
Front. Comput. Sci., 2014, 8(2): 316–329

DOI 10.1007/s11704-014-3258-8

Learning to detect subway arrivals for passengers on a train

Kuifei YU 1,3, Hengshu ZHU2, Huanhuan CAO3, Baoxian ZHANG1, Enhong CHEN2,
Jilei TIAN3, Jinghai RAO3

1 Research Center of Ubiqutious Sensor Networks, College of Engineering & Information Technology,

University of Chinese Academy of Sciences, Beijing 100049, China;

2 Laboratory of Semantic Computing and Data Mining, Department of Computer Science and Technology,

University of Science and Technology of China, Hefei 230027, China;

3 Nokia Research Center, Nokia (China) Investment Corp. Ltd., Beijing 100176, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Abstract The use of traditional positioning technologies,

such as GPS and wireless local positioning, rely on un-

derlying infrastructure. However, in a subway environment,

such positioning systems are not available for the position-

ing tasks, such as the detection of the train arrivals for the

passengers in the train. An alternative approach is to exploit

the contextual information available in the mobile devices of

subway riders to detect train arrivals. To this end, we pro-

pose to exploit multiple contextual features extracted from

the mobile devices of subway riders to precisely detecting

train arrivals. Following this line, we first investigate poten-

tial contextual features which may be effective to detect train

arrivals according to the observations from 3D accelerome-

ters and GSM radio. Furthermore, we propose to explore the

maximum entropy (MaxEnt) model for training a train ar-

rival detector by learning the correlation between contextual

features and train arrivals. Finally, we perform extensive ex-

periments on several real-world data sets collected from two

major subway lines in the Beijing subway system. Experi-

mental results validate both the effectiveness and efficiency

of the proposed approach.
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1 Introduction

Advances in smart mobile technologies have enabled un-

precedented capabilities for mobile context sensing [2]. In-

deed, to enable the next generation of intelligent and person-

alized context-aware services [3–7], researchers have done

much work on context recognition, which refers to recogniz-

ing the semantic meaning of a context according to multiple

contextual features extracted from the outputs of mobile sen-

sors, such as 3D accelerometers and Bluetooth radios. For

example, there exists previous works on transportation mode

recognition [8–10], mobile environment recognition [11,12],

and user activity recognition [13–16].

In this paper, we study the problem of detecting subway ar-

rivals by exploiting the contextual information collected from

the sensors in mobile devices. This problem is an important

context recognition problem that has a wide range of potential

applications. In the following, we provide a case to intuitively

illustrate the application of detecting train arrivals to improve

user experience of subway riders.

Example Subway arrival reminder service

Jack enjoys reading, catnapping, or building castles in the

air on the subway train so much that he involuntarily ignores

recurring subway broadcasts, and he misses his destination

station from time to time. However, with a subway reminder

This is a substantially extended and revised version of our earlier work [1], which appears in the Proceedings of the 14th International Conference on
Intelligent Data Engineering and Automated Learning (IDEAL’13).



Kuifei YU et al. Learning to detect subway arrivals for passengers on a train 317

application on his mobile phone enabled by subway arrival

detection technology, Jack can be reminded of the arrival at

his destination station.

However, it is a non trivial task to detect subway arrivals,

because most traditional accurate positioning technologies,

such as GPS positioning, cell tower triangulation, and WiFi

local positioning, are not available in a subway environ-

ment. First, mobile devices cannot receive GPS signals in the

subway system. Second, cell tower triangulation positioning

[17–19] cannot directly work for detecting subway arrivals

either, because the cell towers serving for subway riders are

usually linearly deployed along the subway lines. This is dif-

ferent from the deployment of cell towers on the ground. In

fact, even on the ground, the errors in cell tower triangulation

positioning systems can be as high as tens of meters. Given

the sparse deployment of 4G cell towers in many countries

due to the lack of high frequency bands [20], the accuracy of

cell tower triangulation positioning will be hard to be improve

in the near future. Third, while it seems that WiFi local posi-

tioning [21–23] is a good alternative approach, there are still

many subway stations where there are no WiFi access points

due to the high cost of deployment and maintenance. People

may argue that the subway operation companies know the

accurate position of each train with Automatic Vehicle Loca-

tion systems, however, up to now this real-time information is

still hard to obtain by third party applications and services in

many countries due to a variety of reasons, including security

concerns and IPR issues [24]. Even if the real-time location

of trains is available to passengers in the train, the application

still needs to identify which train the user is taking to predict

the arrivals. It is non trivial to specify which train a user is

taking without the deployment of infrastructures. Therefore,

in the light of the above discussions, a precise approach for

detecting subway train arrivals is needed for effective devel-

opment of reminder services in subway systems.

To this end, in this paper, we propose to exploit multiple

contextual features extracted from the mobile devices of sub-

way riders to precisely detect train arrivals. Specifically, we

first study several contextual features that may be effective to

detect train arrivals according to the observations from 3D ac-

celerometer and GSM radio. The contextual features include

acceleration variances, cell tower switching, and received sig-

nal strength indicator (RSSI) value. Furthermore, we propose

to exploit the maximum entropy (MaxEnt) model for training

a train arrival detector by learning the correlation between the

identified contextual features and train arrivals. The contribu-

tions of this paper are highlighted as follows:

• To the best of our knowledge, this is the first to precisely

detect subway arrivals using the output of multiple mo-

bile sensors in mobile devices. The proposed approach

can enable a wide range of potential applications and

services, such as subway arrival reminder services, and

thus has great value in both academia and in industry.

