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Abstract—Recent years have witnessed an increased interest in recommender systems. Despite significant progress in this field,

there still remain numerous avenues to explore. Indeed, this paper provides a study of exploiting online travel information for

personalized travel package recommendation. A critical challenge along this line is to address the unique characteristics of travel data,

which distinguish travel packages from traditional items for recommendation. To that end, in this paper, we first analyze the

characteristics of the existing travel packages and develop a tourist-area-season topic (TAST) model. This TAST model can represent

travel packages and tourists by different topic distributions, where the topic extraction is conditioned on both the tourists and the

intrinsic features (i.e., locations, travel seasons) of the landscapes. Then, based on this topic model representation, we propose a

cocktail approach to generate the lists for personalized travel package recommendation. Furthermore, we extend the TAST model to

the tourist-relation-area-season topic (TRAST) model for capturing the latent relationships among the tourists in each travel group.

Finally, we evaluate the TAST model, the TRAST model, and the cocktail recommendation approach on the real-world travel package

data. Experimental results show that the TAST model can effectively capture the unique characteristics of the travel data and the

cocktail approach is, thus, much more effective than traditional recommendation techniques for travel package recommendation. Also,

by considering tourist relationships, the TRAST model can be used as an effective assessment for travel group formation.

Index Terms—Travel package, recommender systems, cocktail, topic modeling, collaborative filtering

Ç

1 INTRODUCTION

AS an emerging trend, more and more travel companies
provide online services. However, the rapid growth of

online travel information imposes an increasing challenge
for tourists who have to choose from a large number of
available travel packages for satisfying their personalized
needs. Moreover, to increase the profit, the travel compa-
nies have to understand the preferences from different
tourists and serve more attractive packages. Therefore, the
demand for intelligent travel services is expected to
increase dramatically.

Since recommender systems have been successfully
applied to enhance the quality of service in a number of
fields [2], [15], [37], it is natural choice to provide travel
package recommendations. Actually, recommendations for
tourists have been studied before [1], [4], [8], and to the best
of our knowledge, the first operative tourism recommender
system was introduced by Delgado and Davidson [11].

Despite of the increasing interests in this field, the problem
of leveraging unique features to distinguish personalized
travel package recommendations from traditional recom-
mender systems remains pretty open.

Indeed, there are many technical and domain challenges
inherent in designing and implementing an effective
recommender system for personalized travel package
recommendation. First, travel data are much fewer and
sparser than traditional items, such as movies for recom-
mendation, because the costs for a travel are much more
expensive than for watching a movie [14], [43]. Second,
every travel package consists of many landscapes (places of
interest and attractions), and, thus, has intrinsic complex
spatio-temporal relationships. For example, a travel pack-
age only includes the landscapes which are geographically
colocated together. Also, different travel packages are
usually developed for different travel seasons. Therefore,
the landscapes in a travel package usually have spatial-
temporal autocorrelations. Third, traditional recommender
systems usually rely on user explicit ratings. However, for
travel data, the user ratings are usually not conveniently
available. Finally, the traditional items for recommendation
usually have a long period of stable value, while the values
of travel packages can easily depreciate over time and a
package usually only lasts for a certain period of time. The
travel companies need to actively create new tour packages
to replace the old ones based on the interests of the tourists.

To address these challenges, in our preliminary work
[25], we proposed a cocktail approach on personalized
travel package recommendation. Specifically, we first
analyze the key characteristics of the existing travel
packages. Along this line, travel time and travel destina-
tions are divided into different seasons and areas. Then, we
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develop a tourist-area-season topic (TAST) model, which
can represent travel packages and tourists by different topic
distributions. In the TAST model, the extraction of topics is
conditioned on both the tourists and the intrinsic features
(i.e., locations, travel seasons) of the landscapes. As a result,
the TAST model can well represent the content of the travel
packages and the interests of the tourists. Based on this
TAST model, a cocktail approach is developed for perso-
nalized travel package recommendation by considering
some additional factors including the seasonal behaviors of
tourists, the prices of travel packages, and the cold start
problem of new packages. Finally, the experimental results
on real-world travel data show that the TAST model can
effectively capture the unique characteristics of travel data
and the cocktail recommendation approach performs much
better than traditional techniques.

In this paper, we further study some related topic
models of the TAST model, and explain the corresponding
travel package recommendation strategies based on them.
Also, we propose the tourist-relation-area-season topic
(TRAST) model, which helps understand the reasons why
tourists form a travel group. This goes beyond personalized
package recommendations and is helpful for capturing the
latent relationships among the tourists in each travel group.
In addition, we conduct systematic experiments on the real-
world data. These experiments not only demonstrate that
the TRAST model can be used as an assessment for travel
group automatic formation but also provide more insights
into the TAST model and the cocktail recommendation
approach. In summary, the contributions of the TAST
model, the cocktail approaches, and the TRAST model for
travel package recommendations are shown in Fig. 1, where
each dashed rectangular box in the dashed circle identifies a
travel group and the tourists in the same travel group are
represented by the same icons.

2 CONCEPTS AND DATA DESCRIPTION

In this section, we first introduce the basic concepts, and
then describe the recommendation scenario of this study.
Finally, we provide the detailed information about the
unique characteristics of travel package data.

Definition 1. A travel package is a general service package

provided by a travel company for the individual or a group of

tourists based on their travel preferences. A package usually

consists of the landscapes and some related information, such

as the price, the travel period, and the transportation means.
Specifically, the travel topics are the themes designed for

this package, and the landscapes are the travel places of
interest and attractions, which usually locate in nearby areas.

Following Definition 1, an example document for a

package named “Niagara Falls Discovery” from the STA

Travel1 is shown in Fig. 2. It includes the travel topics (tour

style), travel days, price, travel area (the northeastern US),

and landscapes (e.g., Niagara Falls), and so on. Note that

different packages may include the same landscapes and

each landscape can be used for multiple packages. Mean-

while, for some reasons, the tourists for each individual

package are often divided into different travel groups (i.e.,

traveling together). In addition, each package has a travel

schedule and most of the packages will be traveled only in

a given time (season) of the year, i.e., they have strong

seasonal patterns. For example, the “Maple Leaf Adventures”

is usually meaningful in Fall.
In this paper, we aim to make personalized travel

package recommendations for the tourists. Thus, the users

are the tourists and the items are the existing packages, and

we exploit a real-world travel data set provided by a travel

company in China for building recommender systems.

There are nearly 220,000 expense records (purchases of

individual tourists) starting from January 2000 to October

2010. From this data set, we extracted 23,351 useful records

of 7,749 travel groups for 5,211 tourists from 908 domestic

and international packages in a way that each tourist has

traveled at least two different packages. The extracted data
contain 1,065 different landscapes located in 139 cities from

10 countries. On average, each package has 11 different

landscapes, and each tourist has traveled 4.4 times.
As illustrated in our preliminary work [25], there are

some unique characteristics of the travel data. First, it is
very sparse, and each tourist has only a few travel records.
The extreme sparseness of the data leads to difficulties for
using traditional recommendation techniques, such as
collaborative filtering. For example, it is hard to find the
credible nearest neighbors for the tourists because there are
very few cotraveling packages.
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Fig. 1. An illustration of the paper contribution.

