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Recent advances in mobile devices and their sensing capabilities have enabled the collection of rich contextual
information and mobile device usage records through the device logs. These context-rich logs open a venue for
mining the personal preferences of mobile users under varying contexts and thus enabling the development
of personalized context-aware recommendation and other related services, such as mobile online advertising.
In this article, we illustrate how to extract personal context-aware preferences from the context-rich device
logs, or context logs for short, and exploit these identified preferences for building personalized context-
aware recommender systems. A critical challenge along this line is that the context log of each individual
user may not contain sufficient data for mining his or her context-aware preferences. Therefore, we propose
to first learn common context-aware preferences from the context logs of many users. Then, the preference of
each user can be represented as a distribution of these common context-aware preferences. Specifically, we
develop two approaches for mining common context-aware preferences based on two different assumptions,
namely, context-independent and context-dependent assumptions, which can fit into different application
scenarios. Finally, extensive experiments on a real-world dataset show that both approaches are effective
and outperform baselines with respect to mining personal context-aware preferences for mobile users.
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1. INTRODUCTION

With the rapid development of the mobile industry, the mobile platform, such as
smartphones and tablets, has become one of the most important media for social
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Fig. 1. The personalized context-aware recommendation services for mobile users.

entertainment and information acquisition. Meanwhile, the advances in mobile devices
enable them to be equipped with a rich set of context sensors, such as GPS sensors,
3D accelerometers, and optical sensors. These context sensors can capture the rich
contextual information of mobile users, and thus enable a wide range of context-aware
services, such as context-aware tour guide [Emrich et al. 2009], location-based reminder
[Sohn et al. 2005], and context-aware recommendation [Bader et al. 2011; Liu et al.
2013; jae Kim et al. 2010; Karatzoglou et al. 2010; Woerndl et al. 2007]. In fact, the con-
textual information and corresponding usage records (e.g., browsing websites and play-
ing games) can be recorded in context-rich device logs, or context logs for short, which
can be used for mining the personal context-aware preferences of mobile users, that is,
which category of contents is preferred by a particular user under a certain context. Par-
ticularly, mining such preferences is a fundamental work for understanding the behav-
iors of mobile users, and thus enables better context-aware services. Specifically, by con-
sidering both the personal context-aware preferences and the current contexts of users,
it is possible to provide personalized context-aware recommendation and other related
services for mobile users, such as mobile online advertising. Figure 1 shows some ex-
amples of how to exploit contextual information for recommendation services. Indeed,
the personalized context-aware recommendation services can provide better user ex-
periences than traditional context-aware recommender systems, which only consider
the contextual information but not different users’ preferences under the same context
[Zhu et al. 2012b]. For instance, the following two examples intuitively illustrate how
the context-aware recommendation services can improve the user experiences.

Example 1.1 (Context-Aware Content Pushing). Content pushing is an important
function of smart mobile operating systems, which aims to automatically deliver the
right content to mobile users and is widely used for content recommendation and
intelligent advertising [Podnar et al. 2002]. Particularly, suppose that a mobile user
Kate would like to play her mobile phone while taking the bus. Through the analysis
of the sensing information collected on her smartphone, a context-aware recommender
system could discover that Kate is taking a bus (sensed by 3D accelerometers [Kwapisz
et al. 2011]) from her workplace to home (sensed by GPS or cell ID combined with
data mining on historical trajectories of users [Eagle et al. 2009; Zheng et al. 2009])
on a Monday evening (sensed by the system clock). Therefore, with respect to Kate’s
personal context-aware preference, for example, that Kate often listens to R&B music
under the same context, the recommender system may push some new R&B music and
related advertisements to Kate.
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Example 1.2 (Context-Aware Mobile Advertising). Mobile advertising, such as ban-
ner or in-app advertising, has become one of the most important components of online
advertising campaigns. In fact, a crucial need of mobile advertisers is to understand
the behavior and preferences of mobile users. Therefore, with the help of the personal-
ized context-aware recommender system, the advertiser can better design and deliver
advertisements to mobile users. For example, through mining users’ context logs, the
recommender system may discover that a mobile user, Tom, has two typical context-
aware preferences “playing games every evening at home” and “using restaurant review
apps every workday afternoon near the office”; thus, it can suggest advertisers to de-
liver advertisements of popular games and restaurants to Tom when he is using his
mobile phone in corresponding contexts. Furthermore, such context-aware preferences
can also be used for reranking the sponsored advertisements with respect to users’
different contexts.

In recent years, although many researchers studied the problem of personalized
context-aware recommendation [Zheng et al. 2010; Park et al. 2007; Ge et al. 2011;
Liu et al. 2011; jae Kim et al. 2010] and proposed some approaches for mining per-
sonal context-aware preferences, most of them did not take into account context-rich
information in their approaches. Also, some of these studies are based on item ratings
generated by users under different contexts, which are difficult to obtain in practice.
In contrast, usage records in context-rich device logs are a rich resource for mining
personalized context-aware user preferences. However, how to mine context-aware
preferences from context-rich logs for developing context-aware recommender systems
is still underaddressed.

To this end, in this article, we propose a novel approach for mining personal context-
aware preferences from context-rich device logs of mobile users. A critical challenge for
mining personal context-aware preferences is that the context log of each individual
user usually does not contain sufficient training information. As a result, it can be dif-
ficult to learn personal context-aware preferences if we only use the context log of each
individual user. Therefore, we propose to first find common context-aware preferences
from the context logs of many users and then represent the context-aware preference
of each user as a distribution of common context-aware preferences. Moreover, on the
basis of two different assumptions about context data dependency, we propose two
methods for mining common context-aware preferences. The first one is more efficient
but sacrifices a little performance, while the second one needs more training time but
has better performances. Figure 2 illustrates the overview of the proposed approach
and how the mined preferences are used for predicting the preferred categories of con-
tents for a given mobile user under a certain context. Specifically, the contributions of
this article are summarized as follows.

First, we propose a novel approach for mining the personal context-aware preferences
for mobile users through the analysis of context-rich device logs. Specifically, we propose
to first mine common context-aware preferences from the context logs of many users
and then represent the personal context-aware preference of each user as a distribution
of common context-aware preferences. The mined personal context-aware preferences
can enable the development of personalized context-aware recommender systems and
other related services, such as mobile online advertising.

Second, we design three effective methods for mining common context-aware pref-
erences based on two different assumptions about context data dependency. If context
data are assumed to be conditionally independent, we propose to mine common context-
aware preferences through topic models. Otherwise, if context data are assumed to be
dependent, we propose to exploit the constraint-based Matrix Factorization techniques
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Fig. 2. The overview of the proposed approach for mining personal context-aware preferences and how the
mined preferences are used for predicting the preferred categories of contents for a given mobile user under
a certain context.

for mining common context-aware preferences and only consider those contexts that
are relevant to content usage for reducing the computation complexity.

Finally, we evaluate the proposed approach using a real-world dataset with context
logs collected from 443 mobile phone users. In total, there are more than 8.8 million
context records. This dataset contains much more context-rich information and is much
bigger than those reported in previous works on context log mining [Bao et al. 2010;
Cao et al. 2010]. The experimental results clearly demonstrate the effectiveness of the
proposed approach and indicate some inspiring findings.

Overview. The remainder of this article is organized as follows. In Section 2, we
introduce the details about context logs and give the overview of the proposed approach.
Section 3 and Section 4 present our novel approaches for mining common context-aware
preferences of many users on the basis of two different assumptions, respectively. In
Section 5, we report the experimental results on a real-world dataset. Section 6 provides
a brief review of related works. Finally, in Section 7, we conclude the article.

2. MINING PERSONAL CONTEXT-AWARE PREFERENCES FROM CONTEXT LOGS

Smart devices can capture the historical context data and the corresponding usage
records of users through multiple sensors and record them in context logs. For example,
Table I shows a toy context log, which contains several context records, and each
context record consists of a timestamp, the most detailed context at that time, and the
corresponding usage record. A context consists of several contextual features (e.g.,
Day name, Time range, and Location) and their corresponding values (e.g., Saturday,
AM8:00-9:00, and Home), which can be annotated as contextual feature–value pairs.
Moreover, usage records can be empty (denoted as “Null”) because a user does not
always use the mobile device.