• To study the proposed problem, we develop a subway

contextual data collection application based on the An-

droid platform and collect several real-world data sets

from two major subway lines in the Beijing subway sys-

tem. We will share both the data collection system and

the collected data with the academic community.

• We carry out extensive experiments on real-world data

sets to evaluate the proposed subway arrival detection

approach with a baseline extended from a widely used

approach in activity recognition. Our experimental re-

sults demonstrate both the effectiveness and efficiency

of our approach.

In Section 2, we give a detailed description of the outputs

of 3D accelerometers and GSM sensors, and formally de-

fine the subway arrival detection problem. In Section 3 we

present the technical details of extracting contextual features

presented by 3D accelerometers and GSM data, and in Sec-

tion 4 we present the process of learning to detect subway

arrivals from this data. In Section 5, we report experimen-

tal results. In Section 6, we provide a brief review of related

work. Finally, we conclude this paper in Section 7 and intro-

duce future work.

2 Overview

As mentioned above, most traditional positioning technolo-

gies cannot work for subway arrival detection. Therefore, we

propose to leverage the outputs of multiple mobile sensors,

i.e., 3D accelerometers and GSM sensors, for detecting sub-

way arrivals. In this section, we first present the details of

the outputs of 3D accelerometers and GSM sensors, and then

give the formal problem statement of subway arrival detec-

tion.

2.1 3D accelerometers

3D accelerometers, or tri-axis accelerometers are widely

equipped by smart phones, digital audio players, and personal

digital assistants. This kind of sensor can be used for mea-

suring the acceleration in three different axis of the mobile

device and are often used to switch the screen between land-
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scape and portrait modes. In recent years, some researchers

have started to leverage mobile 3D accelerometers for hu-

man activity recognition [13,15,25]. Intuitively, when a sub-

way train is slowing down as it arrives at a station, the 3D

accelerometer of a subway rider’s mobile device will capture

the deceleration of the train compared with the comparatively

constant motion in subway tunnels. Figure 1 illustrates a real

example of 3D accelerometer output as a subway rider passes

three stations. From Fig. 1 we can see that there seem to ex-

ist some patterns when the train is arriving at a station. This

motivates us to study how to leverage the outputs of 3D ac-

celerometers for detecting subway arrivals.

Fig. 1 A real example of 3D accelerometer readings as a subway rider
passes three stations

2.2 GSM sensors

GSM sensors are standard equipment in a mobile phone and

play an important role in its basic functions such as seeking

a cell-site with good signal quality. It can output the signal

strength and the ID of the current serving cell-site. Although

this information cannot be directly used for detecting subway

arrivals due to limited accuracy, it is still useful for extracting

some effective features to improve subway arrival detection.

To be specific, Fig. 2 shows a real example of the shift of

serving cell-sites as a subway rider passes three stations. For

ease of the illustration, each cell-site is assigned a unique in-

dex from 1 to 21. From Fig. 2 we can observe that a station

Fig. 2 A real example of the shift of serving cell-sites as a subway rider
passes three stations

is usually covered by a single cell-site. Thus, a shift of serv-

ing cell-site should indicate the train is between two stations

and will arrive at next station within a particular time win-

dow. It is possible to extract some effective features based on

the shift of serving cell-sites for subway arrival detection.

The signal strength of the current serving cell-site may also

be useful for subway arrival detection since this value is usu-

ally relatively high and stable when the subway train in a

station, and drops as the subway train moves into tunnels.

For example, Fig. 3 shows the signal strength as a passenger

passes three stations; the signal strength is measured by RSSI

[26]: a widely used metric and defined in arbitrary strength

unit (ASU) ranging from 0 (weakest) to 31 (strongest) in the

Android system. From Fig. 3, we observe that there exists

some patterns in RSSI when the train arrives at a station and

these patterns may be able to be used as effective features for

indicating subway arrivals.

Fig. 3 A real example of the change of RSSI as a subway rider passes three
stations

2.3 Problem statement

To facilitate the description of the following sections, we first

define the problem of subway arrival detection as follows:

Definition Station arrival detection

Given a detection interval Δt, the objective of subway ar-

rival detection problem is to map the latest contextual fea-

ture set Ct = {〈 f k : vk〉} into two semantic labels l =

{arrival, non-arrival} every Δt time points, where 〈 f k : vk〉
denotes the kth contextual feature and the corresponding

value which is calculated at time point t.

It is worth noting that the values of the contextual features

used for detecting subway arrivals are not real time values.

They are only the latest values calculated at time point t and

may be slightly different from the current values. If the calcu-

lation of these features or the detection model is not efficient

enough, we may not be able to capture the event of a sub-

way arrival in time. Therefore, in practice we should select
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contextual features that have low calculation complexities to

reduce the delay and select a fast detection model. Moreover,

we should select some contextual features which are not real

time sensitive, such as the deviation of RSSI in the past few

seconds when leveraging RSSI for detecting subway arrivals.