1. STA Travel, URL: http://www.statravel.com/.

Fig. 2. An example of the travel package, where the landscapes are
represented by the words in red.



Second, the travel data has strong time dependence. The
travel packages often have a life cycle along with the change
to the business demand, i.e., they only last for a certain
period. In contrast, most of the landscapes will still be active
after the original package has been discarded. These
landscapes can be used to form new packages together
with some other landscapes. Thus, we can observe that the
landscapes are more sustainable and important than the
package itself.

Third, landscape has some intrinsic features like the
geographic location and the right travel seasons. Only
the landscapes with similar spatial-temporal features are
suitable for the same packages, i.e., the landscapes in one
package have spatial-temporal autocorrelations and follow
the first law of geography-everything is related to every-
thing else, but the nearby things are more related than
distant things [10]. Therefore, when making recommenda-
tions, we should take the landscapes’ spatial-temporal
correlations into consideration so as to describe the tourists
and the packages precisely.

Fourth, the tourists will consider both time and
financial costs before they accept a package. This is quite
different from the traditional recommendations where the
cost of an item is usually not a concern. Thus, it is very
important to profile the tourists based on their interests as
well as the time and the money they can afford. Since the
package with a higher price often tends to have more time
and vice versa, in this paper we only take the price factor
into consideration.

Fifth, people often travel with their friends, family, or
colleagues. Even when two tourists in the same travel group
are totally strangers, there must be some reasons for the
travel company to put them together. For instance, they
may be of the same age or have the same travel schedule.
Hence, it is also very important to understand the relation-
ships among the tourists in the same travel group. This
understanding can help to form the travel group.

Last but not least, few tourist ratings are available for
travel packages. However, we can see that every choice of a
travel package indicates the strong interest of the tourist in
the content provided in the package.

In summary, these characteristics bring in three major
challenges. First, how to compare the interests of tourists
and the content of the travel package; second, how to make
package recommendations for each tourist; third, how to

capture the tourist relationships to form a travel group. As a
result, it is necessary to develop more suitable approaches
for travel package recommendation.

3 THE TAST MODEL

In this section, we show how to represent the packages and
tourists by a topic model, like the methods in [5], [29], and
[36] based on Bayesian networks, so that the similarity
between packages and tourists can be measured. Table 1
lists some mathematical notations in this paper.

3.1 Topic Model Representation

When designing a travel package, we assume that the
people in travel companies often consider the following
issues. First, it is necessary to determine the set of target
tourists, the travel seasons, and the travel places. Second,
one or multiple travel topics ( e.g., “The Sunshine Trip”) will
be chosen based on the category of target tourists and the
scheduled travel seasons. Each package and landscape can
be viewed as a mixture of a number of travel topics. Then,
the landscapes will be determined according to the travel
topics and the geographic locations. Finally, some addi-
tional information (e.g., price, transportation, and accom-
modations) should be included. According to these
processes, we formalize package generation as a What-
Who-When-Where (4W ) problem. Here, we omit the
additional information and each W stands for the travel
topics, the target tourists, the seasons, and the correspond-
ing landscape located areas, respectively. These four factors
are strongly correlated.

Formally, we reprocess the generation of a package in a
topic model style, where we treat it mainly as a landscape
drawing problem. These landscapes for the package are
drawn from the landscape set one by one. For choosing a
landscape, we first choose a topic from the distribution over
topics specific to the given tourist and season, then the
landscape is generated from the chosen topic and travel
area. We call our model for package representation as the
TAST model. Please note that, a topic mentioned in TAST is
different from a real topic, where the former one is a latent
factor extracted by topic model, while the latter one is an
explicit travel theme identified in the real world, and latent
topics are used to simulate real topics. Without loss of
generality, we use travel topic and topic to stand for the real
and latent topic, respectively.

Mathematically, the generative process corresponds to
the hierarchical Bayesian model for TAST is shown in Fig. 3,
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TABLE 1
Mathematical Notations

Fig. 3. TAST: A graphical model.



where shaded and unshaded variables indicate observed
and latent variables, respectively. The TAST model follows
the similar Dirichlet distribution assumptions as [5], [29],
[36], and here landscapes are the “tokens” for topic
modeling. In TAST model, the notation P

0
d is different from

Pd, where Pd is the ID for a package in the package set while
P
0

d stands for the package ID of one travel log, and each
travel log can be distinguished by a vector of three
attributes hP 0d; Ud; timestampi, where the timestamp can be
further projected to a season Sd and P

0
d ¼ hLP 0

d
; Ad; price

2i.
Specifically, in Fig. 3, each package P

0
d is represented as a

vector of jLP 0
d
j landscapes where landscape l is chosen from

one area a and a 2 Ad (Ad includes the located area(s) for
P
0

d) and (Ud, Sd) is the specific tourist-season pair. t is a topic
which is chosen from the set T with Z topics. � and �
correspond to the topic distribution and landscape dis-
tribution specific to each tourist-season pair and area-topic
pair, respectively, where � and � are the corresponding
hyperparameters.

The distributions, such as � and �, can be extracted after
inferring this TAST model (“invert” the generative process
and “generate” latent variables). The general idea is to find a
latent variable (e.g., topic) setting so as to get a marginal
distribution of the travel log set P

0
:

pðP 0 j�; �; U; S;AÞ ¼
Z Z YM

m¼1

YJ
j¼1

pð�mjj�Þ
YO
o¼1

YZ
k¼1

pð�okj�Þ
YD
d¼1

YjLP 0d j
i¼1

XZ
tdi¼1

ðpðtdij�UdSdÞ
X
adi2Ad

ðpðadijAdÞpðldij�aditdiÞÞÞd�d�:

3.2 Model Inference

While the inference on models in the LDA family cannot be
solved with closed-form solutions, a variety of algorithms
have been developed to estimate the parameters of these
models. In this paper, we exploit the Gibbs sampling
method [18], a form of Markov chain Monte Carlo, which is
easy to implement and provides a relatively efficient way
for extracting a set of topics from a large set of travel logs.
During the Gibbs sampling, the generation of each land-
scape token for a given travel log depends on the topic
distribution of the corresponding tourist-season pair and
the landscape distribution of the area-topic pair. Finally, the
posterior estimates of � and � given the training set can be
calculated by

^�mjt ¼
�t þ nmjt

�Z
k¼1ð�k þ nmjkÞ

; ^�okl ¼
�l þmokl

�
jAoj
q¼1ð�q þmokqÞ

; ð1Þ

where jAoj is the number of landscapes in area Ao; nmjt is
the number of landscape tokens assigned to topic Tt and
tourist-season pair (Um, Sj), and mokl is the number of
tokens of landscape Ll assigned to area-topic pair (Ao, Tk).
Let us take the topic assignment for “Central Park” as an
example, in each iteration, the topic assignment of one
“Central” token depends on not only the topics of the
landscapes traveled by the tourist in the given season but

also the topics of the other landscapes located nearby.
Meanwhile, many other posterior probabilities can also be
estimated, for example, the topic distribution of tourist Ui
and package Pi:

#Uij ¼
�j þ �J

s¼1nisj

�Z
k¼1ð�k þ �J

s¼1niskÞ
; #Pij ¼

�j þ hij
�Z
k¼1ð�k þ hikÞ

; ð2Þ

where hij is the number of the landscape tokens in package
Pi and these tokens are assigned to topic Tj.