Note that, in Table I, raw locations in context data, such as GPS coordinates or cell
IDs, have been transformed into semantic locations such as “Home” and “Workplace”
by some location mining approaches (e.g., [Eagle et al. 2009]). The basic idea of these
approaches is to find the clusters of user locations and recognize their semantic mean-
ing by a time pattern analysis. Moreover, we also map the raw usage records to the
usage records of particular categories of contents via some mobile app classification
approaches (e.g., [Zhu et al. 2012a]). For example, we can map two raw usage records
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Table I. A Toy Context-Rich Device Log Collected by Mobile Devices

Timestamp Context Activity Records

t1
{(Day name: Monday), (Time range: AM8:00-9:00)),
(Profile: General), (Battery: 5), (Location: Home)}

Null

t2
{(Day name: Monday),(Time range: AM8:00-9:00)),
(Profile: General),(Battery: 5),(Location: On the way)}

Play action games
(Fruit Ninja)

t3
{(Day name: Monday),(Time range: AM8:00-9:00)),
(Profile: General),(Battery: 5),(Location: On the way)}

Null

...... ......

t359
{(Day name: Monday),(Time range: AM10:00-11:00),
(Profile: Meeting),(Battery: 4),(Location: Work place)}

Null

t360
{(Day name: Monday),(Time range: AM10:00-11:00),
(Profile: Meeting),(Battery: 4),(Location: Work place)}

Browsing sports websites
(www.nba.com)

...... ......

t448
{(Day name: Monday),(Time range: AM11:00-12:00),
(Profile: General),(Battery: 4),(Location: Work place)}

Play with SNS
(Facebook)

t449
{(Day name: Monday),(Time range: AM11:00-12:00),
(Profile: General),(Battery: 4),(Location: Work place)}

Null

“Play Angry Birds” and “Play Fruit Ninja” to the usage records of content category
“Action Games.”

In this way, the context data and usage records in context logs are normalized and
the data sparseness problem is somewhat alleviated. This helps the task of personal
context-aware preference mining.

Intuitively, context logs contain rich information about content usage given partic-
ular contexts and can be used for mining the personal context-aware preferences of
users. However, the context log of each individual user is usually too sparse for this
task. This is also demonstrated by the experiments on a real-world dataset in the ex-
perimental section. The main reason is that, while the context logs of individual users
may contain many context records, only a small proportion of them have nonempty
usage records that can be used as a meaningful mining source. To that end, we propose
a novel approach for mining personal context-aware preferences as follows.

The basic idea is first mining common context-aware preferences from the context
logs of many users and then representing each user’s context-aware preference by
a distribution of common context-aware preferences. Let us denote the variable of
common context-aware preference as z, and the conditional probability that a user u
prefers the content category c given a context C can be represented as

P(c|C, u) = P(c, C|u) · P(u)
P(C, u)

∝ P(c, C|u)

∝
∑

z

P(c, C, z|u) ∝
∑

z

(P(c, C|z) · P(z|u)),

where we assume that a user’s preference given a context only relies on the common
context-aware preferences followed by many users, that is, P(c, C|z), and his or her
personal context-aware preference expressed by a distribution of common context-
aware preferences, that is, P(z|u). Then the task is converted to learn P(c, C|z) and
P(z|u) from many users’ context logs. Specifically, given a user u and context C, both
P(u) and P(C, u) are constant, and thus we have P(c|C, u) ∝ P(c, C|u) in the previous
equation.

After mining the personal context-aware preference of each mobile user, we predict
which category of contents will be preferred for a given user according to the corre-
sponding context. Specially, we first rank content categories according to the probability
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P(c|C, u) of each content category c, and then we infer user-preferred content category
c∗ by c∗ = arg maxc P(c|C, u) and recommend corresponding contents. For example, if
we infer the user would like “Action Games,” we will recommend some popular action
games to the user.

We observe that modeling and mining common context-aware preferences rely on
the assumption about context data dependency. Basically, we can have two different
assumptions about context data dependency as follows.

The first assumption is that different types of context data are conditionally indepen-
dent given a particular common context-aware preference, which is relatively strong
but can simplify the problem. For example, under such an assumption, given a context
“{(Time range: PM10:00-11:00), (Location: Home)}” and a mobile user u, if we can infer
the latent common context-aware preference distribution of u, we only need to consider
which category of contents u may prefer under the context (Time range: PM10:00-11:00)
and the context (Location: Home) given each common context-aware preference, but do
not need to consider which category of contents u may prefer given the co-occurrence of
(Time range: PM10:00-11:00) and (Location: Home) given each common context-aware
preference.

The second assumption is that different types of context data are mutually depen-
dent, which is relatively weak and may be more proper in practice. However, such an
assumption makes it more difficult for modeling context-aware preferences. For ex-
ample, under such an assumption, given the previously mentioned context, we have
to consider the co-occurrence of (Time range: PM10:00-11:00) and (Location: Home)
when making a preference prediction. Obviously, the corresponding models may be
more complex than the ones based on the first assumption. In this article, we propose
different approaches based on the previous two assumptions and conduct extensive ex-
periments to evaluate them. The details of our novel approaches based on two different
assumptions are presented in the following two sections, respectively.

3. CONTEXT-AWARE PREFERENCE MINING BASED ON CONTEXT CONDITIONAL
INDEPENDENCY ASSUMPTION

We first propose a method based on the assumption that different types of context
data are conditional independent given a particular common context-aware preference.
Under such an assumption, given a context C = {p1, p2, . . . , pl}, where pi denotes an
atomic context, that is, a contextual feature–value pair, the probability that a user u
prefers content category c can be represented as

P(c|C, u) ∝
∑

z

(P(c, C|z) · P(z|u)) ∝
∑

z

⎛
⎝∏

pi∈C

P(c, pi|z) · P(z|u)

⎞
⎠ .

Therefore, the problem is further converted to learn P(c, pi|z) and P(z|u) from many
users’ context logs, which can be solved by widely used topic models. In this section,
we present how to utilize topic models for mining common context-aware preferences
by estimating P(c, pi|z) and P(z|u). For simplicity, we refer to the co-occurrence of
a usage of a content in category c and the corresponding contextual feature–value
pair pi, that is, (c, pi), as an Atomic Context-aware Preference feature, or ACP-
feature for short. For example, (IsHoliday? : Y es) → Games is an ACP-feature, where
p = (IsHoliday? : Y es) and c = Games.

3.1. Mining Common Context-Aware Preferences Through Topic Models

Topic models are generative models that are successfully used for document modeling.
They assume that there exist several topics for a corpus D and a document di in D can be
taken as a bag of words {wi, j} that are generated by these topics. Intuitively, if we take
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Fig. 3. The generation process of ACP-feature bag from user’s context records.

Fig. 4. The graphic representation of modeling ACP-feature bags by (a) LDA topic model and (b) LDAC
topic model.

ACP-features as words, take context logs as bags of ACP-features to correspond docu-
ments, and take common context-aware preferences as topics, we can take advantage of
topic models to learn common context-aware preferences from many users’ context logs.

Since raw context logs are not naturally in the form of bags of ACP-features, we need
to extract bags of ACP-features from them as training data. Especially, we first remove
all context records without any usage record and then extract the ACP-feature from the
remaining ones. Given a context record <Tid, C, c>, where Tid denotes a timestamp,
C = {p1, p2, . . . , pl} denotes a context, and c denotes the category of the used content in
the usage record, we can extract l ACP-features, namely, (c, p1),(c, p2), . . . , (c, pl). For
simplicity, we refer to the bag of ACP-features extracted from user u’s context log as
the ACP-feature bag of u. Figure 3 shows the example of the generation process of
the ACP-feature bag from context records.