According to the definition, the subway arrival detection

problem can be converted to a supervised classification prob-

lem. We divide this problem further into two parts: how to

extract effective contextual features from the raw outputs of

sensors? And, how to train an effective station arrival de-

tection model through machine learning technologies? The

solutions for the two sub-problems are presented in the sub-

sequent sections.

3 Contextual feature analysis

In this section, we study several contextual features extracted

from the outputs of 3D accelerometers and GSM sensors, and

provide preliminary analysis of their effectiveness for detect-

ing subway arrivals. For analyzing each contextual feature,

we studied collected data over ten subway stations but only

illustrate three of them for simplicity in this section.

3.1 3D accelerometer based features

As discussed in the previous section, the outputs of 3D ac-

celerometers may be useful for subway arrival detection be-

cause their acceleration will change dramatically during the

short time window when a subway train arrives at a station.

Thus, in this section we investigate several features based on

the outputs of 3D accelerometers that are potentially useful

for detecting subway arrivals.

3.1.1 The variance of single dimension accelerations

The variance of a single dimension acceleration is calculated

from the K accelerations in this dimension sampled over the

past K time points. According to a previous study on respon-

siveness [27,28], one second is an important limit of response

time, and this is the limit for uninterrupted user thought flow.

Since the sample rate of 3D accelerometers is approximately

one every 150 ms we can get six measurements per second

(in 900 ms): we set K = 6.

Figure 4 shows the acceleration readings from a smart

phone on the X-axis vX , Y-axis vY , and Z-axis vZ as the sub-

way rider passes three stations where K = 6. From Fig. 4 we

can observe that variance(vX) and variance(vY) have obvious

peaks when the train arrives at stations. By contrast, the peaks

of variance(vZ) do not seem to be relevant to subway arrivals.

This phenomenon results from the way a subway rider holds

the smart phone. If the rider changes the orientation in which

they hold the phone, variance(vZ) may become relevant to

subway arrivals while variance(vX) or variance(vY) may lose

the indicating ability. This is worth noting that because the ac-

celeration variance is real number, we divide the values of this

feature into several predefined ranges in order to ensure gen-

erality. To be specific, we map the variance of one dimension

accelerations into the following ranges: [0, 0.05), [0.05, 0.1),

[0.15, 0.2), . . . , [0.95, 1.0), and [1.0,∞).

3.1.2 The mean variance of 3D accelerations

Compared to the variance of single dimension accelerations,

the mean variance of three dimension accelerations may be a

better contextual feature to indicate subway arrivals since it

is not sensitive to the orientation in which the subway rider

holds the phone. This is because no matter which axis cap-

tures the dramatic variance of acceleration of the train slow-

ing down, the information can be reflected by the mean vari-

ance of three dimension accelerations. For example, Figure 5

shows the combined mean of variance(vX), variance(vY), and

variance(vZ) for a smart phone passing three stations. From

Fig. 5 we observe that this feature can also indicate subway

arrivals well. Moreover, for ensuring the generality of the fea-

ture, we map the mean variance of three dimension acceler-

ations into the following ranges: [0, 0.01), [0.01, 0.02), . . . ,

[0.29, 0.30), and [0.30,∞).

Fig. 4 The variance of a smart phone’s accelerations on (a) X-axis (b) Y-axis and (c) Z-axis when the subway rider passed by three stations
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Fig. 5 The combined mean of variance (vX), variance (vY ), and
variance (vZ ) for a smart phone as a subway rider passes three stations

3.2 GSM sensor based features

As discussed in the previous section, the output of GSM sen-

sors, i.e., the serving cell-site and signal strength, may be able

to indicate subway arrivals. In this section, we investigate the

effectiveness of several GSM sensor based features for sub-

way arrival detection.

3.2.1 The cell tower switching

As mentioned above, we observe that a shift of serving cell-

site usually happens when a train is moving from one station

to another. Intuitively, the subway will arrive at the next sta-

tion after a certain time period once the cell-site has shifted.

Therefore, we define serving cell-site shift time (SCST) to

capture the relationship between subway arrivals and the shift

between serving cell-sites, which can be calculated by

SCST = t − tshift, (1)

where t denotes the time when a subway arrival detection

model makes a detection and tshift denotes the time point of

the most recent shift between serving cell-sites. Moreover, to

guarantee the generality of this feature, we map the value of

SCST into five classes according to the observations of the

real-world data set: Class1 (0 s < SCST < 20 s), Class2

(20 s < SCST < 40 s), Class3 (40 s < SCST < 60 s), Class4

(60 s < SCST < 80 s), Class5 (80 s < SCST < 100 s),

and Class6 (SCST > 100 s). Figure 6 shows the changes of

SCST for a smart phone passing three subway stations. From

Fig. 6 we observe that when the train arrives at a station, the

corresponding SCST is always mapped into Class2, which

validates the effectiveness of SCST.