After Gibbs sampling, all the tourists and packages are
represented by the Z entry topic distribution vectors (Z, the
number of topics, is usually in the range of [20, 100]). For
example, a tourist, who traveled “Tour in Disneyland,
Hongkong” and “Christmas day in Hongkong”, may have
high probabilities on the entries that stand for the topics
such as “amusement parks” and “Hongkong”. By computing
the similarity of the topic distribution vectors, we can find
the similarity between the corresponding tourists and
packages. There are also many other benefits of the TAST
model, for example, we can learn the popular topics in each
season and find the popular landscapes for each topic.

3.3 Area/Seasons Segmentation

There are two extremes for the coverage of each area Ai and
each season Si: we can view the whole earth as an area and
the entire year as a season, or we can view each landscape
itself as an area and each month as a different season.
However, the first extreme is too coarse to capture the
spatial-temporal autocorrelations, and we will face the
overfitting issue for the second extreme and the Gibbs
sampling will be difficult to converge.

To this end, we divide the entire location space in our
data set into seven big areas (shown in Table 2) according to
the travel area segmentations provided by the travel
company, which are South China (SC), Center China (CC),
North China (NC), East Asia (EA), Southeast Asia (SA),
Oceania (OC), and North America (NA), respectively. To
make more reasonable season splitting, we assume that
most packages are seasonal, and we use an information
gain-based method [12] to get the season splits. The
information entropy of the season SP is EntðSP Þ ¼ �PjSP j

i¼1 pilogðpiÞ , where jSP j is the number of different
packages in SP and pi is the proportion of package Pi in this
season. Initially, the entire year is viewed as a big season
and then we partition it into several seasons recursively. In
each iteration, we use the weighted average entropy (WAE)
to find the best split:
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TABLE 2
Area Segmentation Result

2. The price factor will be considered later.



WAE
�
i;SP

�
¼
��SP1 ðiÞ��
jSP j Ent

�
SP1 ðiÞ

�
þ
��SP2 ðiÞ��
jSP j Ent

�
SP2 ðiÞ

�
;

where SP1 ðiÞ and SP2 ðiÞ are two subseasons of season SP

when being splitted at the ith month. The best split month
induces a maximum information gain given by 4EðiÞ
which is equal to EntðSP Þ �WAEði;SP Þ.

3.4 Related Topic Models

While the generation processes in TAST are similar to those
in the text modeling problems for both documents [5],
articles [36] and emails [29], the TAST model is quite
different from these traditional ones (e.g., LDA, AT, and
ART models). The TAST model has a crucial enhancement
by considering the intrinsic features (i.e., location, travel
seasons) of the landscapes, and, thus, it can effectively
capture the spatial-temporal autocorrelations among land-
scapes. The benefit is that the TAST model can describe the
travel package and the tourist interests more precisely,
because the nearby landscapes or the landscapes preferred
by the same tourists tend to have the same topic. In addition,
the text modeling has the assumption that the words in an
email/article are generated by multiple authors, while we
assume that the landscapes in the package are generated for
the specific tourist of this travel log. Therefore, each single
text is considered only once in the text models. However,
each package may appear many times in the TAST model
according to their records in the travel logs.

Indeed, as shown in Fig. 4, there are three related topic
models. The first one (see Fig. 4a) is the tourist topic (TT)
model, which does not consider the travel area and travel
season factors. The second one (see Fig. 4b) is the tourist-
area topic (TAT) model, which only considers the travel
area. The third one (see Fig. 4c) is the tourist-season topic
(TST) model, which only considers the travel season. All
these methods can also be used for package and tourist
representation. Finally, note that the graphical representa-
tions of TT and TST are similar to the AT model [36] and
ART model [29], respectively. However, their differences
have been discussed.

4 COCKTAIL RECOMMENDATION APPROACH

In this section, we propose a cocktail approach on persona-
lized travel package recommendation based on the TAST
model, which follows a hybrid recommendation strategy [6]
and has the ability to combine many possible constraints that
exist in the real-world scenarios. Specifically, we first use the
output topic distributions of TAST to find the seasonal

nearest neighbors for each tourist, and collaborative filtering
will be used for ranking the candidate packages. Next, new
packages are added into the candidate list by computing
similarity with the candidate packages generated previously.
Finally, we use collaborative pricing to predict the possible
price distribution of each tourist and reorder the packages.
After removing the packages which are no longer active, we
will have the final recommendation list.

Fig. 5 illustrates the framework of the proposed cocktail
approach, and each step of this approach is introduced in
the following sections. We should note that, the major
computation cost for this approach is the inference of
the TAST model. As the increase of travel records, the
computation cost will increase. However, since the topics of
each landscape evolves very slowly, we can update the
inference process periodically offline in real-world applica-
tions. At the end of this section, we will describe many
similar cocktail recommendation strategies based on the
related topic models of TAST.

4.1 Seasonal Collaborative Filtering for Tourists

In this section, we describe the method for generating the
personalized candidate package set for each tourist by
the collaborating filtering method. After we have obtained
the topic distribution of each tourist and package by the
TAST model, we can compute the similarity between each
tourist by their topic distribution similarities.

Intuitively, based on the idea of collaborative filtering,
for a given user, we recommend the items that are preferred
by the users who have similar tastes with her. However, as
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Fig. 4. The three related topic models.

Fig. 5. The cocktail recommendation approach.



we explained previously, the package recommendation is
more complex than the traditional ones. For example, if we
make recommendations for tourists in winter, it is inap-
propriate to recommend “Maple Leaf Adventures.” In other
words, for a given tourist, we should recommend the
packages that are enjoyed by other tourists at the specific
season. Indeed, we have obtained the seasonal topic
distribution for each tourist from the TAST model. Multiple
methods can be used to compute these similarities, such as
matrix factorization [22], [23] and graphical distances [13].
Alternatively, a simple but effective way is to use the
correlation coefficient [31], and the similarity between tourist
Um and Un in season Sj can be computed by

SimSjðUm;UnÞ ¼
PZ

k¼1ð�mjk � ��mjÞð�njk � ��njÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPZ
k¼1ð�mjk � ��mjÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPZ
k¼1ð�njk � ��njÞ2

q ;

ð3Þ

where ��mj is the average topic probability for the tourist-
season pair ðUm; SjÞ,3 For a given tourist, we can find his/
her nearest neighbors by ranking their similarity values.
Thus, the packages, favored by these neighbors but have
not been traveled by the given tourist, can be selected as
candidate packages which form a rough recommendation
list, and they are ranked by the probabilities computed by
the collaborative filtering.

