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Abstract. Time series (particularly multivariate) classification has
drawn a lot of attention in the literature because of its broad applica-
tions for different domains, such as health informatics and bioinformatics.
Thus, many algorithms have been developed for this task. Among them,
nearest neighbor classification (particularly 1-NN) combined with Dy-
namic Time Warping (DTW) achieves the state of the art performance.
However, when data set grows larger, the time consumption of 1-NN
with DTW grows linearly. Compared to 1-NN with DTW, the tradi-
tional feature-based classification methods are usually more efficient but
less effective since their performance is usually dependent on the qual-
ity of hand-crafted features. To that end, in this paper, we explore the
feature learning techniques to improve the performance of traditional
feature-based approaches. Specifically, we propose a novel deep learn-
ing framework for multivariate time series classification. We conduct two
groups of experiments on real-world data sets from different application
domains. The final results show that our model is not only more effi-
cient than the state of the art but also competitive in accuracy. It also
demonstrates that feature learning is worth to investigate for time series
classification.

1 Introduction

As a large amount of time series data have been collected in many domains
such as finance and bioinformatics, time series data mining has drawn a lot of
attention in the literature. Particularly, multivariate time series classification is
becoming very important in a broad range of real-world applications, such as
health care and activity recognition [1–3].

In recent years, a plenty of classification algorithms for time series data have
been developed. Among these classification methods, the distance-based method
k-Nearest Neighbor (k-NN) classification has been empirically proven to be very
difficult to beat [4, 5]. Also, more and more evidences have shown that the
Dynamic Time Warping (DTW) is the best sequence distance measurement in
most domains [4–7]. Thus, the simple combination of k-NN and DTW could
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reach the best performance of classification in most domains [6]. Other than
sequence distance based methods, feature-based classification methods [8] follow
the traditional classification framework. As is known to all, the performance
of traditional feature-based methods depends on the quality of hand-crafted
features. However, unlike other applications, it is difficult to design good features
to capture intrinsic properties embedded in various time series data. Therefore,
the accuracy of feature-based methods is usually worse than that of sequence
distance based ones, particularly 1-NN with DTW method. On the other hand,
although many research works use 1-NN and DTW, both of them cause too
much computation for many real-world applications [7].

Motivation. Is it possible to improve the accuracy of feature-based methods?
So that the feature-based methods are not only superior to 1-NN with DTW in
efficiency but also competitive to it in accuracy.

Inspired by the deep feature learning for image classification [9–11], in this
paper, we explore a deep learning framework for multivariate time series classifi-
cation. Deep learning does not need any hand-crafted features by people, instead
it can learn a hierarchical feature representation from raw data automatically.
Specifically, we propose an effective Multi-Channels Deep Convolution Neural
Networks (MC-DCNN) model, each channel of which takes a single dimension
of multivariate time series as input and learns features individually. Then the
MC-DCNN model combines the learnt features of each channel and feeds them
into a Multilayer Perceptron (MLP) to perform classification finally. To estimate
the parameters, we utilize the gradient-based method to train our MC-DCNN
model. We evaluate the performance of our MC-DCNN model on two real-world
data sets. The experimental results on both data sets show that our MC-DCNN
model outperforms the baseline methods with significant margins and has a good
generalization, especially for weakly labeled data.

The rest of the paper is organized as follows. Section 2 depicts the definitions
and notations used in the paper. In section 3, we present the architecture of
MC-DCNN, and describe how to train the neural networks. In section 4, we
conduct experiments on two real-world data sets and evaluate the performance
of each model. We make a short review of related work in section 5. Finally, we
conclude the paper and discuss future work in section 6.

2 Definitions and Notations

In this section, we introduce the definitions and notations used in the paper.

Definition 1 Univariate time series is a sequence of data points, measured typ-
ically at successive points in time spaced at uniform time intervals. A univariate
time series can be denoted as T = {t1, t2, ..., tn}, and n is the length of T.