3.2.2 The signal strength of the serving cell-site

Intuitively, when a train remains in a station, the correspond-

ing signal strength is stable and relatively high. Therefore, we

can directly leverage the RSSI value of signal strength as a

Fig. 6 The change of SCST for a smart phone passing three subway sta-
tions

contextual feature for detecting subway arrivals. To guaran-

tee the robustness of this feature, we map the RSSI value

into four levels according to the standards of the Android

system—Very Strong: 3 (RSSI ∈ [24, 31]), Strong: 2 (RSSI ∈
[16, 23]), Weak: 1 (RSSI ∈ [8, 15]), and Very Weak: 0

(RSSI ∈ [0, 7]).

However, leveraging RSSI values alone will introduce

much noise because the signal of a serving cell-site may also

be strong at some time when the train is in a tunnel. There-

fore, to solve this problem, we introduce a second feature

called mean absolute deviation of RSSI value (MADRV) as

follows:

MADRV =

N∑

i=1

(|Vi − V |)

N
, (2)

where Vi indicates the ith sampled RSSI value before de-

tection time t and V indicates the average value of the total

N sampled RSSI values. Using MADRV values, we can

measure the stability of the signal strength during the past

time window. The larger MADRV, the greater the likelihood

that the train will arrive at the next station soon. Figure 7

shows the change of MADRV for a smart phone when the

train passes three subway stations. The received RSSI values

over the past five seconds before detection time are consid-

ered. From Fig. 7 we can observe that when the train arrives

Fig. 7 The change of MADRV for a smart phone as the train passes three
subway stations
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at a station, the MADRV is always equal to 4, which validates

the effectiveness of the feature.

The features based on 3D accelerometers and GSM are de-

signed to be complementary to each other, and work together

for detecting arrival events. For example, the mean variance

of 3D accelerations is complementary to the variance of sin-

gle dimension accelerations, and the RSSI feature and the

time of cell ID shifts reflect different aspects of contexts on a

subway train.

4 Learning to detect subway arrivals

After contextual feature extraction, the remaining work is

to build a train detection model M that can integrate mul-

tiple effective contextual features for detecting subway ar-

rivals. Many supervised classification models can be applied

to solving this problem. In this paper, we propose to lever-

age the MaxEnt classifier for training a detection model for

three main reasons [29,30]: 1) MaxEnt is robust and has been

successfully applied to a wide range of classification applica-

tions, such as POS tagging in natural language processing,

and it is proven to perform better than other alternative mod-

els in classifying imbalanced and sparse data; 2) compared

with other classification approaches, MaxEnt is more flexi-

ble at incorporating different types of features, such as the

various features extracted from 3D accelerometers and GSM

sensors; 3) MaxEnt is very efficient in the processes of both

training and testing, and this is particularly suitable for de-

ployment on mobile devices.

4.1 MaxEnt based detection model

In our problem, given a detection time window Δt and the

current time point t, MaxEnt defines the conditional proba-

bility of a subway arrival label l (i.e., whether the subway

train arrives at a stop or not at t) as

P(l|Ct) =
1

Z(t)
exp(
∑

i

λi fi(Ct, l)), (3)

where Ct denotes the contextual feature set extracted at the

time t, fi(Ct, l) denotes a feature function on Ct and l, λi indi-

cates the weight of fi(Ct, l), and Z(t) indicates a normalization

factor:

Z(t) =
∑

l

exp(
∑

i

λi fi(Ct, l)). (4)

The two most important problems of applying the MaxEnt

model are the selection of feature functions and the learning

of parameters Λ. We select the feature functions for subway

arrival detection as follows. First, for each feature we dis-

cussed in Section 3, we count all of its values that appear in

the training data. Then, given a feature f k and the set of its all

appearing values Vk, we generate |Vk | × L feature functions

such that

f(vk ,l′:vk∈Vk ,l′∈L)(Ct, l) =

⎧⎪⎪⎨⎪⎪⎩
1, ( f k : vk) ∈ Ct and l = l′,
0, else,

where vk denotes an appearing value of the feature f k and L

indicates the predefined label set.

Given a group of feature functions and a labeled training

data set D = {〈Ct , l〉}, the objective of training a MaxEnt

model is to find a set of parameters Λ = {λi} that maximize

the conditional log-likelihood:

L(Λ|D) = log
∏

〈l,Ct〉∈D
PΛ(l|Ct). (5)

We can leverage many machine learning algorithms to train

MaxEnt models, such as improved iterative scaling (IIS) [31]

and limited-memory BFGS (L-BFGS) [32]. In this paper, fol-

lowing the comparison results of algorithms for MaxEnt pa-

rameter estimation in [32], we leverage the most efficient al-

gorithm L-BFGS for model training. Once the parameters Λ

have been learned using a training data set, we infer the label

l∗ according to a contextual feature set Ct′ by

l∗ = arg max
l

P(l|Ct′ ,Λ). (6)

4.2 Imbalanced classification problem

When we take subway arrival detection as a supervised clas-

sification problem, a critical challenge is that training sam-

ples with the label arrival are extremely limited compared

with others. To be specific, in our data sets the average ra-

tio of label arrival to non-arrival is only 0.006 3. If we use

such imbalanced data to train a detection model, the classi-

fication accuracy of the subway arrival would be very poor.

This problem is known as the imbalanced classification prob-

lem and has been well-studied by many researchers [33–35].