3.1.1. LDA-Based Context Modeling. Among several existing topic models, in this article,
we first leverage the widely used Latent Dirichlet Allocation model (LDA) [Blei et al.
2003]. According to LDA, the ACP-feature bag of user ui denoted as di is generated
as follows. First, before generating any ACP-feature bag, K prior ACP-feature condi-
tional distributions given context-aware preferences {φz} are generated from a prior
Dirichlet distribution β. Second, a prior common context-aware preference distribution
θi is generated from a prior Dirichlet distribution α for each user ui. Then, for gener-
ating the jth ACP-feature in di denoted as wi, j , the model first generates a common
context-aware preference z from θi and then generates wi, j from φz. Figure 4(a) shows
the graphic representation of modeling ACP-feature bags by the LDA model.
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The process of LDA model training is to learn the proper latent variables θ and
φ to maximize the posterior distribution of the observed ACP-feature bags, that is,
P(u|α, β, θ, φ). In this article, we take advantage of a Markov chain Monte Carlo method
named Gibbs sampling [Griffiths and Steyvers 2004] for training LDA model. This
method begins with a random assignment of common context-aware preferences to
ACP-features for initializing the state of Markov chain. In each of the following iter-
ations, the method will re-estimate the conditional probability of assigning a common
context-aware preference to each ACP-feature, which is conditional on the assignment
of all other ACP-features. Then a new assignment of common context-aware prefer-
ences to ACP-features according to those latest calculated conditional probabilities
will be scored as a new state of Markov chain. Finally, after rounds of iterations, the
assignment will converge, which means each ACP-feature is assigned a stable and
final common context-aware preference and we can obtain the estimation of P(z|u) and
P(c, p|z) as follows:

P(z|u) = P(z|du) = nu,z + αz∑K
i nu,zi +∑K

i αzi

, (1)

P(c, p|z) = nz,c,p + βc,p∑M
i nz,(c,p)i +∑M

i β(c,p)i

, (2)

where nu,zi is the frequency of ACP-features in u that have been assigned to common
context-aware preference zi, and nz,(c,p)i is the frequency of the ith ACP-feature that
has been assigned to common context-aware preference z.

3.1.2. LDAC-Based Context Modeling. Although LDA can model the ACP-feature bags
in an intuitive way, from some real-world observations we find that the generation of
ACP-features are decided not only by latent common context-aware preferences but
also by their internal contextual features. For example, Bluetooth information can only
be obtained when the user opens the Bluetooth sensor, and location information often
cannot be obtained in underground subways due to the lack of GPS/cell ID informa-
tion. Therefore, to more accurately model context information, in this article, we also
leverage the extended Latent Dirichlet Allocation on Context Model (LDAC) [Bao et al.
2010] for mining latent common context-aware preferences.

In the LDAC model, the ACP-feature bags of user ui denoted as di are generated as
follows. First, a prior common context-aware preference distribution θdi is generated
from a prior Dirichlet distribution α. Second, a prior contextual feature distribution
πdi is generated from a prior Dirichlet distribution γ . Then, for the jth ACP-feature in
di, a common context-aware preference zdi , j is generated from θdi , a contextual feature
fdi , j is generated from πdi , and the content category with contextual feature value of
fdi , j denoted as (c, vdi , j) is generated from the distribution φzdi , j , fdi , j . Moreover, there
are totally K × F prior distributions of ACP-features {φk, f } that follow a Dirichlet
distribution β, where F is the number of unique contextual features. Figure 4(b) shows
the graphical representation of the LDAC model. The process of LDAC model training
is to learn the proper latent variables to maximize the posterior distribution of the
observed ACP-feature bags, that is, P(d, θ, zd, πd,�|α, β, γ ).

In this article, we leverage the Gibbs sampling-based approach introduced in Bao
et al. [2010] to train the LDAC model. After the training process, we can obtain the
probabilities P(z|u) by Equation (1) and P(c, p|z) as follows: 1

P(c, p|zk) = P(c, vp| fp, z)P( fp), (3)

1The detailed inference can be found in the appendix.
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where p = ( fp : vp) and

P(c, vp| fp, z) = nz,c, fp,vp + βc,vp∑
v nz,c, fp,v +∑v∈V fm

βv

,

P( fp) =
∑

z
∑

v nk,c, fp,v + γ fm∑
f
∑

z
∑

v nz,c, fp,v +∑ f γ f
,

where nz,c, fp,vp is the frequency of ACP-feature (c, p) that has been assigned to common
context-aware preference z, and V fm is the number of values for contextual feature fm.

3.2. Selecting the Number of Common Context-Aware Preferences

Both LDA and LDAC models need a predefined parameter K to determine the number
of common context-aware preferences. In this article, we utilize the method proposed in
Bao et al. [2010] to estimate K. To be specific, we first empirically define a topic number
range [Kmin, Kmax] and then select two groups of ACP-feature bags as the training set
S1 and the test set S2, respectively. Then we can determine K by the corresponding
perplexity [Azzopardi et al. 2003; Blei et al. 2003] of the test set S2. Here we take the
LDA model as an example, and the perplexity is defined as follows:

Perplexity(S2) = Exp

{
−
∑

di∈S2
log{P(di|S1)}∑
di∈S2

Ndi

}
,

where Ndi indicates the number of ACP-features in di and

P(di|S1) =
∏

(c,p)∈di

P(c, p|S1) =
∏

(c,p)∈di

K∑
j=1

(P(c, p|zj)P(zj |S1)).

Herein, P(c, p|zj) can be obtained after model training, and P(zj |S1) can be estimated
by ndi , j+α∑K

k=1 ndi ,k+α
, where ndi , j indicates the number of ACP-features labeled with zj in di.

The perplexity is widely used to index the modeling performance. The smaller the
perplexity is, the better modeling performance it implies. However, the perplexity may
consistently drop with the increase of K in practical datasets. To avoid the overfitting
problem, we cannot only utilize the minimum perplexity as the metric for determining
K [Azzopardi et al. 2003; Blei et al. 2003]. A complementary method is to define a
decline rate ζ of perplexity and stop seeking better K if the decline rate of perplexity
is less than ζ . In our experiments, we set ζ to be 10% according to Bao et al. [2010].

4. CONTEXT-AWARE PREFERENCE MINING BASED ON CONTEXT
DEPENDENCY ASSUMPTION

Since it may be relatively strong to assume that different types of context data are
conditionally independent, we also propose a method for mining common context-aware
preferences based on the assumption that different types of context data are mutually
dependent. Under such an assumption, we cannot decompose contexts into atomic
contexts and need to learn P(c, C|z) directly from user context logs. A major challenge
is that we cannot learn all conditional distributions P(c, C|z) for all C simply because
the number of unique C is exponential to the number of unique contextual feature–
value pairs and we will suffer the assemble explosion problem if we learn all of them.
Fortunately, we observe that usually not all parts of a context are relevant to content
usage and thus the corresponding preferences of content categories. For example, given
a context “{(Day name: Sunday), (Day period: Evening), (Location: Home), (Battery
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level: Low)},” we may not be able to demonstrate that the whole context is relevant
to a particular content category through the analysis of context logs. Instead, we may
find that context logs show that some parts of them, such as “{(Day name: Sunday),
(Day period: Evening)” and “{(Day period: Evening), (Location: Home)},” are indeed
relevant to a particular content category. To this end, an intuitive idea is to only
consider the content-relevant parts of contexts for predicting personalized context-
aware preferences of content categories. These content-relevant parts can be referred
to as content-relevant contexts for simplicity. Along this line, we only need to learn
the conditional distributions P(c, Cr|z) and P(z|u), where Cr denotes a content-relevant
context. Moreover, given a context C, it can be divided into two cases to calculate
P(c, C|z).

First, if C contains some content-relevant contexts, we can calculate P(c, C|z) directly
by its maximal subcontexts, which are also content-relevant contexts, as follows:

P(c, C|z) = 1
|Cr

max|
×
∑
Cr

max

P
(
c, Cr

max|z
)
,

where Cr
max denotes a maximal content-relevant subcontext contained by C, and |Cr

max|
indicates of the number of Cr

max. Take the previous context C={(Day name: Sunday),
(Day period: Evening), (Location: Home), (Battery level: Low)} for example; suppose
that there are two maximum content-relevant subcontexts Cr

1={(Day name: Sunday),
(Day period: Evening)} and Cr

2={(Day period: Evening), (Location: Home)} in it: we
will recommend corresponding contents to the given user by considering his or her
preference under both Cr

1 and Cr
2 equally.