4.2 New Package Problem

In recommender systems, there is a cold-start problem, i.e.,
it is difficult to recommend new items. As we have explored
in Section 2, travel packages often have a life cycle and new
packages are usually created. Meanwhile, most of the
landscapes will keep in use, which means nearly all the new
packages are totally or partially composed by the existing
landscapes. Let us take the year of 2010 as an example.
There are 65 new packages in the data and only 2 of them
are composed completely by new landscapes. Thus, for
most of the new packages Pnew, their topic distributions can
be estimated by the topics of their landscapes:

#P
new

ij ¼
�j þ

P
l2Pnew

i
olj

�Z
k¼1ð�k þ

P
l2P new

i
olkÞ

; ð4Þ

where olj is the number of times that landscape l is assigned
to topic Tj in the travel logs, and the seasonal topic
distribution of the new packages can be computed in the
similar way. The following question is how to recommend
new packages. One way to address this issue is to
recommend the new packages that are similar to the ones
already traveled by the given tourist (i.e., via the content-
based method). However, if the recommender systems just
deal with the current interest of the given tourist, we will
suffer from the overspecialization problem [2]. Thus, we
propose to compute the similarity between the new package
and the given number (e.g., 10) of candidate packages in
the top of the recommendation list. The new packages
which are similar to the candidate packages are added into
the recommendation list and their ranks in the list based on

the average probabilities of the similar candidate packages.

It is expected that this method can not only deal with the

cold-start problem but also avoid the overspecialization

problem. Please note that, in real applications, new travel

package recommendation list can be separated from the

general list. However, in this paper, for better illustration

and evaluation, we insert the new packages into the general

recommendation list as an alternative.
Since there is no effective method to learn the topics of

the new packages whose landscapes are not included in the

training set, we can use the topic distributions of their

located areas on the given travel season as an estimation.

Luckily, there are few such packages.

4.3 Collaborative Pricing

In this section, we present the method to consider the price

constraint for developing a more personalized package

recommender system. The price of travel packages may

vary from $20 to more than 3,000, so the price factor

influences the decision of tourists. Along this line, we

propose a collaborative pricing method in which we first

divide the prices into different segments. Then, we propose

to use the Markov forecasting model to predict the next

possible price range for a given tourist.
In the first phase, we divide the prices of the packages

based on the variance of prices in the travel logs, and the

method is similar to the one used in [46]. We first sort the

prices of the travel logs, and then partition the sorted list

PL into several sublists in a binary-recursive way. In each

iteration, we first compute the variance of all prices in the

list. Later, the best split price having the minimal weighted

average variance (WAV) defined as

WAVði;PLÞ ¼ jPL1ðiÞj
jPLj VarðPL1ðiÞÞ þ

jPL2ðiÞj
jPLj VarðPL2ðiÞÞ;

where PL1ðiÞ and PL2ðiÞ are two sublists of PL split at the

ith element and Var represents the variance. This best split

price leads to a maximum decrease of4V ðiÞ, which is equal

to VarðPLÞ �WAVði;PLÞ.
In the second phase, we mark each price segment as a

price state and compute the transition probabilities between

them. Specifically, at first, if a tourist used a package with

price state a before traveling a package with price state b,

then the weight of the edge from a to b will plus 1. After

summing up the weights from all the tourists, we normalize

them into transition probabilities, and all the transition

probabilities compose a state transition matrix. From the

current price state of a given tourist (i.e., the current price

distribution normalized from his/her previous travel

records), we predict the next possible price state by the

one-step Markov forecasting model based on random walk.

Finally, we obtain the predicted probability distribution of

the given tourist on each state, and use these probabilities as

weights to multiply the probabilities of the candidate

packages in the rough recommendation list so as to reorder

these packages. After removing the packages which are no

longer active, we have the final recommendation list.

LIU ET AL.: A COCKTAIL APPROACH FOR TRAVEL PACKAGE RECOMMENDATION 283

3. If tourist Um has never traveled in season Sj, then her total topic
distribution #Um is used as an alternative throughout this paper.



4.4 Related Cocktail Recommendations

The previous cocktail recommendation approach (Cocktail)
is mainly based on the TAST model and the collaborative
filtering method. Indeed, another possible cocktail ap-
proach is the content-based cocktail, and in the following,
we call this method TASTContent. The main difference
between TASTContent and Cocktail is that in TASTContent
the content similarity between packages and tourists are
used for ranking packages instead of using collaborative
filtering. Since TASTContent can only capture the existing
travel interests of the tourists, thus it may also suffer from
the overspecialization problem.

As there are many related topic models for the TAST
model, it is also possible to design the similar cocktail
recommendation approaches based on these models.
Actually, it is quite straightforward to replace the TAST
model by TT, TAT, and TST models in the cocktail approach
to get the new recommendations. For example, in the
experimental section, the notation TTER stands for the
cocktail approach that is based on the TT model.

In Cocktail, we use the price factor as an external
constraint to measure package ranks. To some extent, the
package prices may also directly influence the interests of
the tourists. Thus, it can be included in the topic model
representation. If we replace the season token Sd in Fig. 3 by
ðSd; CdÞ pair, where Cd is the price segment of this package
log, and update the previous 4W assumptions, the price
factor can be well incorporated into the topic model. In this
way, the topic preference of the packages in each price
segment can also be inferred. What’s more, this topic model
shares the same inference process with the TAST model,
and in the following, we call the cocktail recommendation
approach based on this model as Cocktail-.

In summary, both Cocktail and the above related
approaches follow the idea of hybrid recommendations,
which exploit multiple recommendation techniques, such as
collaborative filtering and content-based approaches, for the
best performances. Indeed, hybrid recommender systems
are usually more practical and have been widely used [6],
[24]. For instance, seven different types of hybrid recom-
mendation techniques have been discussed in [6]. In fact,
the cocktail recommendation is a combined exploitation of
several hybrid approaches. Specifically, the seasonal colla-
borative filtering based on topic modeling is a “Feature
Augmentation”, where the new features of latent topics are
generated as the better input to enhance the existing
algorithm. Second, the insertion of new packages is a

“Mixed” strategy, where recommendations from different
sources are combined. At last, the collaborative pricing is
similar to a “Cascade” strategy, where the secondary
recommender refines the decisions made by a stronger one.

5 THE TRAST MODEL

In this section, we extend the current TAST model and
propose a novel tourist-relation-area-season topic model to
formulate the tourist relationships in a travel group.