Although MaxEnt is a good model at dealing with imbal-

anced training data, it still suffers the extreme imbalance of

our data set. To solve this problem, we propose to lever-

age two widely used approaches to imbalanced classification:

data under-sampling and data over-sampling [33,35,36]. Data

under-sampling aims to reduce the number of training sam-

ples with the label non-arrival (negative samples), and data

over-sampling aims to duplicate the training samples with the

label arrival (positive samples). To the best of our knowl-

edge, how to select the best value of drop rate or duplicate

rate is still an open question. Therefore, in this paper we do
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not give any principles but compare various settings to eval-

uate the detection accuracy in experiments.

5 Experiments

In this section, we evaluate our approach through extensive

experiments on several real-world data sets collected from

two major subway lines in Beijing.

5.1 Data collection and preprocessing

To study the problem of detecting subway train arrivals

through mobile devices, we developed a subway context data

collection application on Android device for collecting the

context data that are potentially useful for detecting sub-

way arrivals, including the outputs of 3D accelerometers and

GSM sensors1) . In order to collect the 3D accelerometer

data and GSM data we designed three SQLite tables. Man-

ually observed data is recorded in subway_data_ls, 3D ac-

celerometer data in subway_data_acc, and GSM data in sub-

way_data_cid. The main fields of these tables and examples

are listed in Tables 1–3.

Table 1 The main fields of subway_data_ls and examples

Line_name Station_name Operation Collect_time

Line#10 Xitucheng LEAVE 1326675655759

Line#5 Ciqikou STOP 1326676026056

Line#10 Zhichunlu LEAVE 1328060958451

Table 2 The main fields of subway_data_acc and examples

Acc_x Acc_y Acc_z Collect_time

–0.632 069 2.489 97 9.327 81 1328060735389

0.536 301 2.777 27 9.251 19 1328060789656

1.283 29 3.122 04 9.078 81 1328060808957

Table 3 The main fields of subway_data_cid and examples

CellID Signal_strength Collect_time

19725 26 1328061658370

19739 23 1328061836604

19739 21 1328061857360

The application is developed for Google Android 2.3.

The sample rate of each sensor is set according to the

APIs provided by the Android system [37]: SensorMan-

ager.SENSOR_DELAY_NORMAL corresponding to approx-

imately six readings per second. The sample rates of both the

current serving cell-site and RSSI from GSM sensors are set

to 100 ms. Moreover, the application has a user friendly in-

terface (as illustrated in Fig. 8) for subway riders to manually

record the time of train arrival or departure: this data is used

as the ground truth in our experiments.

Fig. 8 The user interface of the developed subway context data collection
application

To prepare the experimental data, we installed the subway

context data collection application on an HTC Z710e smart

phone and collected many context data from two major sub-

way lines in Beijing. Five data sets were collected from line

10 and one from line 5 [38]. Figure 9 shows a map of subway

lines in Beijing [38]. The details of the collected data sets are

listed in Table 4.

Fig. 9 The map of Beijing subway lines, where line 5 and line 10 are se-
lected for data collection

Table 4 The details of collected subway context data

Number of 3D Number of Number of

Data set acc. records GSM records subway arrivals

Line 10–1 13 153 15 892 18

Line 10–2 6 460 8 752 10

Line 10–3 13 097 16 302 18

Line 10–4 13 516 16 439 18

Line 10–5 7 711 9 984 11

Line 5 9 889 11 594 14

To extract training and test samples from the collected con-

1) This data set will be made publicly available on May 1st, 2014 at http://home.ustc.edu.cn/z̃hs/dataset.htm.
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text data, we first determine the detection interval Δt as the

interval of 3D accelerometer outputs. Then, for each time t

when a 3D accelerometer output is recorded, we build a sam-

ple by extracting the contextual features mentioned in above

section. For the variance of 3D accelerations, we consider the

most recent six 3D accelerometer outputs (around one sec-

ond). For GSM based features, we use the most recent sam-

pled serving cell-site and RSSI as the current results at t and

consider the most recent 30 samples (around five seconds)

when calculating the MADRV. Finally, we assign a sample

with time stamp t and arrival label arrival if a real arrival

happened at t. Otherwise, the sample will be assigned the

label non-arrival. Considering the delay of confirming sub-

way arrivals when collecting subway context data, if the in-

terval between t and a marked subway arrival time is less than

0.5 s, we will regard that a subway arrival happened at t.

5.2 Benchmark method and evaluation metrics

To the best of our knowledge, there is no existing method of

subway arrival detection that can be directly used as a bench-

mark method to evaluate our approach. Therefore, in this pa-

per we extend a widely used approach in transportation mode

recognition as the baseline [8,9]. Specifically, we calculate

the mean of variance(vX), variance(vY), and variance(vZ)

for every six 3D accelerometer outputs. If the mean value

is larger than a predefined threshold φ, we label this detec-

tion time as arrival, where φ is set to be the minimum mean

variance of 3D accelerations for all positive samples in the

training data.

In order to study the contribution of 3D accelerometer and

GSM based features separately, we also evaluate two Max-

Ent models with only one kind of feature, namely, ME-3D

(MaxEnt with 3D accelerometers based features) and ME-G

(MaxEnt with GSM sensor based features). We also explore

a combined MaxEnt model that combines all the contextual

features discussed here (denoted as ME-3D-G). To avoid over

fitting in the training process of the MaxEnt model, we use

the Gaussian prior for parameter Λ similar to [39]. All the

above approaches are implemented in C++ and the experi-

ments are conducted on a PC with a 3GHz×4 quad-core CPU,

with 3G RAM.