Second, if C does not contain any content-relevant context, we can estimate P(c, C|z)
by normalizing the probabilistic space of the joint distribution of c and C conditional
on z. Especially, we let

P(c, Cφ |z) = 1
Nφ · Nc

×
(

1 −
∑

a

∑
C


P(c, C
|z)

)
,

where Cφ denotes a context without any content-relevant subcontext, Nφ indicates the
total number of Cφ , Nc indicates the total number of unique content categories, and
C
 denotes a context with at least one content-relevant subcontext. Actually, we do
not need to calculate P(c, C|z) in this case because it is the same with varying c and
cannot help to make a recommendation decision. In practice, we do not recommend any
content in this case.

Therefore, the original problem is divided into two subproblems, namely, how to
discover those content-relevant contexts and how to learn common context-aware pref-
erences and user personal distributions of common context-aware preferences, that is,
P(c, Cr|z) and P(z|u). The solutions for the two subproblems are presented in the fol-
lowing sections in detail, respectively.

4.1. Discovering the Content-Relevant Context

An intuitive way of discovering the context relevant to some content categories is
by mining association rules [Agrawal and Srikant 1994] between them with pre-
defined minimum supports and minimum confidences. Therefore, given a content-
relevant context Cr and a content category c, we have P(c, Cr|u) = P(c|Cr, u)P(Cr|u),
where P(c|Cr, u) can be estimated by the corresponding confidence of the association
“Cr −→ c” and P(Cr|u) can be estimated by Support(Cr )

Nr
, where Nr indicates the total

number of context records in the context log of user u.
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Table II. Examples of Association Rules Mined from Context Logs

(Is holiday? Yes) (Time Period: Evening) (Location: Home) ⇒ Game
(Is holiday? Yes) (Time Period: Evening) (Charging State: Charging) ⇒ Game

(Time Period: Morning) (Location: Workplace)⇒ Business
(Time Period: Evening) (Location: Moving) (Profile: Silent) ⇒ Multimedia

(Time Period: Evening) (Location: Home) ⇒ Web

However, as pointed out by Cao et al. [2010], the amounts of context data and user
activity records are usually extremely unbalanced, which makes it difficult to mine
such association rules through traditional association rule mining approaches. An
alternative approach is only leveraging the context records with nonempty activity
records. However, it will lose the discriminative information on how likely no activity
will be done under a particular context. Fortunately, some researchers have studied
this problem and proposed some novel algorithms for mining such association rules.
For example, Cao et al. [2010] proposed a novel algorithm called GCPM (Generating
Candidates for behavior Pattern Mining) for mining such association rules, which are
referred to as behavior patterns in their work, by utilizing different ways of calculating
supports and confidences. In an incremental work of Cao et al. [2010], Li et al. [2012]
proposed a more efficient algorithm named BP-Growth for this problem. In this article,
we leverage the BP-Growth algorithm for mining such association rules. The basic
idea of the algorithm is partitioning the original context logs into smaller subcontext
logs for reducing the mining space and mining frequent association rules in these
subcontext logs. Table II illustrates some examples of association rules mined from
context logs. In fact, these association rules clearly demonstrate the personal context-
aware preferences of mobile users. For example, the context “(Time Period: Evening)
(Location: Home)” may imply a leisure time at home, and thus the user has a preference
“Web” under such context.

It is worth noting that the mining is performed on individual users’ context logs
because merging all context logs may normalize the associations between contexts and
content categories. For example, given that several users usually play action games on
the bus and several other users usually play other games on the bus, if we try to mine
the associations between contexts and content category by merging all users’ context
logs, we may falsely conclude that “On the bus” has no significant relevance with any
content category. In contrast, we can discover that “On the bus” is relevant to both
action games and other games according to different people by taking into account
each user’s context log separately.

4.2. Mining Common Context-Aware Preferences Through Constraint-Based
Bayesian Matrix Factorization

After finding content-relevant contexts, the remaining task is to learn common context-
aware preferences and user personal distributions of common context-aware prefer-
ences, that is, P(c, Cr|z) and P(z|u). By building a matrix of P(c, Cr|u), where each
column denotes a probabilistic distribution of different (c, Cr) pairs for a given user u,
we can convert this task into a matrix factorization problem as follows:

�N×M = �N×K × �K×M + NN×M,

where N indicates the number of unique (c, Cr) pairs, M indicates the number of users,
and K indicates the number of common context-aware preferences. To be specific, �
denotes the observed matrix of P(c, Cr|u), φik ∈ �(1 ≤ i ≤ N, 1 ≤ k ≤ K) denotes
the probability P(c, Cr|zk), θkj ∈ �(1 ≤ k ≤ K, 1 ≤ j ≤ M) denotes the probability
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Fig. 5. Mining common context-aware preferences by constrained matrix factorization.

P(zk|uj), and the matrix N denotes the residual noise information. Moreover, the matrix
factorization task has two additional constraints for possible solutions as follows: (1) all
elements in matrix � and � should be nonnegative values, and (2) ∀ j:1≤ j≤M

∑K
k=1 θkj = 1

and ∀k:1≤k≤K
∑N

i=1 φik = 1, which are both obvious since each column of � and � denotes
a probabilistic distribution. Figure 5 shows the process of mining common context-
aware preferences through constrained matrix factorization.

According to the earlier problem statement and constraints, the objective of our
matrix factorization task is to find a possible solution for matrix �, �, and N. In this
article, we propose to leverage a constraint-based Bayesian Matrix Factorization model
[Schmidt 2009] for resolving this problem. In this model, we can perform matrix factor-
ization with multiple inequality and equality constraints. Specifically, we aim to infer
the posterior probabilistic distributions of � and � under a set of model assumptions,
which are specified by the likelihood function P(�|�,�, N). The likelihood function
denotes the probability of the observed data matrix � given priors P(�,�) and P(N).
According to Schmidt [2009], to perform efficient inference based on Gibbs sampling,
we select priors as follows. First, we select an i.i.d. zero mean Gaussian noise model as
follows:

P(nij) = N(nij |0, νi j) = 1√
2πνi j

exp

(
− n2

i j

2νi j

)
, (4)

where parameter νi j satisfies a conjugate inverse-gamma prior that satisfies

P(νi j) = IG(νi j |α, β) = βα

�(α)
ν

−(α+1)
i j exp

(−β

νi j

)
.

Then, we select a Gaussian prior over � and � subject to inequality constraints Q and
equality constraints R as

P(
−→
φ ,

−→
θ ) ∝

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N

⎛
⎜⎜⎜⎝
[ −→

φ−→
θ

] ∣∣∣∣
[

μφ

μθ

]
︸ ︷︷ ︸

μ

,

[
�φ �φθ

�T
φθ �s

]
︸ ︷︷ ︸

�

⎞
⎟⎟⎟⎠ ,

i f Q(
−→
φ ,

−→
θ ) ≤ 0,

R(
−→
φ ,

−→
θ ) = 0,

0, otherwise,

(5)

where
−→
φ = (φ11, φ12, . . . , φNK)T and

−→
θ = (θ11, θ12, . . . , θKM)T.

With the previous definitions, we can utilize Gibbs sampling methods to estimate
the posterior distributions as follows. In the first round of sampling, we randomly
assign values for

−→
φ and

−→
θ according to the two constraints to initialize the state of
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Markov chain. Then, we calculate the density of noise variance P(νi j |−→φ ,
−→
θ ) by inverse-

gamma distribution due to the choice of conjugate prior (i.e., Equation (4)). Next, we
can estimate P(

−→
φ |�,

−→
θ , N) and P(

−→
θ |�,

−→
φ , N) from the constraint Gaussian density

(i.e., Equation 5). Finally, we regenerate values for
−→
φ and

−→
θ according to the new

posterior probabilities to score a new state of Markov chain. After many rounds of
iterations, the results of matrixes � and � will converge.