In the TAST model, we do not consider the information
of the travel group. However, as noted in Section 2, each
package has usually been used by many groups of tourists,
and the tourists belong to different travel groups. Thus, if
two tourists have taken the same package but in different
travel groups, we can only say these two tourists have the
same travel interest, but we cannot conclude that they share
the same travel profile. However, if these two tourists are in
the same group, they may share some common travel traits,
such as similar cultural interests and holiday patterns. In
the future, they may also want to travel together. Also, they
may be family and always travel together during the
holiday season. In this paper, we use the notation relation-
ship to measure these commonalities and connections in
tourists’ travel profiles. Please also note that there are
multiple tourist relationships simultaneously.

Based on the above understanding, we incorporate into
the TAST model a new set of variables, with each entry
indicating one relationship, and we consider the tourist
relationships in each travel group. This novel topic model is
named as the TRAST model, as shown in Fig. 6a, where
each tourist has a multinomial distribution over G relation-
ships, and each relationship has a multinomial distribution
over Z topics. Other assumptions are similar to those in the
TAST model. However, in the TRAST model, the purchases
of the tourists in each travel group are summed up as one
single expense record and, thus, it has more complex
generative process. We can understand this process by a
simple example. Assume that two selected tourists in a
travel group (U

00

d) are u1 and u2, who are young and dating
with each other. Now, they decide to travel in winter (Sd)
and the destination is North America (Ad). To generate a
travel landscape (l), we first extract a relationship (r, e.g.,
lover), and then find a topic (t) for lovers to travel in the
winter (e.g., skiing). Finally, based on this skiing topic and
the selected travel area (e.g., Northeast America), we draw a
landscape (e.g., Stowe, Vermont).
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Fig. 6. The TRAST model and its two submodels.



Thus, in the TRAST model, the notation U
00
d stands for a

group of tourists and P
00
d is the corresponding package ID

for this travel group log. � and � correspond to the topic
distribution and relationship distribution specific to each
relationship-season pair and tourist, respectively, where � is
a new hyperparameter. The marginal distribution of the
travel group set P

00
can be computed as
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To perform the inference, the Gibbs sampling formulae
can be derived in a similar way as the TAST model, but the
sampling procedure at each iteration is significantly more
complex. To make inference more efficient and easier for
understanding, we instead perform it in two distinct parts.
Here, we follow the strategy that is used in [29]. We first
split TRAST model into two submodels, as shown in
Figs. 6b and 6c. The first submodel TRAST1 is just like the
TAST model, except for the two tourists are latent factors
and some of the notations are with different meanings here.
By this model, we use a sample to obtain topic assignments
and tourist pair assignments for each landscape token.
Then, in the second submodel TRAST2, we treat topics and
tourist pairs as known, and the goal is to obtain relationship
assignments. In the following, let us introduce the inference
of these two models, one by one.

If we directly transfer the results that we get from the
TAST model to assign a topic for each landscape token in
the TRAST1 model, we need to compute nðu1;u2Þst for each
ðu1; u2Þ pair, which is the number of landscape tokens that
are assigned to topic t, and have been cotraveled by tourists
ðu1; u2Þ in season s. In this way, we have to compute and
store each nðu1;u2Þst, an entry in an M �M � J � Z matrix.
Thus, the cost will be too expensive (actually, most of the
entries should be 0). Instead, we use the following strategy
as a simulation:

pðadi ; tdi ; ðudi1 ; udi2Þj:::Þ

/
�tdi þ nudi1 sdtdi þ nudi2 sdtdi � 1

�Z
k¼1

�
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�
� 1

�ldi þmaditdildi � 1

�
jAij
k¼1

�
�ldi þmaditdik

�
� 1

;

ð5Þ

where ‘‘:::’’ refers to all the known information such as the
area ða:diÞ, topic ðt:diÞ and tourist pair ððu1; u2Þ:diÞ
information of other landscape tokens, and the hyperpara-
meters �, and �. By the above equation, we only have to
keep a M � J � Z matrix for storing each nust.

We can see that the TRAST2 model is similar to the TST
model (see Fig. 4c), except for the location of Sd and the pair
of tourists. Similar to the inference of the TRAST1 model,
when inferring this model, for each relationship assign-
ment, we use the following equation:

pðrdi j . . .Þ / �rdi þ nu1rdi þ nu2rdi � 1

�G
k¼1ð�k þ nu1rk þ nu2rkÞ � 1

�tdi þmrdiSdtdi � 1

�Z
t¼1ð�t þmrdiSdtÞ � 1

:

ð6Þ

After Gibbs sampling, each tourist’s travel relationship
preference can be estimated by the following equation, and
each entry of � and � can be computed similarly

�̂ir ¼
�t þ nir

�G
k¼1ð�k þ nikÞ

: ð7Þ

Actually, this TRAST model can be easily extended for
computing relationships among many more tourists.
However, the computation cost will also go up. To
simplify the problem, in this paper, each time we only
consider two tourists in a travel group as a tourist pair for
mining their relationships. By this TRAST model, all the
tourists’ travel preferences are represented by relationship
distributions. For a set of tourists, who want to travel the
same package, we can use their relationship distributions
as features to cluster them, so as to put them into different
travel groups. Thus, in this scenario, many clustering
methods can be adopted. Since choosing clustering
algorithm is beyond the scope of this paper, in the
experiments, we refer to K-means [28], one of the most
popular clustering algorithms.

Thus, the TRAST model can be used as an assessment for
travel group automatic formation. Indeed, in real applica-
tions, when generating a travel group, some more external
constraints, such as tourists’ travel date requirements, the
travel company’s travel group schedule should also be
considered. Please note that, it is possible to use the topics
mined by TRAST1 to represent the latent relationships
directly. However, in this way, the topics will represent
both landscape topics and latent relationships, it would be
hard for interpretation.

6 EXPERIMENTAL RESULTS

In this section, we evaluate the performances of the
proposed models on real-world data, and some of previous
results [25] are omitted due to the space limit. Specifically,
we demonstrate:

1. the results of the season splitting and price segmen-
tation,

2. the understanding of the extracted topics,
3. a recommendation performance comparison be-

tween Cocktail and benchmark methods,
4. the evaluation of the TRAST model, and
5. a brief discussion on recommendations for travel

groups.

6.1 The Experimental Setup

The data set was divided into a training set and a test set.
Specifically, the last expense record of each tourist in the
year of 2010 was chosen to be a part of the test set, and
the remaining records were used for training. The
detailed information is described in Table 3.4 Note that
there are 65 new packages traveled by 269 tourists in
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4. Since the data is very sparse and to ensure that each method can get a
meaningful result, we choose a comparably small test set.



the test set. However, only two of these packages are

composed completely by new landscapes, and there are
11 new landscapes.

Benchmark methods. To compare the fitness of the TAST

model, we compare it with three related models: the TAT

model, the TST model, and the TT model, which do not take
the season, area, and both season and area factors into

consideration, respectively. The perplexity (an evaluation
metric for measuring the goodness of fit of a model [29])

comparison result illustrated in [25] shows that TAST

model has significantly better predictive power than three
other models.