To evaluate the performance of subway arrival detection,

we use Recall, Precision, and Fscore with respect to the

arrival label for measuring the outputs of each test approach.

However, although this traditional method reflects the abil-

ity of detection models to capture the relevance of arrival la-

bel to corresponding features, they do not directly reflect the

performance of subway arrival detection from a user experi-

ence perspective. In practice, a reasonable time delay, say two

or three seconds, in subway arrival detection will not impact

user experience too much. Therefore, we also propose some

user experience (UX ) based metrics with more tolerance for

the detections as follows.

RecallUX =
#Hit_Session
#Arr_Session

, (7)

PrecisionUX =
#Hit_Session

#Hit_Session + #Error
, (8)

FUX = 2 × RecallUX × PrecisionUX

RecallUX + PrecisionUX
, (9)

where Arr_Session denotes a time window which contains

the ±N seconds of a sample labeled arrival as the ground

truth, Hit_Session denotes a Arr_Session that contains at

least one sample labeled arrival by the detection model, and

Error denotes a sample that is labeled arrival by the detec-

tion model but does not fall into any Arr_Session. Compared

to traditional Recall, Precision and Fscore, these less strict

metrics can be used for evaluating the performance of sub-

way arrival detection with respect to user experience.

Here we set N to 5 based on our riding experience on

subways. We notice that the subway broadcasting service re-

minds subway passengers to prepare for train arrival about

5 seconds before arrival, and passengers in the train usually

take several seconds to get off clearly after train arrives. We

select ±5 seconds based on these preliminary observations on

the subway.

5.3 Strategy for reducing data imbalance

As mentioned previously, to solve the problem of imbal-

anced classification, we should select a proper drop rate for

under-sampling training and a proper duplicate rate for over-

sampling training. To this end, we first study the impact of

different drop rates and duplicate rates on subway arrival de-

tection performance. In our experiments, a five-fold cross val-

idation is conducted. We first randomly divide the samples

from the all six data sets into five equal parts, and then use

each part as test data while using the other four parts as train-

ing data in five test rounds. Finally, we report the average

performance of each approach in the five rounds of tests.

Figure 10 shows the ME-3D-G detection performance of

our approach, with respect to different drop rates in the under-

sampling training, where the training samples with the la-

bel non-arrival are randomly dropped under each drop rate.

From Fig. 10 we can observe that both Precision (Fig. 10(a))
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and PrecisionUX (Fig. 10(b)) first fall slightly as drop rate in-

crease and then fall sharply over a certain drop rate, whereas

both Recall and RecallUX roughly increase with an increase

of drop rate. Moreover, both Fscore and FUX first increase and

then drop with the increase of drop rate.

Fig. 10 The detection performance of our approach with respect to differ-
ent drop rates. (a) Classic; (b) UX

Figure 11 shows the detection performance of our ap-

proach with respect to different duplicate rates in the over-

sampling training. From Fig. 11 we can observe that both

Precision (Fig. 11(a)) and PrecisionUX (Fig. 11(b)) con-

sistently fall with the increase of duplicate rate while both

Recall and RecallUX consistently rise until reaching an op-

tima with the increase of duplicate rate. Both Fscore and FUX

first increase and then become to drop with the increase of

duplicate rate at a small duplicate rate.

Fig. 11 The detection performance of our approach with respect to differ-
ent duplicate rates. (a) Classic; (b) UX

The above experiments show that the detection perfor-

mance of our approach can be improved dramatically by se-

lecting a proper drop rate for the under-sampling approach

and a proper duplicate rate for the over-sampling approach

implying that the impact of sample imbalance to the detection

performance is significant. Although the selection of drop or

duplicate rates are still open questions, we empirically select

them according to the above experimental results for building

a working detection model. In the following experiments of

ME-3D-G, we set the drop rate to be 76% for under-sampling

and duplicate rate to be 7 for over-sampling.

Similarly, we also study the impact of different drop rates

and duplicate rates on the detection performance of another

two MaxEnt models with different types of features: ME-3D

and ME-G. The curves of each approach are similar to those

of ME-3D-G illustrated in Figs. 10 and 11, though the opti-

mal settings of drop rate and duplicate rate for each model

are different. For the sake of brevity we omit those figures

here and in the following experiments, we set the drop rates

for ME-3D, ME-G to be 72% and 99%, respectively, and set

the duplicate rates for ME-3D, ME-G to be 5 and 55, respec-

tively.

It is worth noting that the baseline method is not impacted

by either the drop or duplicate rate; it is a naive method

that only relies on unique positive samples, a change in the

number of negative samples will not influence its perfor-

mance. Similarly, duplicating positive samples does not in-

crease unique positive samples and thus will equally not in-

fluence its performance.