4.3. Selecting the Number of Common Context-Aware Preferences

As mentioned in Section 3, an important problem for mining common context-aware
preferences is to select a proper number of common context-aware preferences. For
the Matrix Factorization-based approach for mining common context-aware prefer-
ences, we utilize the Chib’s method introduced in Schmidt et al. [2009] to infer the
proper number of common context-aware preferences. To be specific, in the Bayesian
framework, model selection can be performed by evaluating the marginal likelihood
P(�). The Chib’s method is based on the Bayes relation P(�) = P(�|�)P(�)

P(�|�) , where the
numerator can be easily estimated by the trained model and the key problem is to
estimate P(�|�). Denoting each row of � as �i, we can calculate the denominator as
P(�|�) = P(�1|�)×P(�2|�1,�)×· · ·×P(�K|�1, . . . ,�K−1,�). After R rounds of Gibbs
sampling in our approach, we can estimate each term by averaging over the conditional
density P(�K|�1, . . . ,�K−1,�) ≈ 1

R

∑R
r=1 P(�i|�1, . . . ,�i−1,�

(r)
i+1, . . . ,�

(r)
K , U), where

�(r)
i+1, . . . ,�

(r)
K are Gibbs samples from P(�i+1, . . . ,�K|�1, . . . ,�i−1,�). Thus, given a

range [Kmin, Kmax] for the number of common context-aware preferences, we can select
the K ∈ [Kmin, Kmax], which maximizes the likelihood.

5. EXPERIMENTAL RESULTS

In this section, we evaluate the performances of the three implementations of the pro-
posed framework based on two kinds of contextual assumptions for predicting user pref-
erences of content categories, namely, CIAP-LDA (Context conditional Independency
Assumption-based Prediction with LDA model), CIAP-LDAC (Context conditional
Independency Assumption-based Prediction with LDAC model), and CDAP (Context
Dependency Assumption-based Prediction), with several baseline methods on a real-
world dataset.

5.1. Experimental Data

The dataset used in the experiments is collected from many volunteers by a major man-
ufacturer of smart mobile devices. The dataset consists of 8,852,187 context records
that contain rich contextual information and usage records of 443 smartphone users
spanning from several weeks to several months. Table III shows the concrete types of
context data the dataset contains. In the experiments, we classified the 665 unique con-
tents appearing in raw usage records into 12 content categories based on the taxonomy
of the Nokia Ovi store (www.ovi.com), which are Call, Web, Multimedia, Management,
Game, System, Navigation, Business, Reference, Social Network Service (SNS), Util-
ity, and Others. In our experiments, we do not utilize the categories Call and Others
because they are not useful for generating corresponding recommendations. Instead,
we only utilize the other 10 content categories, which contain 618 unique contents
appearing in a total of 408,299 usage records.

Figures 6(a) and 6(b) show the distribution of 618 unique contents in raw usage
records with respect to the corresponding content categories and the distribution of
context records with respect to the content categories that their corresponding usage
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Table III. The Types of Contextual Information in Our Dataset

Context Value Range

Week {Monday, Tuesday, . . . , Sunday}
Is a holiday? {Yes, No}
Day period {Morning(7:00-11:00), Noon(11:00-14:00),

Afternoon(14:00-18:00), Evening(18:00-21:00),
Night(21:00-Next day 7:00)}

Time range {0:00-1:00, 1:00-2:00, . . . ,23:00-24:00}
Profile type {General, Silent, Meeting, Outdoor, Pager, Offline}
Battery level {Level 1, Level 2, . . . ,Level 7}
Charging state {Charging, Complete, Not Connected}
Social location {Home, Work Place, On the way}

Fig. 6. (a) The distribution of 618 unique contents w.r.t. the corresponding content categories and (b) the
distribution of context records w.r.t. the content categories that their corresponding usage records belong to.

Fig. 7. (a) The distributions of all context records and the context records with nonempty usage records for
all users. (b) The coverage of unique contexts in each user’s context log compared with all unique contexts.

records belong to, respectively. The context records with empty usage records are not
taken into account.

Figure 7(a) compares the distributions of all context records and the context records
with nonempty usage records for all users. From the figure, we can see that usually,
although many context records of individual mobile users are collected, only a small
proportion of them have nonempty usage records and can be used as training data,
which implies the limit of mining personal context-aware preferences only from indi-
vidual users’ context logs. Moreover, Figure 7(b) shows the coverage ratio of unique
contexts in each user’s context log compared with all unique contexts, from which we
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can see that the unique contexts in each individual user’s context log is relatively
limited, which motivates learning from many users’ context logs as well.

5.2. Benchmark Methods

First, we select two baseline methods that are transformed from our approaches but
only consider individual users’ context logs for evaluating whether only considering in-
dividual users’ context logs is not enough for the personalized context-aware preference
mining.

CIAP-i stands for a variant of CIAP that only leverages individual users’ context
logs. To be specific, in this approach, given a user u and a context C, we predict the user-
preferred content categories by ranking each content category c according to P(c|u, C),
which can be estimated by P(c|u, C) ∝ ∏

p∈C P(c, p|u), and P(c, p|u) can be calculated
by P(c, p|u) = nc,p

n(.)
, where nc,p and n(.) indicate the numbers of ACP-feature (c, p) and

all ACP-features appearing in the context log of u, respectively.
CDAP-i stands for a variant of CDAP that only leverages individual users’ context

logs, in which given a user u and a context C, the user-preferred content categories
are predicted by ranking each content category c according to P(c|u, C). If C contains
some personal content-relevant contexts denoted Cr, where Cr should appear in some
behavior patterns of u, we let P(c|u, C) ∝ P(c, C|u) ∝ 1

|Cr
max |
∑

Cr
max

P(c|Cr
max, u), where

Cr
max denotes a maximal personal content-relevant subcontext contained by C, and

P(c|Cr
max, u) can be estimated by the confidence of the association “Cr

max −→ a” in the
context log of user u. Otherwise, if C does not contain any personal content-relevant
subcontext, we do not recommend any content to user u.

Then, we select a state-of-the-art personalized context-aware recommendation ap-
proach based on individual users’ context logs as a baseline.

CASVM stands for personalized Context-Aware preference prediction by Ranking
SVM, which is introduced in Kahng et al. [2011]. To be specific, in this approach, given
a user’s u and a context C, we calculate five types of features P(c), P(c|u), P(c|p),
P(c|u, p), and P(c|u, p1, . . . , pn), where p denotes a contextual feature–value pair in C,
according to the context log of u, and then leverage Ranking SVM for ranking content
category c.

Moreover, to validate the performance of leveraging many users’ context logs for min-
ing personal context-aware preferences, we also select two state-of-the-art collaborative
filtering (CF)-based approaches as baselines.

CACF stands for Context-Aware preference mining by disjunction CF, which is
a memory-based CF approach introduced in Lee et al. [2010]. In this approach, the
preference score sc,u,C of the user uon content category c in the context C is calculated by
the disjunctive aggregation of the estimated preferences of sc,u,p, where p is a feature–
value pair in C and sc,u,p is measured by counting how many context records of u contain
p and contents in category c.

CATF stands for Context-Aware preference mining by Tensor Factorization, which is
a model-based CF approach introduced in Karatzoglou et al. [2010]. In this approach,
all users’ context logs can be represented by a high-dimensional tensor T , and the
objective is to complete the missing values for ranking content categories. Specifically,
each value tu,c,v1,...,vn in the original tensor is measured by counting how many context
records of user u contain contents in category c and feature–value pairs {p = ( fi, vi)}.

At last, we select a naive approach that is context aware but not personalized as the
last baseline.

CPP stands for Context-aware Popularity-based preference Prediction, which is a
basic context-aware recommendation approach without considering personal context-
aware preference. To be specific, in this approach, given a user u and a context C, we
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predict the user-preferred content categories by the most frequent content categories
appearing under C according to all users’ historical context logs and then recommend
corresponding content categories.

5.3. Evaluation Metrics

In the experiments, we utilize a fivefold cross-validation to evaluate each test approach.
To be specific, we first randomly divide each user’s context log into five equal parts,
and then we use each part as the test data while using the other four parts as the
training data in five test rounds. Finally, we report the average performance of the five
runs. In the test process, we only take into account the context records with nonempty
usage records and use the contexts and the category of the content indicated by the
usage record as context inputs and ground truth, respectively. Moreover, to evaluate
the ranking of content categories generated by each approach, we leverage two metrics
as follows.