For the recommendation accuracies of the Cocktail

approach, we compare it with the following benchmarks:

. Three methods based on topic models including
TTER, TASTContent and Cocktail- as described in
Section 4.4.

. A content-based recommendation (SContent) based
on cotraveled landscapes, following in [27, Eqs. (3.1)-
(3.4)].

. For the memory-based collaborative filtering, we
implemented the user-based collaborative filtering
method (UCF) [31].

. For the model-based collaborative filtering, we chose
binary SVD (BSVD) [24].

. Since UCF and BSVD only use the package-level
information, to do a fair comparison, we implemen-
ted two similar methods based on landscapes (i.e.,
LUCF, LBSVD).

. One graph-based algorithm, LItemRank [16], where
a landscape correlation graph is constructed, and the
packages are ranked by the expected average steady-
state probabilities on their landscapes.

In the following, we choose the fixed Dirichlet distribu-
tions, and these settings are widely used in the existing

works [18], [29]. For instance, we set � ¼ 0:1 and � ¼ 50=Z

for the TAST model.

6.2 Season Splitting and Price Segmentation

In this section, we present the results of season splitting

and price segmentation as shown in Fig. 7. For better

illustration, in Fig. 7a, we only show the travel logs with
prices lower than $1,500. In the figure, different price

segments are represented with different grayscale settings,

and seasons are split by the dashed lines among months. In
total, we have four seasons (i.e., spring, summer, fall, and

winter), and five price segments (i.e., very low, low,
medium, high, and very high). Since almost all the tourists

in the data are from South China, this season splitting has

well captured the climatic features there. Another interest-
ing observation is that the peak times for travel in China

include February (around the Spring Festival), July and

August (the summer for students) and the beginning of
October (National Day holiday).

Fig. 7b describes the relationship between the percentage
of the travel packages and the number of scheduled travel
seasons. In Fig. 7b, we can see that most of the packages are
only traveled in one season during a year, and less than
6 percent packages are scheduled in the entire year. At last,
note that we do not give the illustration of relationship
between each travel package and the number of its located
areas. The reason is that almost all the packages in the data
located in only one of the seven travel areas. These
statistical results reflect the fact that landscapes in most
packages have spatial-temporal autocorrelations, and the
travel area and travel season segmentation methods are
reasonable and effective.

6.3 Understanding of Topics

To understand the latent topics extracted by TAST, we focus
on studying the relationships between topics and their
landscapes’/packages’ intrinsic characteristics.

In [25], we have demonstrated that TAST can capture the

spatial-temporal correlations among landscapes, and these

landscapes, which are close to each other or with similar

travel seasons, can be discovered. Meanwhile, the TAST

model retains the good quality of the traditional topic

models for capturing the relationships between landscapes
locating in different areas and has no special travel season

preference. Similarly, the topic distributions on each

package can be also computed, and Table 4 illustrates

many packages with highest probabilities from eight topics

identified by the TAST model (Z ¼ 50) with the price factor
being considered (as illustrated in Section 4.4). Based on the

price-spatial-temporal correlations of packages (for many

interpretations, there may contain some noise), all the topics

can now be classified into eight types, which are noted from

1-1-1 (packages have price, spatial and temporal correla-

tions) to 0-0-0 (packages have none of these correlations).
Another interesting observation is that, the top travel

packages in many topics are actually quite similar with

each other, even though they are with different package

IDs. For example, all the packages in topic 43 are about the

Kunming-Dali-Lijiang tour. This finding once again demon-
strates that, in addition to capture the intrinsic character-

istics of the travel data, the TAST model still holds the

capability of traditional models, such as the property of

clustering documents (packages) [5].
In addition, we show the Pearson correlations of the

topic distributions for different prices/areas/seasons in
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Fig. 7. Season splitting and price segmentation.

TABLE 3
The Description of the Training and Test Data



Fig. 8 where different prices/areas/seasons are assigned

with different topic distributions. From the left matrix, it is

very interesting to observe that the topic distribution of the

very low price segment and the very high price segment

are quite different from three other price ranges. In the

center matrix, for most area pairs, there are no obvious

topic correlations, except for East Asia (EA) and North

China (NC) (for detailed area information, please refer to

Table 2), which locate nearby and are with similar latitude.

The different types of topic relationships between seasons

are more clear as shown in the right matrix, the most

different two pairs of seasons are (winter, summer) and

(summer, fall), while (summer, spring) have the most

similar latent topic distributions.

6.4 Recommendation Performances

Since there are no explicit ratings for validation, we use the
ranking accuracy instead. We adopt the widely used degree
of agreement (DOA) [26] and Top-K [23] as the evaluation
metrics. Also, a simple user study was conducted and
volunteers were invited to rate the recommendations. For
comparison, we recorded the best performance of each
algorithm by tuning their parameters, and we also set some
general rules for fair comparison. For instance, for
collaborative filtering-based methods, we usually consider
the contribution of the nearest neighbors with similarity
values larger than 0.

DOA measures the percentage of item pairs ranked
in the correct order with respect to all pairs [16]. Let
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TABLE 4
An Illustration of Several Topics with Their Travel Packages Having Different Price-Spatial-Temporal Characteristics

Fig. 8. The correlation of topic distributions between different price ranges (Left)/different areas (Center)/different seasons (Right). Darker shades
indicate lower similarity.



NWUi ¼ P � ðFUi [ EUiÞ denote the set of packages that do
not occur in the training set (FUi ) nor the test set (EUi ) for
Ui, and PRPj denote the predicted rank of package Pj in
the recommendation list, and define check orderUiðPj; PkÞ
as 1 if PRPj � PRPk otherwise 0. Then the individual DOA
for tourist Ui is defined as

DOAUi ¼
P

j2EUi ;k2NWUi
check orderUiðPj; PkÞ

jEUi j � jNWUi j
:

For instance, an ideal(a random) ranking corresponds to
a 100 percent (an average 50 percent) DOA, and we use
DOA to stand for the average of each individual DOA.
Under this metric, the ranking performance of each method
is shown in Table 5, where we can see that Cocktail
outperforms the benchmark methods. By integrating the
price factor into the TAST model, Cocktail- performs nearly
as well as Cocktail, and both of them perform better than
TTER. Also, the methods that consider landscape informa-
tion (i.e., LUCF, LBSVD, LItemRank, TTER, TASTContent,
Cocktail) usually outperform those do not use such
information (i.e., UCF, BSVD). As mentioned previously,
it is harder to find the credible nearest neighbor tourists
(and latent interests) only based on the cotraveling
packages. Furthermore, TASTContent performs better than
SContent, and TTER performs better than LUCF and
LBSVD, and these demonstrate the effectiveness of model-
ing latent topics. Meanwhile, unlike watching movies, most
of the tourists seldom travel the packages that are similar to
the ones that they have already traveled (e.g., have too
many identical landscapes), thus content-based methods
(i.e., SContent and TASTContent) perform worse than
collaborative filterings (e.g., LUCF and Cocktail).