Definition 2 Multivariate time series is a set of time series with the same
timestamps. For a multivariate time series M, each element mi is a univariate
time series. At any timestamp t, m·t = {m1t,m2t, ...,mlt}, where l is the number
of univariate time series in M.
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As previous works shown [12], it’s common to extract subsequences from long
time series to do classification instead of classifying with the whole sequence.
Definition 3 Subsequence is a sequence of consecutive points which are ex-
tracted from time series T and can be denoted as S = {ti, ti+1, ..., ti+k−1}, where
k is the length of subsequence. Similarly, multivariate subsequence can be denoted
as Y = {m·i,m·i+1, ...,m·i+k−1}, where m·i is defined in Definition 2.

Since we perform classification on multivariate subsequences in our work, in
remainder of the paper, we use subsequence standing for both univariate and
multivariate subsequence for short according to the context. For a long-term
time series, domain experts may manually label and align subsequences based
on experience. We define this type of data as well aligned and labeled data.

Definition 4 Well aligned and labeled data: Subsequences are labeled by domain
experts, and different subsequences belonging to same pattern are well aligned.

Fig.1 shows a snippet of time series extracted from BIDMC Congestive Heart
Failure data set [13]. Each subsequence is extracted and labeled according to
the red dotted line by medical staffs. However, to acquire the well aligned and
labeled data, it always needs great manual cost.

N N N N N N V N N N N N N

0 1000 2000 3000

Fig. 1. A snippet of time series which
contains two types of heartbeat: normal
(N) and ventricular fibrillation (V)

a)
b)

c)

d)

0 500 1000 1500

Fig. 2. Four 1D samples of 3D weakly
labeled physical activities: a) ‘standing ’,
b) ‘walking ’, c) ‘ascending stairs’, d) ‘de-
scending stairs’

In contrast to well aligned and labeled data, in practice, weakly labeled data
can be obtained more easily [12, 1]. We define it as follows.
Definition 5 Weakly labeled data: A long-term time series is associated with a
single global label as shown in Fig.2.

Due to the alignment-free property of weakly labeled data, it requires to
extract subsequences by specific algorithm. The most widely used algorithm is
sliding window [14]. By specifying sliding step, we can extract large amount of
redundant subsequences from long-term time series.

In summary, in this paper, we will primarily concentrate on the time series
of the same length and conduct experiments on both labeled data that is well
aligned and weakly labeled data.

3 Multi-Channels Deep Convolutional Neural Networks

In this section, we will introduce a deep learning framework for multivariate time
series classification: Multi-Channels Deep Convolutional Neural Networks (MC-
DCNN). Traditional Convolutional Neural Networks (CNN) usually include two
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parts. One is a feature extractor, which learns features from raw data auto-
matically. And the other is a trainable fully-connected MLP, which performs
classification based on the learned features from the previous part. Generally,
the feature extractor is composed of multiple similar stages, and each stage is
made up of three cascading layers: filter layer, activation layer and pooling layer.
The input and output of each layer are called feature maps [11]. In the previous
work of CNN [11], the feature extractor usually contains one, two or three such
3-layers stages. Due to space constraint, we only introduce the components of
CNN briefly. More details of CNN can be referred to [11, 15].

3.1 Architecture

In contrast to image classification, the input of multivariate time series classi-
fication are multiple 1D subsequences but not 2D image pixels. We modify the
traditional CNN and apply it to multivariate time series classification task in
this way: we separate multivariate time series into univariate ones and perform
feature learning on each univariate series individually. Then we concatenate a
normal MLP at the end of feature learning to do classification. To be under-
stood easily, we illustrate the architecture of MC-DCNN in Fig. 3. Specifically,
this is an example of 2-stages MC-DCNN for activity classification. It includes
3-channels inputs and the length of each input is 256. For each channel, the
input (i.e., the univariate time series) is fed into a 2-stages feature extractor,
which learns hierarchical features through filter, activation and pooling layers.
At the end of feature extractor, we flatten the feature maps of each channel and
combine them as the input of subsequent MLP for classification. Note that in
Fig. 3, the activation layer is embedded into filter layer in the form of non-linear
operation on each feature map. Next, we describe how each layer works.

