:
Searching strategies for efficient behavior pattern mining,” in
Proc. MDM, Bengaluru, India, 2012, pp. 238–247.

[19] Q. Liu, Y. Ge, Z. Li, E. Chen, and H. Xiong, “Personalized
travel package recommendation,” in Proc. ICDM, Vancouver, BC,
Canada, 2011, pp. 407–416.

[20] H. Ma, H. Cao, Q. Yang, E. Chen, and J. Tian, “A habit mining
approach for discovering similar mobile users,” in Proc. WWW,
Lyon, France, 2012, pp. 231–240.

[21] R. Malouf, “A comparison of algorithms for maximum entropy
parameter estimation,” in Proc. COLING, Stroudsburg, PA, USA,
2002, pp. 1–7.

[22] K. Nigam, “Using maximum entropy for text classification,” in
Proc. IJCAI Workshop Machine Learning for Information Filtering,
1999, pp. 61–67.

[23] X.-H. Phan et al., “A hidden topic-based framework toward build-
ing applications with short web documents,” IEEE Trans. Knowl.
Data Eng., vol. 23, no. 7, pp. 961–976, Jul. 2010.

[24] X.-H. Phan, L.-M. Nguyen, and S. Horiguchi, “Learning to classify
short and sparse text & web with hidden topics from large-scale
data collections,” in Proc. WWW, Beijing, China, 2008, pp. 91–100.

[25] M. Sahami and T. D. Heilman, “A web-based kernel function for
measuring the similarity of short text snippets,” in Proc. WWW,
Edinburgh, U.K., 2006, pp. 377–386.

[26] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620,
Nov. 1975.

[27] D. Shen, J.-T. Sun, Q. Yang, and Z. Chen, “Building bridges for
web query classification,” in Proc. SIGIR, Seattle, WA, USA, 2006,
pp. 131–138.

[28] M. van Setten, S. Pokraev, and J. Koolwaaij, “Context-aware rec-
ommendations in the mobile tourist application compass,” in
Proc. AH, Eindhoven, Netherlands, 2004, pp. 235–244.

[29] W. Woerndl, C. Schueller, and R. Wojtech, “A hybrid recom-
mender system for context-aware recommendations of mobile
applications,” in Proc. ICDE, Istanbul, Turkey, 2007, pp. 871–878.

[30] W.-T. Yih and C. Meek, “Improving similarity measures for short
segments of text,” in Proc. 22nd Nat. Conf. Artif. Intell., vol. 2. 2007,
pp. 1489–1494.

[31] K. Yu, B. Zhang, H. Zhu, H. Cao, and J. Tian, “Towards per-
sonalized context-aware recommendation by mining context logs
through topic models,” in Proc. PAKDD, Kuala Lumpur, Malaysia,
2012, pp. 431–443.

ZHU ET AL.: MOBILE APP CLASSIFICATION WITH ENRICHED CONTEXTUAL INFORMATION 1563

[32] H. Zhu, H. Cao, E. Chen, H. Xiong, and J. Tian, “Exploiting
enriched contextual information for mobile app classification,”
in Proc. CIKM, Maui, HI, USA, 2012, pp. 1617–1621.

[33] H. Zhu, H. Cao, H. Xiong, E. Chen, and J. Tian, “Towards expert
finding by leveraging relevant categories in authority ranking,”
in Proc. CIKM, Glasgow, U.K., 2011, pp. 2221–2224.

[34] H. Zhu et al., “Mining personal context-aware preferences for
mobile users,” in Proc. ICDM, Brussels, Belgium, 2012, pp. 1212–
1217.

Hengshu Zhu received the B.E. degree in
Computer Science in 2009 from USTC. Currently
he is a Ph.D. student in the School of Computer
Science and Technology at the University of
Science and Technology of China (USTC). He
was supported by the China Scholarship Council
as a visiting research student at Rutgers, the
State University of New Jersey, for more than
one year. His current research interests include
mobile data mining, recommender systems, and
social networks. During the Ph.D. degree study,

he has published a number of papers in refereed conference proceed-
ings and journals, such as CIKM, ICDM and WWW Journal. Two of
his papers were awarded as “the Best Student Paper” of KSEM’11
and WAIM’13, respectively. He has also been a journal reviewer for
TSMC-B, WWW Journal and KAIS, and an external reviewer for various
international conferences, such as KDD and ICDM.

Enhong Chen (SM’07) received the Ph.D.
degree from the University of Science and
Technology of China, China. He is a Professor
and vice dean of the School of Computer
Science and Technology at the University of
Science and Technology of China (USTC),
China. His current research intersts are include
data mining, personalized recommendation sys-
tems and web information processing. He has
published more than 100 papers in refereed con-
ferences and journals. His research is supported

by the National Natural Science Foundation of China, National High
Technology Research and Development Program 863 of China, etc.
He is the program committee member of more than 30 international
conferences and workshops. He is a senior member of the IEEE.

Hui Xiong received the B.E. degree from
the University of Science and Technology of
China (USTC), China, the M.S. degree from
the National University of Singapore (NUS),
Singapore, and the Ph.D. degree from the
University of Minnesota (UMN), USA. Currently
he is an Associate Professor and Vice Chair
of the Management Science and Information
Systems Department, and the Director of
Rutgers Center for Information Assurance at the
Rutgers, the State University of New Jersey,

where he received a two-year early promotion/tenure in 2009, the
Rutgers University Board of Trustees Research Fellowship for Scholarly
Excellence in 2009, and the ICDM-2011 Best Research Paper Award in
2011. His current research interests include data and knowledge engi-
neering, with a focus on developing effective and efficient data analysis
techniques for emerging data intensive applications. He has published
prolifically in refereed journals and conference proceedings (3 books,
40+ journal papers, and 60+ conference papers). He is a co-editor-in-
chief of Encyclopedia of GIS, an Associate Editor of IEEE Transactions
on Data and Knowledge Engineering (TKDE) and the Knowledge and
Information Systems (KAIS) journal. He has served regularly on the
organization and program committees of numerous conferences, includ-
ing as a Program Co-Chair of the Industrial and Government Track
for the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining and a Program Co-Chair for the 2013 IEEE
International Conference on Data Mining (ICDM-2013). He is a senior
member of the ACM and IEEE.

Huanhuan Cao received the B.E. degree and
the Ph.D. degree from the University of Science
and Technology of China, China, in 2005 and
2009, respectively. Currently, he is the principal
scientist at Nuomi.com. Before joining Nuomi,
he used to be a key resarch engineer of Hipu
Info. Tech. Ltd, which is a start-up focusing on
personalized news recommendation. Earlier, he
worked at the Nokia Research Center as a senior
researcher. Due to his academic achievement of
his Ph.D research work, he won the Microsoft

Fellow and Chinese Academic Science President Award. His current
research interests are included recommender system, location mining,
and mobile user behavior analysis. In these fields, he has applied more
than 30 invention patents and published more than 20 papers in high
rated conferences and journals.

Jilei Tian received the B.S. and M.S. degrees
in Biomedical Engineering from Xi’an Jiaotong
University, China, and the Ph.D. degree in
Computer Science from the University of Eastern
Finland, in 1985, 1988, and 1997, respectively.
He joined Beijing Jiaotong University faculty dur-
ing 1988-1994. He has been with the Nokia
Research Center as senior researcher since
1997, then as principal scientist and research
leader, primarily in the area of spoken language
processing and recently on rich context data

modeling and personalized services. He has authored more than 100
publications including book chapter, journal and conference papers.
He has also about 100 patents including pending. He has served as
member of technical committee and the editorial board of international
conferences and journals.

� For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