Top-K indicates the recall value of the recommended top-
K percent of packages. Since there is only 1 relevant
package for each test tourist (i.e., jEUi j ¼ 1), we define
Top�KUi ¼ #hit, where #hit equals to 1 or 0. Then, the

average of individual Top-Ks are used for comparing
the performances of the algorithms as shown in Fig. 9. We
can see that Cocktail still outperforms other methods and
the Top-K result is very similar to the DOA result, except
that BSVD/LBSVD are evaluated better now.

User study. Since it is now impossible for us to directly
ask the test tourists to rate the recommendation results, we
conducted another type of user study. Specifically, we first
gave the package information that one tourist had traveled
and the season that he/she was planning a new trip, then
we showed the top ranked recommendations from each
algorithm (i.e., LUCF, LBSVD, TTER, TASTContent, and
Cocktail). Finally, some volunteers were invited to blindly
review the recommendations on a five-point Likert scale
ranging from 1 (Meaningless) to 5 (Excellent). In total, we
collected 2,580 ratings for these five algorithms (i.e., 516 for
each) from 17 volunteers (all of them are the undergraduate
and graduate students from the University of Science and
Technology of China). The final mean ratings and the
standard deviations (SD) are shown in Table 6. We can see
that the rating for Cocktail is slightly higher than others,
and LBSVD outperforms both LUCF and TASTContent. By
applying z-test, we find that the differences between the
ratings obtained by Cocktail and the other algorithms are
statistically significant with jzj � 2:58 and thus p � 0:01
(except for the comparison with TTER, where jzj ¼ 1:53 and
p ¼ 0:06). Another interesting observation is that the SD
value for TASTContent is extremely high, which means this
content-based algorithm makes very distinguishable and
controversial recommendations.

In summary, Cocktail performs better than other
methods for all the evaluation metrics, and Cocktail-/
TTER have the second best performances. Due to the
unique characteristics of the travel data, the traditional
collaborative filtering methods (UCF and BSVD) do not
perform well, and they cannot recommend new packages
for tourists. Since different metrics characterize the
recommendations from different perspectives, some “con-
troversial results” have also been observed (e.g., the
different performances of LBSVD). In general, the meth-
ods, which consider additional useful information in a
proper way, tend to have better performances. During the
user study where the users are exposed to many different
recommendations simultaneously, we also noticed that it is
often hard for them to directly judge two recommendation
results from different algorithms. This indicates the issue:
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TABLE 5
A Performance Comparison: DOA (Percent)

Fig. 9. A performance comparison based on Top-K.

TABLE 6
User Study Ratings



the ways of exposing the recommendations and interacting
with the users are also very important for successfully
deploying a system.

Computational performances. Also, we compare the com-
putational performances of the algorithms. We run all the
algorithms on the same platform.5 Fig. 10 shows the
execution time (i.e., the time used for building the model
and making final recommendations for all the test tourists).
We can see that many algorithms (e.g., LItemRank,
TASTContent, Cocktail- and Cocktail) have the similar
runtime. Among all the algorithms, BSVD and LBSVD are
the most efficient, and Cocktail- has the worst computa-
tional performance. Specifically, for the topic model-based
methods, TTER does not have to consider the seasonal topic
similarities of the tourists, thus it is the most efficient.

6.5 The Evaluation of the TRAST Model

Since we have little information about tourists, it is hard to
interpret the identified relationships. However, we can test
the effectiveness of the TRAST model from an alternative
perspective; that is, the mined relationships will be used as
features to help automatically form travel groups. We
conduct two types of experiments. The first experiment is to
use K-means clustering for grouping given tourists, and the
second one is to find the tourists who would like to travel
with given tourist.

To this end, we use 7,083 travel groups to train the
TRAST model. For testing, we select 76 packages from the
original test set (shown in Table 3) to ensure that each
selected package has more than two travel groups. In total,
there are 167 travel groups traveled by 570 tourists. In the
experiments, we fix the number of topics and relationships
to be 100 and 20, and set parameters �, �, and � the same as
the TAST model.

For the clustering experiment, given the set of tourists
(i.e., objects for clustering) and the number of travel
groups (K) of each test package, we run K-means to cluster
these tourists into K groups, and here the relationship
serves as the feature for clustering. We compare this
clustering result with three other clustering results, which
are the K-means results by using group logs (i.e., if two
tourists often traveled in the same groups, then they will

have similar travel preferences), traveled landscapes and

topics (mined by TAST model) as features, respectively.

Thus, the better the selected features, the better clustering

results should be observed. Indeed, K-means clustering

validation has been carefully studied before, and we

choose two recognized validation measures, MI (mutual

information) and VDn (normalized van Dongen criterion),

where MI is a widely used measure and VDn is the most

suitable validation measure identified in [42]. The corre-

sponding experimental results are shown in Table 7. We

can see that, regardless of the similarity measures, the K-

means results based on relationships always perform much

better than the clustering results based on other features

for each evaluation metric.
Meanwhile, we evaluate the identified relationships from

each tourist’s point of view. Specifically, we randomly

select a tourist from each travel group, and then we rank all

the rest tourists (including the ones from other groups) of

this travel package for this tourist (i.e., leave-out-rest). Here,

the ranking list is generated based on the candidates’

similarities with the given tourist computed by the travel

relationship distributions (or cotraveled groups, or land-

scapes, or topic distributions). Ideally, the tourists who are

in the same travel group with the given tourist should

appear earlier in the list. To evaluate these ranking lists, we

choose “precision” and “recall” as the metrics, and the

corresponding results are shown in Fig. 11 and Table 8.

We can see that the ranking lists based on relationships are

still better than those based on other features.
From the above analysis, we know that the relationships

identified by TRAST can be better used for clustering

tourists and help to find the most possible cotravel tourists

for a given tourist. Thus, compared to cotraveled groups,

landscapes and topics, it is more suitable for travel

companies to choose relationships as an assessment for

travel group automatic formation.
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5. For the topic model-based algorithms, we set Gibbs sampling run
100 iterations, since similar results are already observed.

Fig. 10. The runtime results for different algorithms.

TABLE 7
Experimental Results for K-Means Clustering

Fig. 11. The precision results for leave-out-rest (percent).

TABLE 8
The Recall Results for Leave-Out-Rest (Percent)



6.6 Recommendation for Travel Groups

The evaluations in previous sections are mainly focused on
the individual (personalized) recommendations. Since
there are tourists who frequently travel together, it is
interesting to know whether the latent variables (e.g., the
topics of each individual tourist and the relationships of a
travel group) as well as the cocktail approaches are useful
for making recommendations to a group of tourists. To this
end, we performed an experimental study on group
recommendations.