MAP@K stands for Mean Average Precision at top K recommendation results. To be
specific, MAP@K =

∑
AP(u)@K
|U | , where AP(u)@K denotes the average precision at top K

prediction results on the test cases of user u, and |U | indicates the number of test users.
AP(u)@K can be computed by 1

Nu

∑
i
∑K

r=1(Pi(r) × reli(r)), where Nu denotes the number
of test cases for user u, r denotes a given cutoff rank, Pi(r) denotes the precision on
the ith test case of u at a given cutoff rank r, and reli() is the binary function on the
relevance of a given rank.

MAR@K stands for Mean Average Recall at top K prediction results. To be specific,
MAR@K =

∑
AR(u)@K
|U | , where AR(u)@K denotes the average recall at top K prediction

results on the test cases of user u, and |U | indicates the number of test users. AR(u)@K
can be computed by 1

Nu

∑
i
∑K

r=1 reli(r).

5.4. Overall Results

According to the parameter estimation approaches introduced in Section 3 and
Section 4, the number of common context-aware preferences for LDA, LDAC, and NMF
training denoted as K is empirically set to be 15. The further robustness evaluation
with varied K will be shown in Section 5.5. For the LDA training, the two parameters α
and β are empirically set to be 50/K and 0.2 according to Heinrich [2009]. The param-
eters for the training LDAC model are similar to Bao et al. [2010]. For the Bayesian
Matrix Factorization training, according to Schmidt [2009], we use an isotropic noise
model and choose a decoupled prior for � and � with zero mean μ = 0, and a unit di-
agonal covariance matrix � = I. The maximum iterations of Gibbs sampling are set to
be 2,000 in our experiments. Moreover, the behavior patterns are mined by BG-Growth
algorithms introduced in Li et al. [2012]. Both our approaches and the baselines are
implemented by C++ and the experiments are conducted on a 3GHZ×4 quad-core CPU,
3G main memory PC.

Figure 8 shows the convergence curves of Gibbs sampling for our three implemen-
tations of the proposed approach by measuring their log likelihood for the training
dataset in one of the five test rounds. From the figure, we can see that the Gibbs
sampling of all implementations converges quickly. The convergence curves for other
test rounds follow a similar trend. Moreover, each iteration of Gibbs sampling costs
on average 89 milliseconds for CIAP-LDA, 125 milliseconds for CIAP-LDAC, and 423
milliseconds for CDAP, respectively. This is because the NMF training is more complex
than topic models and the number of associations between context and content category
for matrix factorization is greater than the ACP-features in both the LDA and LDAC
model.
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Fig. 8. The log likelihood of training sets in each iteration of Gibbs sampling for (a) CIAP-LDA, (b) CIAP-
LDAC, and (c) CDAP.

Fig. 9. The average (a) MAP@K and (b) MAR@K performance of each prediction approach in the fivefold
cross-validation.

It is worth noting that neither our approach nor baselines except CATF may be
able to generate recommendations for all contexts. To be specific, CIAP-LDA, CIAP-
LDAC, CIAP-i, CRSVM, and CACF can only generate preference predictions for the
contexts that contain the ACP-features appearing in training sets, CDAP and CDAP-i
can only generate preference predictions for the contexts that contain content-relevant
subcontexts, and CPP can only predict for the contexts under which there exist some
activity records in training sets. In our experiments, we observe that CIAP-LDA, CIAP-
LDAC, CIAP-i, CDAP, and CRSVM can cover 100% test contexts, while CDAP-i can
cover on average 89.45% test contexts and CPP can cover on average 96.23% test
contexts in all five round tests. In the evaluation of these approaches, we only count
their MAP@K and MAR@K for the test cases whose contexts they cover.

We first test the MAP@K performance of each test approach with respect to varying
K, and the average results in the fivefold cross-validation are shown in Figure 9(a).
From the experimental results, we can get some insightful observations as follows.
First, our approaches CDAP, CIAP-LDA, and CIAP-LDAC consistently outperform
other baselines with varying K, which may indicate that our preference mining frame-
work is more effective for mining context logs than other approaches, such as memory-
based and model-based CF methods. Second, CIAP-LDAC outperforms CIAP-LDA
slightly, which indicates the effectiveness of the contextual feature priori in LDAC for

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 4, Article 58, Publication date: December 2014.



58:18 H. Zhu et al.

Fig. 10. The MAP@K of each prediction approach when (a) K = 5, (b) K = 8 in each test round.

Fig. 11. The MAR@K of each prediction approach when (a) K = 5 and (b) K = 8 in each test round.

modeling ACP-feature bags. Third, we can see that CDAP outperforms CIAP-LDAC
slightly with varying K, which validates that the context dependency assumption
is more robust than the context conditional independency assumption. Fourth, the
popularity-based approach CPP always has the worst performance in predicting user
preferences, which indicates that the popularity-based approach is not suitable for
context-aware recommendation. Finally, we also find that two CF-based approaches,
CACF and CATF, outperform other individual-based approaches (i.e., CRSVM, CIAP-i,
and CDAP-i), which indicates that leveraging many users’ context logs other than indi-
vidual users’ context logs can improve the recommendation performance. Figures 10(a)
and 10(b) further show the MAP@K of each recommendation approach in each test
round when K = 5 and K = 8, respectively. From the results, we can observe that our
approaches consistently outperform other baselines in all five test rounds.

Figure 9(b) shows the average MAR@K of each approach in fivefold cross-validation.
From the results, we can observe that it has similar trends to the performance MAP@K.
Specifically, we find that CIAP-LDA, CIAP-LDAC, and CDAP outperform other base-
lines and CDAP outperforms CIAP-LDAC slightly in terms of MAR@K. Figures 11(a)
and 11(b) further show the MAR@5 and MAR@8 of each recommendation approach in
each test round. The results also validate the effectiveness of our approaches in terms
of MAR@K performance.

Especially, we conduct a series of paired t-tests with 0.95 confidence level in each K.
The test results show that the improvements of CIAP-LDA, CIAP-LDAC, and CDAP
on MAP and MAR compared with other baselines are statistically significant. We
also study the variances of overall MAP@K and MAR@K of all tested approaches in
the fivefold cross-validation for validating the effectiveness of experimental results.
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Table IV. The Results of the Mean Deviations of MAP@K and MAR@K of Each Tested Approach
in the Fivefold Cross-Validation

MAP@1∗ MAP@5 MAP@8 MAR@5 MAR@8
CIAP-LDA 9.73 × 10−3 5.34 × 10−3 2.96 × 10−3 1.32 × 10−2 6.35 × 10−3

CIAP-LDAC 8.32 × 10−3 4.13 × 10−3 2.90 × 10−3 1.45 × 10−2 5.97 × 10−3

CDAP 7.28 × 10−3 3.87 × 10−3 1.04 × 10−3 8.23 × 10−3 4.21 × 10−3

CIAP-i 1.52 × 10−2 9.22 × 10−3 4.15 × 10−3 4.43 × 10−2 8.72 × 10−3

CDAP-i 1.31 × 10−2 8.59 × 10−3 3.87 × 10−3 4.02 × 10−2 9.11 × 10−3

CASVM 2.84 × 10−2 1.34 × 10−2 5.44 × 10−3 5.52 × 10−2 2.24 × 10−2

CACF 9.97 × 10−3 7.01 × 10−3 3.38 × 10−3 2.38 × 10−2 7.98 × 10−3

CATF 1.27 × 10−2 8.22 × 10−3 3.61 × 10−3 1.74 × 10−2 7.35 × 10−3

CPP 4.82 × 10−2 2.94 × 10−2 5.89 × 10−3 7.38 × 10−2 4.02 × 10−3

*MAP@1 and MAR@1 have same value for each tested approach.

Fig. 12. The (a) MAP@5 and (b) MAP@10 of CIAP and CDAP with respect to varying number of common
context-aware preferences.

Table IV shows the mean deviations of these values of each tested approach in the
fivefold cross-validation with K = 1, K = 5, and K = 8. From this table, we can observe
that the variances of our approaches (i.e., CIAP-LDA, CIAP-LDAC, CDAP) and the two
CF-based approaches (i.e., CACF, CATF) are consistently smaller than other baselines.
It implies that individual users’ context logs are often very limited, which may influence
the stability of recommendation performance.