5.4 The reusability of the model

Given a subway arrival detection model trained on the con-

text data from a subway line, the reusability of the model in-

dicates its ability to be applied to other context data from the

same subway line. In other words, if a detection model has

good reusability, once it is trained on context data collected

from one subway line, we can state it can be directly used by

all this line’s subway riders. In order to study the reusabil-

ity of our detection models and the baseline method, we first

leverage a five-fold cross validation to evaluate the detection

performance of each approach for the five data sets collected

from line 10. We select each data set as the test data and other

four as the training data for five times and report the average

performance.

Table 5 shows the average detection performance of each

approach in the five-fold cross validation. For each Max-

Ent model, both the results with under-sampling and over-

sampling are illustrated. And, for each metric, the method

with the best performance is highlighted. From Table 5 we

can observe the detection performance of ME-3D-G dramati-

cally outperforms the baseline with respect to most metrics

(four out of all six metrics) no matter whether we adopt

the under-sampling or over-sampling approach. Although

the baseline slightly outperforms ME-3D-G with respect to

Recall and RecallUX , its Precision and PrecisionUX are too

low (i.e., 0.139 6 and 0.123 8) to be applied for real applica-

tions.

We also observe that ME-3D is comparable to the base-

line, although it under-performs ME-3D-G with respect to

each metric. To be specific, it dramatically outperforms the

baseline with respect to Precision and PrecisionUX but dra-

matically under-performs the latter with respect to Recall and

RecallUX . If we comprehensively consider all above metrics,
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Table 5 The average detection performance of each approach in the five-fold cross validation for the data sets collected from line 10

Recall Precision Fscore RecallUX PrecisionUX FUX

Under-sampling 0.596 7 0.013 6 0.026 5 0.964 7 0.028 1 0.054 5
ME-G

Over-sampling 0.239 4 0.011 8 0.022 5 0.635 4 0.042 5 0.078 4

Under-sampling 0.477 6 0.265 2 0.337 0 0.769 9 0.343 9 0.469 9
ME-3D

Over-sampling 0.528 6 0.245 2 0.333 9 0.837 9 0.311 4 0.452 9

Under-sampling 0.579 3 0.692 6 0.618 2 0.908 5 0.861 1 0.874 0
ME-3D-G

Over-sampling 0.626 2 0.642 5 0.622 4 0.942 5 0.798 0 0.856 4

Baseline 0.846 9 0.139 6 0.235 0 1.000 0 0.123 8 0.215 3

Fscore and FUX can be used since they are designed for this

purpose. Along this line, we can state in this experiment that

ME-3D outperforms the baseline because it achieves better

Fscore and FUX . It validates the motivation of leveraging the

3D accelerometer output through an elegant model over a

naive rule based method, that is, although the Recall falls, the

overall performance of arrival detection is indeed improved.

Finally, the performance of ME-G is relatively poor in the

main due to its very low Precision and PrecisionUX ; this im-

plies that GSM based features are not suitable to be used as

sole contextual features for detecting subway arrivals. How-

ever, they can dramatically improve the performance of a

model which only relies on 3D accelerometer based features;

this is demonstrated by the advantages of ME-3D-G over

ME-3D.

5.5 The extensibility of the model

A practical problem in the real applications of subway arrival

detection is that it is too expensive to collect the context data

from all subway lines in a country. Therefore, it is desirable

for a detection model trained on context data collected from

one subway to be adaptable to the context of another subway

line. To this end, we evaluate the extensibility of our detec-

tion model, that is, the ability to apply it to a new subway line

whose context data do not appear in the training data. We first

train detection models from the data sets collected from line

10. Then we use the data set collected from line 5 as a test

data to evaluate the detection performance.

Table 6 illustrates the experimental results of each ap-

proach. Compared with the experimental results illustrated in

Table 5, we see that the performance of both ME-3D-G and

the baseline fall with respect to most metrics, but ME-3D-

G still dramatically outperforms the baseline with respect to

all metrics except Recall and RecallUX . Moreover, the perfor-

mance of ME-3D falls with respect to the basic metrics but

improves with respect to the user experience based metrics.

Finally, the performance of ME-G improves in most metrics

though it still performs worst among all test approaches.

5.6 The efficiency of the model

As a mobile application, the efficiency of a subway arrival de-

tection system is a critical factor for its practical application.

Since the training of a detection model can be conducted in a

server, we mainly concern the detection efficiency and mem-

ory cost of the detection model. Indeed, all MaxEnt based

detection models discussed above are very efficient since the

inference process of MaxEnt is very simple and all used con-

textual features are easy to extract. In our experiments, the

average time for detecting an arrival in ME-3D-G, ME-3D,

and ME-G are 20.1 us, 18.2 us, and 17.4 us, respectively. The

memory costs of these MaxEnt based detection models are

4.57 M, 4.57 M, and 4.56 M, respectively: this is very mod-

est given the high memory capacity of most modern smart

phones.

6 Related work

Generally, related work can be grouped into two categories.