Similar to the evaluation for the personalized recom-
mendation, we recommended for the 666 travel groups
existing in the test set (shown in Table 3). Specifically, each
recommendation algorithm simply views a group of
tourists as an “individual tourist” and all the previous
travel/expense records of these tourists are used for
training, and then generates a single recommendation list
for each test group (tourists in this group) using the training
set (training groups). According to their performances in
Section 6.4, we chose five typical recommendation algo-
rithms for comparison including LUCF, LBSVD, TTER, the
two Cocktails based on the topics extracted by the TAST
model and based on the relationships extracted by the
TRAST model. We chose DOA as the evaluation metric due
to its simplicity in interpretation. The experimental results
are shown in Table 9, where we can see that Cocktails still
outperform other algorithms, and in addition to modeling
each individual tourist, the relationships can also be used
for making recommendations. Meanwhile, we observe that
both LUCF and LBSVD perform much better with more
training records comparing to the results in Table 5.

It is worth noting that the differences between group
recommendation and individual recommendation are more
subtle and complex than we could imagine at the first
glance [21]. While the detailed discussion is beyond the
scope of this paper, we hope there are more future studies
on travel group recommendations.

7 RELATED WORK

In general, the related work can be grouped into two
categories. The first category has a focus on the recommen-
dation studies in the tourism domain, where some systems
have been developed to help tourists and these related work
can be divided into two groups.

In the first group, people are focused on the develop-
ment of intelligent systems for the tourists in the pretravel
stage for travel planning [44], information filtering [41], and
inspiration [32]. For instance, Yin et al. [44] proposed an
automatic trip planning framework by leveraging geo-
tagged photos and textual travel logs. Also, Hao et al. [19]
proposed a location-topic model by learning the local and
global topics to mine the location-representative knowledge
from a large collection of travel logs, and to recommend the
travel destinations. Wu et al. [41] designed a system using

the multimedia technology to generate the personalized
tourism summary. In addition, Ricci et al. [32], [33]
described case-based reasoning approaches, Trip@dvice
and DieToRecs. By exploiting a set of features for each
tourist’s specific interaction session, these two approaches
address a number of travel issues (e.g., mix-and-match
travel planning) and have been successfully used in several
websites, such as the visiteurope.com [39]. Finally, by
taking the travel cost into the consideration, Ge et al. [14]
and Xie et al. [43] provided focused studies of cost-aware
tour recommendation.

In the second subgroup, people target on providing more
context-aware travel information to the on-tour tourists
with mobile devices [35]. For instance, the studies in [1] and
[8] aim on the development of mobile tourist guides. Also,
Averjanova et al. [4] developed a map-based mobile system
that can provide users with some personalized recommen-
dations. Moreover, Carolis et al. [7] used a map for
outlining the location and the information of landscapes
in a town area. Finally, a more sophisticated on-tour
support system, MobyRek, was recently developed by Ricci
and Nguyen [34].

In summary, the above systems and algorithms target on
helping tourists from different perspectives. However,
tourists need system support throughout stages of travel,
beginning from pretravel planning through to the final
stages of travel [34]. Thus, the real-world travel recommen-
der systems are usually very complicated, and some of the
critical gaps, general problems and issues of travel
recommendations have been extensively discussed in [17],
[32], [33], [38].

The second category includes the research work related to
topic models and their applications on recommender
systems. Topic models are usually based upon the idea
that documents (including messages, emails, etc.) are
mixtures of latent topics, where a topic is a probability
distribution over words.

Many topic models have been proposed. Among them,
the latent Dirichlet allocation (LDA) [5] model possesses
fully generative semantics, and thus has been widely
studied and extended for many applications. For example,
Rosen-Zvi et al. [36] extended LDA to the author-topic (AT)
model for computing similarity between authors and the
entropy of author output. Based on LDA and AT models,
McCallum et al. [29] provided the author-recipient-topic
(ART) model for social network analysis. There are also
some works, which have successfully applied LDA into the
recommendation algorithms. For instance, Chen et al. [9]
adopted LDA to model user-community cooccurrences in
social networking services, and then made community
recommendations. Liu et al. [26] used the LDA model to
mine the user latent interests so as to enhance collaborative
filtering. Wang and Blei [40] combined the merits of
traditional collaborative filtering and probabilistic topic
model together to recommend scientific articles.

In summary, topic models (especially LDA)-based
methods perform well in the text-related or other recom-
mendation tasks. Furthermore, we can easily integrate
heterogeneous data sources into a unified framework by
extending current models [29], [36], [44]. Thus, more and
more researchers try to exploit topic models for better
usage, such as finding the way to combine topic models and
matrix factorizations [3], [40].
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8 DISCUSSION

Here, we discuss the advantages and limitations of this
study. From the experimental results, we can see that the
proposed cocktail recommendation approach works very
well for predicting the tourists’ travel preferences by
exploiting the unique characteristics of the travel package
data. Also, in this paper, we describe the work in a domain-
depended (i.e., travel) way where users are tourists, items
are travel packages, and features of items are seasons, areas,
and so on. However, it is worth noting that the idea of
profiling user/item and the way to explore features and
integrate these features in topic modeling should be
generally applicable to other recommendation scenarios.

Meanwhile, the cocktail approach has some limitations.
First, unlike some intelligent systems [38], the cocktail
approach disregards the specific preferences of the tourist
while he/she is planning a trip, such as the transportation
preference. In other words, we focus on designing the
recommendation algorithm to attract the tourists before
they make a travel decision rather than providing the travel
support in the on-tour stage [32]. Thus, our approach may
be only useful in some situations (e.g., email marketing).
Also, if we want to deploy this work for real-world services,
we have to incorporate more practical functions. Second,
there are some limitations with the performance evaluation,
which is just based on the ability to recover omitted (hide)
test data [20] and a simple user study. For instance, we
cannot always attribute a user not traveling a package
locating in the top of the recommendation list to a lack of
interest of that package [30]; that is, relevant (desirable)
travel packages in the test set may be just a small fraction of
the entire relevant ones that are actually of interest to each
tourist. For real-world applications, more sophisticated
online experiments are required.

9 CONCLUDING REMARKS

In this paper, we present study on personalized travel
package recommendation. Specifically, we first analyzed
the unique characteristics of travel packages and developed
the TAST model, a Bayesian network for travel package and
tourist representation. The TAST model can discover the
interests of the tourists and extract the spatial-temporal
correlations among landscapes. Then, we exploited the
TAST model for developing a cocktail approach on
personalized travel package recommendation. This cocktail
approach follows a hybrid recommendation strategy and
has the ability to combine several constraints existing in the
real-world scenario. Furthermore, we extended the TAST
model to the TRAST model, which can capture the
relationships among tourists in each travel group. Finally,
an empirical study was conducted on real-world travel
data. Experimental results demonstrate that the TAST
model can capture the unique characteristics of the travel
packages, the cocktail approach can lead to better perfor-
mances of travel package recommendation, and the TRAST
model can be used as an effective assessment for travel
group automatic formation. We hope these encouraging
results could lead to many future work.
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