From these experimental results, we can clearly see that CDAP, CIAP-LDA, and
CIAP-LDAC outperform other baselines under different metrics and experimental set-
tings, which demonstrates the effectiveness of our framework for personalized context-
aware recommendation. Moreover, CDAP outperforms CIAP-LDA and CIAP-LDAC
slightly though its training cost is much higher.

5.5. Robustness Analysis

Since CIAP-LDA, CIAP-LDAC, and CDAP need a parameter to determine the num-
ber of common context-aware preferences (i.e., K), Figures 12(a) and 12(b) show the
MAP@5 and MAP@10 of CIAP-LDA, CIAP-LDAC, and CDAP with respect to vary-
ing settings of the number. From these figures, we can observe that both MAP@5 and
MAP@10 of CDAP are relatively not sensitive to the parameter. In contrast, the robust-
ness of CIAP-LDA and CIAP-LDAC is not good with small numbers of common context-
aware preferences but becomes stable when the setting of the number increases. It may
be because CDAP leverages associations between contexts and user content categories
for extracting common context-aware preferences and such associations have been
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Table V. Prediction Case 1 for Users #162 and #423

Context
{(Time range: PM21:00-22:00), (Profile: Silent), (Is holiday:

Yes),(Day name: Sunday), (Day period: Night), (Location: Home)}

Top 3 predicted preferences for user #162
Ground truth Game
CIAP-LDA Game (

√
) Multimedia Web

CIAP-LDAC Game (
√

) Multimedia SNS
CDAP Game (

√
) Web Multimedia

CIAP-i Multimedia Business Game (
√

)
CDAP-i Web Game (

√
) System

CASVM Multimedia Web Game (
√

)
CACF Multimedia Game (

√
) System

CATF Multimedia Game (
√

) Web
CPP Multimedia SNS Web

Top 3 predicted preferences for user #423
Ground truth Web
CIAP-LDA Web (

√
) Multimedia SNS

CIAP-LDAC Web (
√

) Multimedia Game
CDAP Web (

√
) Reference Game

CIAP-i Multimedia Game Web (
√

)
CDAP-i SNS Multimedia Web (

√
)

CASVM Multimedia Reference Web(
√

)
CACF Game Web (

√
) Multimedia

CATF Game Web (
√

) System
CPP Multimedia SNS Web (

√
)

filtered from noisy data. Thus, the quality of mined common context-aware preferences
is always relatively good with different parameters since the mining is on the basis of
pruned training data. In contrast, CIAP-LDA and CIAP-LDAC leverage ACP-features
for extracting common context-aware preferences, where ACP-features usually contain
more noisy information and thus make the mining results more sensitive to parameters.

5.6. Case Study

In addition to the studies on the overall performance of our approach, we also study
the cases in which CIAP-LDA, CIAP-LDAC, and CDAP outperform the baselines.

For example, Table V shows an example of the top three predicted preferences of
each approach for two different users given the same context {(Time range: 21:00-
22:00), (Profile: Silent), (Is holiday: Yes), (Day name: Sunday), (Day period: Night),
(Location: Home)}, which may imply the leisure time at home. Under that context, the
ground-truth-preferred content categories of user #162 and user #423 are Game and
Web, respectively. From the results, we can observe that CIAP-LDA, CIAP-LDAC, and
CDAP can predict correct content categories for user #162 and user #423 in the top
one position. In contrast, CIAP-i, CDAP-i, CASVM, CACF, and CATF predicted correct
content categories in lower positions for both users. Moreover, the popularity-based
approach CPP always predicts the same preferences for both users and thus does not
perform well.

Furthermore, Table VI shows another example of the top three predicted preferences
of each approach for user #162 and user #423. The given context is {(Time range:
PM18:00-19:00), (Profile: General), (Is holiday: No), (Day name: Monday), (Day period:
Evening), (Location: on the way)}, which is similar to the context introduced in our
motivating example (i.e., Example 1.1). In this case, the ground truth content categories
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Table VI. Prediction Case 2 for Users #162 and #423

Context
{(Time range: PM18:00-19:00), (Profile: General), (Is holiday: No),

(Day name: Monday), (Day period: Evening), (Location: On the way)}

Top 3 predicted preferences for user #162
Ground truth Web
CIAP-LDA Web (

√
) Multimedia Game

CIAP-LDAC Web (
√

) Multimedia Game
CDAP Web (

√
) SNS Multimedia

CIAP-i Game Navigation Web (
√

)
CDAP-i Game SNS Web (

√
)

CASVM Game Multimedia Web(
√

)
CACF Multimedia Web (

√
) Game

CATF Multimedia Web (
√

) SNS
CPP Game SNS Multimedia

Top 3 predicted preferences for user #423
Ground truth Multimedia
CIAP-LDA Multimedia (

√
) Game Web

CIAP-LDAC Multimedia (
√

) Game Web
CDAP Multimedia (

√
) Game SNS

CIAP-i Game Web Multimedia (
√

)
CDAP-i Web SNS Multimedia (

√
)

CASVM Web Reference Multimedia(
√

)
CACF Game Multimedia (

√
) SNS

CATF Game Web Multimedia (
√

)
CPP Web SNS Game

of user #162 and user #423 are Web and Multimedia, respectively. From the results, we
can observe the similar trend of predicting performance as the last case.

Indeed, our approaches outperform other baselines, especially the two CF-based
approaches (i.e, CACF, CATF), because our mining framework can represent per-
sonal context-aware preferences of mobile users in a more reasonable way, which
can model contexts with respect to different data dependency assumptions. Thus, the
three approaches developed based on our framework can be more effective for pref-
erence predicting by mining context logs. Moreover, the individual-based approaches
(i.e., CRSVM, CIAP-i, and CDAP-i) perform worse in preference predicting than our
approaches because individual users’ context logs are often very limited, which may
influence the stability of recommendation performance.

Finally, to further study the reason that our approaches can outperform other base-
lines, we investigate the mined personal context-aware preferences for user #162. To be
specific, in our framework, the personal preference of each user can be represented as a
distribution of these common context-aware preferences. In fact, the common context-
aware preference z∗ that a user u has the highest probability of belonging to, that is,
z∗ = arg maxz P(z|u), will have the most influential impact on the personal preference
of u. Therefore, for user #162, we manually inspect the most important common pref-
erence z∗ and study whether it contains some relationships between the given context
and ground truth content. Tables VII to IX show the different z∗ mined by CIAP-LDA,
CIAP-LDAC, and CDAP for user #162, respectively. Note that the common preferences
mined by both CIAP-LDA and CIAP-LDAC are constituted by ACP-features, while the
common preferences mined by CDAP are constituted by behavior patterns (limited by
space, we only show the top 10 ACP-features and behavior patterns in each common
preference). From these tables, we can observe that there are many ACP-features and
behavior patterns (i.e., labeled in bold) that have explicit relationships with the given
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Table VII. The Common Preference z∗ Mined
by CIAP-LDA for User #162

1 (Is holiday?: Yes) → Game
2 (Is holiday?: Yes) → Multimedia
3 (Day period: Evening) → Game
4 (Location: Home)→ Web
5 (Location: Home) → Game
6 (Profile: Silent) → Game
7 (Profile: General) → Web
8 (Day period: Night) → Game
9 (Location: Home) → Multimedia
10 (Day period: Evening) → Web

Table VIII. The Common Preference z∗ Mined
by CIAP-LDAC for User #162

1 (Is holiday?: Yes) → Game
2 (Location: Home) → Game
3 (Is holiday?: No) → Web
4 (Location: Home) → SNS
5 (Location: Home)→ Web
6 (Profile: Silent) → Game
7 (Day period: Night) → Game
8 (Profile: General) → Web
9 (Day name: Sunday) → Web
10 (Location: On the way) → Web

Table IX. The Common Preference z∗ Mined by CDAP for User #162

1 (Is holiday?: Yes) (Location: Home) → Game
2 (Location: Home) (Profile: General) → Web
3 (Is holiday?: Yes) (Location: Home)→ Multimedia
4 (Profile: Silent) (Time period: Night) → Game
5 (Location: Home) (Profile: Silent) → Game
6 (Location: Home) (Day Period: Night) → Game
7 (Is holiday?: No) (Day Period: Evening) → Web
8 (Profile: General) (Location: home)→ Game
9 (Day name: Sunday) (Profile: General) → Web
10 (Location: On the way) (Day Period: Evening) → Web

context and ground truth content category. Therefore, our approaches can predict the
corresponding content category with high ranking in the results. In conclusion, these
case studies clearly validate the effectiveness of our preference mining framework and
approaches.