Table 6 The detection performance of each approach trained on the data sets collected from line 10 and tested on the data set collected from line 5

Recall Precision Fscore RecallUX PrecisionUX FUX

Under-sampling 0.460 3 0.012 3 0.024 0 1.000 0 0.034 3 0.066 3
ME-G

Over-sampling 0.460 3 0.018 7 0.035 9 0.923 0 0.071 9 0.133 4

Under-sampling 0.269 8 0.161 9 0.202 4 0.846 2 0.333 3 0.478 2
ME-3D

Over-sampling 0.317 5 0.172 4 0.223 5 0.846 2 0.323 5 0.468 1

Under-sampling 0.269 8 0.531 2 0.357 8 0.538 5 0.875 0 0.666 7
ME-3D-G

Over-sampling 0.301 6 0.558 8 0.391 8 0.615 4 0.888 9 0.727 3

Baseline 0.841 3 0.099 4 0.177 8 1.000 0 0.074 7 0.139 0
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The first category is context recognition, which focuses on

recognizing the semantic meaning of a context according to

multiple contextual features extracted from the outputs of

multiple mobile sensors, such as 3D accelerometers, Blue-

tooth sensors, and GPS. For example, Reddy et al. [8,9] stud-

ied the problem of creating a transportation mode, e.g., driv-

ing, walking, or biking, classification system that runs on a

mobile phone equipped with both a GPS receiver and a 3D

accelerometer. They trained the classifier using a decision

tree followed by a discrete hidden markov model (DHMM)

based on a real-world data set collected from six individuals.

Mayrhofer et al. [12] proposed an architecture to recognize

and predict mobile user context by leveraging multiple het-

erogeneous sensors, such as WLAN, GSM, and Bluetooth ra-

dios. They studied several user behavior based contextual fea-

tures and combined them into a classification model trained

by hidden markov models (HMMs). Mantyjarvi et al. [11]

studied how to leverage collaborative filtering approach to

recognize context for mobile users with hand-held devices.

Their proposed approach can collaboratively recognize the

current context of a group of users with hand-held devices,

thus the recognition accuracy can be improved with respect

to the approaches that only leverage the data from single de-

vices. User activities, such as walking, sitting and standing,

also provide very important contextual information. Brezmes

et al. [13] studied how to recognize user activities from 3D

accelerometer data on a mobile phone. They proposed a real

time classification system for some basic human movements.

Similarly, Kwapisz et al. [15] studied the same problem and

built a data collection system based on an Android system to

collect sensor data from twenty-nine mobile users. To ease

the workload of annotating a large number of sensor readings

for the activity recognition problem, Hu and Yang [14] pro-

posed a transfer learning based framework for activity recog-

nition via sensor mapping. To the best of our knowledge, al-

though there is much related work on context recognition,

detecting train arrivals for subway passengers on the train is

still under-explored.

The second category is accurate positioning technologies.

Among these technologies, GPS positioning is the most

widely used but suffers relatively high energy consumption.

Therefore, many researchers have studied other novel po-

sitioning technologies. For example, Deblauwe and Ruppel

[17] proposed a solution for energy efficient positioning by

combing both GPS and GSM cell ID information in mobile

devices. Similarly, Paek et al. [19] proposed a cell ID aided

positing system (CAPS) that can leverage a continuous cell

ID sequence and the position history of smart phone users

to achieve energy efficient positioning. Another drawback

of GPS positioning is that it cannot be used in an enclosed

space due the lack of GPS signals. To that end, Liu et al.

[21] investigated several advanced indoor positioning tech-

niques and systems, including cell-site based triangle posi-

tioning and WiFi positioning. Although these approaches can

achieve good positioning performance in some cases, they

cannot be leveraged for detecting subway arrivals due to the

different deployment pattern of cell-sites along subway lines

and the lack of WiFi access points. To provide transit track-

ing and arrival time prediction services, EasyTracker [40]

utilized GPS embedded in smart-phones to determine routes

served, locate stops, and infer schedules. Although this aimed

to provide services to passengers, the solution does not work

underground as it depends on GPS. Moreover, EasyTracker

provides a countdown clock service to the users on bus sta-

tions, not aboard a train. Therefore, in this paper we proposed

a novel subway arrival detection approach based on the out-

puts of both 3D accelerometers and GSM sensors to detect

subway arrivals for the mobile users on the train.

7 Concluding remarks

In this paper, we studied the problem of detecting sub-

way arrivals for passengers on a train to enable subway ar-

rival reminding services. The key idea of our approach is to

collectively combine the evidence from multiple contextual

sources that are collected by various sensors in mobile de-

vices. Specifically, we provide several effective contextual

features extracted from 3D accelerometers and GSM sen-

sors for detecting subway arrivals according to the observa-

tions of real-world use cases. Then, we combined all the ex-

tracted contextual features into a widely used machine learn-

ing model named MaxEnt for training an effective detecting

model. In addition, we developed a subway contextual data

collection system to collect several real-world data sets from

two major subway lines in Beijing. Finally, the experimental

results on these real-world data demonstrated both the effec-

tiveness and robustness of our approach.

As illustrated in our experiments, for a subway arrival

detection model, extendability is critical for its success in

practical applications. A training data set which reflects more

common properties of contextual data from all subway lines

and fewer special properties of the contextual data from some

particular subway lines may help to improve the extendability

of a detection model. Random user behavior, such as giving

way to others, will affect the effectiveness of 3D accelerom-
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eter based features and thus affect the detection accuracy. In

future work, we plan to investigate some effective methods of

selecting such common subway contextual data, and collect

more kinds of noisy data to develop new detection models.
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