6. RELATED WORK

Many previous works about personalized context-aware recommendation for mobile
users have been reported. For example, Tung and Soo [2004] have proposed a proto-
type design for building a personalized recommender system to recommend travel-
related information according to users’ contextual information. Park et al. [2007]
proposed a location-based personalized recommender system that can reflect users’
personal preferences by modeling user contextual information through Bayesian net-
works. Bader et al. [2011] proposed a novel context-aware approach to recommending
points-of-interest (POIs) for users in an automotive scenario. Specifically, they studied
the scenario of recommending gas stations for car drivers by leveraging Multi-Criteria
Decision Making (MCDM)-based methods to modeling context and different routes.
However, most of these works only leverage individual users’ historical context data
for modeling personal context-aware preferences and do not take into account the
problem of insufficient personal training data.

Actually, the problem of insufficient personal training data is common in prac-
tice, and many researchers have studied how to address this problem. For example,
Woerndl et al. [2007] proposed a hybrid framework named “play.tools” for recommend-
ing mobile applications by leveraging users’ context information. This recommendation
framework is based on what other users have installed in similar contexts and will be
liked by a given user. Kim et al. [2010] investigated several Collaborative Filtering
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(CF)-based approaches for recommendation and developed a memory-based CF ap-
proach to providing context-aware advertisement recommendation. Specially, the pro-
posed approach can leverage a classification rule of decision tree to understand users’
personal preference. Zheng et al. [2010] have studied a model-based CF approach to
recommending user locations and activities according to users’ GPS trajectories. The
approach can model user, location, and activity as a three-dimensional matrix, namely,
tensor, and perform tensor factorization with several constraints to capture users’
preferences. Karatzoglou et al. [2010] proposed a model-based CF approach for making
recommendation with respect to rich contextual information, namely, multiverse rec-
ommendation. Specifically, they modeled the rich contextual information with item by
N-dimensional tensor and proposed a novel algorithm to make tensor factorization. In
a word, most of these approaches are based on rating logs of mobile users and the ob-
jective is to predict accurate ratings for the unobserved items under different contexts.
However, we usually cannot obtain such rating data in user mobile devices. In contrast,
it is relatively easier to collect context logs, which contain the users’ historical context
information and their usage records, which can be used for mining context-aware user
preferences.

Recently, some researchers studied how to mine event logs for personalized context-
aware recommendation. For example, Lee et al. [2010] investigated converting the
event logs into implicit ratings and tested various memory-based CF approaches to
make personalized context-aware recommendation. Kahng et al. [2011] proposed a
novel approach for ranking items in event logs for personalized context-aware recom-
mendation. Compared with context logs, event logs only record the context records with
nonempty usage records and thus lose some discriminative information to capture the
relevance between contexts and content categories [Cao et al. 2010]. But these event-
log-based approaches can still be used for mining context logs toward personalized
context-aware recommendation. Recently, Yu et al. [2012] proposed a novel person-
alized context-aware mobile recommender system by analyzing mobile users’ context
logs. The proposed approach is based on the Latent Dirichlet Allocation topic model
and scalable for multiple contextual features. However, this approach only focuses on
the situation of context-independent assumption, which is similar to our CIAP-LDA
approach. Different from these works, we propose a novel framework that can explic-
itly model common context-aware preferences and represent individual users’ personal
context-aware preferences by distributions of common context-aware preferences with
different context dependency assumptions. Moreover, one proposed approach in our
framework (CDAP) can utilize the context records with only empty usage records and
context-dependent assumption.

7. CONCLUDING REMARKS

In this article, we proposed to exploit user context logs for mining the personal context-
aware preferences of mobile users. First, we identified common context-aware prefer-
ences from the context logs of many users. Then, the personal context-aware preference
of an individual user can be represented as a distribution of common context-aware
preferences. Moreover, we designed two methods for mining common context-aware
preferences based on two different assumptions about context data dependency. Fi-
nally, the experimental results from a real-world dataset clearly showed that the
proposed approach could achieve better performances than benchmark methods for
mining personal context-aware preferences, and the one implementation based on the
independent assumption of context data slightly outperforms another one but has
higher computational cost.

As mentioned earlier, the proposed user context-aware preference mining approaches
are based on the analysis of many users’ daily context logs, which will be very huge
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in quantity. Therefore, how to efficiently store and exploit our mining approaches on
such “big data” are very challenging problems to be further studied. Moreover, how to
capture users’ preference drifts and protect their privacy are also valuable research
aspects in our future plan. Last but not least, in the future, we will try to integrate our
approaches with various real-world services, such as mobile context-aware advertising,
for enhancing user experience.

A. APPENDIX: GIBBS SAMPLING DERIVATION FOR CIAP-LDAC APPROACH

In this article, we leverage the Gibbs sampling-based approach introduced in Bao
et al. [2010] to train the LDAC model in our CIAP-LDAC approach. To be specific,
this method begins with a random assignment of common context-aware preferences
to ACP-features for initializing the state of Markov chain. In each of the following iter-
ations, the method will re-estimate the conditional probability of assigning a common
context-aware preference to each ACP-feature, which is conditional on the assignment
of all other ACP-features. Then a new assignment of common context-aware prefer-
ences to ACP-features according to those latest calculated conditional probabilities
will be scored as a new state of Markov chain. Finally, after rounds of iterations, the
assignment will converge, which means each ACP-feature is assigned a stable and final
common context-aware preference.

According to the introduction in Section 3.1.2 and the graphical representation in
Figure 4(b), we have

P(d, θ, zd, πd,�|α, β, γ ) = P(θd|α)P(�|β)P(πd|γ )

×
(

Nd∏
i=1

P(ci, vd,i|zd,i, fd,i,�)P( fd,i|πd)P(zd,i|θd)

)
,

where � = {φk, f }, zd = {zd,i}, and Nd denotes the number of ACP-features in the
ACP-feature bag d. If we denote the token (d, i) as m, the Gibbs sampler of common
context-aware preference zm in each sampling round can be computed as follows:

P(zm = k|Z¬m, D) ∝ P(zm = k, Z¬m, D)
∝ P(ci, vm|zm = k, Z¬m, F, V¬m)

× P(zm = k|Z¬m),

where ¬m means removing the contextual feature–value pair ( fm : vm) from corpus D,
and Z is the labels of the common context-aware preferences in D. Furthermore, we
have the following estimation:

P(ci, vm|zm = k, Z¬m, F, V¬m) = n¬m,k, fm,ci ,vm + βci ,vm∑
v n¬m,k, fm,ci ,v +∑v∈V fm

βv

P(zm = k|Z¬m) = nd,¬m,k + αk∑K
k′=1 nd,¬m,k′ +∑K

k′=1 αk′
,

where n¬m,k, f,c,v indicates the frequency that the ACP-feature (c, p) (p = ( f : v)) is
labeled with the kth common context-aware preference in all ACP-feature bags af-
ter removing the mth ACP-feature, and nd,¬m,k indicates the number of ACP-features
labeled with the kth common context-aware preferences in d except for the mth one.

After the training process, we can obtain the probabilities P(z|u) by Equation (1) and
P(c, p|z) as follows:

P(c, p|zk) = P(c, vp| fp, z)P( fp), (6)
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where p = ( fp : vp) and

P(c, vp| fp, z) = nz,c, fp,vp + βc,vp∑
v nz,c, fp,v +∑v∈V fm

βv

,

P( fp) =
∑

z
∑

v nk,c, fp,v + γ fm∑
f
∑

z
∑

v nz,c, fp,v +∑ f γ f
,

where nz,c, fp,vp is the frequency of ACP-feature (c, p) that has been assigned to common
context-aware preference z, and V fm is the number of values for contextual feature fm.
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