Filter Layer. The input of each filter is a univariate time series, which is

denoted xl
i ∈ �nl

2 , 1 ≤ i ≤ nl
1, where l denotes the layer which the time series

comes from, nl
1 and nl

2 are number and length of input time series. To capture
local temporal information, it requires to restrict each trainable filter kij with
a small size, which is denoted ml

2, and the number of filter at layer l is denoted
ml

1. Recalling the example described in Fig. 3, in first stage of channel 1, we
have nl

1 = 1, nl
2 = 256, ml

2 = 5 and ml
1 = 8. We compute the output of each

filter according to this:
∑

i x
l−1
i ∗ kl

ij + blj , where the ∗ is convolution operator

and blj is the bias term.

Activation Layer. The activation function introduces the non-linearity into
neural networks and allows it to learn more complex model. The most widely
used activation functions are sigmoid(t) = 1

1+e−t and tanh(·). In this paper, we
adopt sigmoid(·) function in all activation layers due to its simplicity.

Pooling Layer. Pooling is also called subsampling because it usually subsam-
ples the input feature maps by a specific factor. The purpose of pooling layer
is to reduce the resolution of input time series, and make it robust to small
variations for previous learned features. The simplest yet most popular method
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Fig. 3. A 2-stages MC-DCNN architecture for activity classification. This architecture
consists of 3 channels input, 2 filter layers, 2 pooling layers and 2 fully-connected layers.
This architecture is denoted as 8(5)-2-4(5)-2-732-4 based on the template C1 (Size)-
S1 -C2 (Size)-S2 -H -O, where C1 and C2 are numbers of filters in first and second stage,
Size denotes the kernel size, S1 and S2 are subsampling factors, H and O denote the
numbers of units in hidden and output layers of MLP.

is to compute average value in each neighborhood at different positions with or
without overlapping. The neighborhood is usually constructed by splitting input
feature maps into equal length (larger than 1) subsequences. We utilize average
pooling without overlapping for all stages in our work.

3.2 Gradient-Based Learning of MC-DCNN

The same as traditional MLP, for multi-class classification task, the loss function
of our MC-DCNN model is defined as: E = −∑

t

∑
k y

∗
k(t) log (yk(t)), where

y∗k(t) and yk(t) are the target and predicted values of t-th training example at
k-th class, respectively. To estimate parameters of models, we utilize gradient-
based optimization method to minimize the loss function. Specifically, we use
simple backpropagation algorithm to train our MC-DCNN model, since it is
efficient and most widely used in neural networks [16]. We adopt stochastic
gradient descent (SGD) instead of full-batch version to update the parameters.
Because SGD could converge faster than full-batch for large scale data sets [16].

A full cycle of parameter updating procedure includes three cascaded phases
[17]: feedforward pass, backpropagation pass and the gradient applied.

Feedforward Pass. The objective of feedforward pass is to determine the pre-
dicted output of MC-DCNN on input vectors. Specifically, it computes feature
maps from layer to layer and stage to stage until obtaining the output. As shown
in the previous content, each stage contains three cascaded layers, and activation
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layer is embedded into filter layer in form of non-linear operation on each feature
map. We compute output feature map of each layer as follows:

zlj =
∑

i

xl−1
i ∗ kl

ij + blj , xl
j = sigmoid(zlj), xl+1

j = down(xl
j)

where down(·) represents the subsampling function for average pooling, xl−1
i and

zlj denote the input and output of filter layer, zlj and xl
j denote the input and

output of activation layer, xl
j and xl+1

j denote the input and output of pooling
layer.

Eventually, a 2-layer fully-connected MLP is concatenated to feature extrac-
tor. Since feedforward pass of MLP is standard and also the space is limited,
more details of MLP can be referred to [16, 17].

Backpropagation Pass. Once acquiring predicted output y, the predicted
error E can be calculated according to the loss function. By taking advantage of
chain-rule of derivative, the predicted error propagates back on each parameter
of each layer one by one, which can be used to work out the derivatives of them.
We still don’t present backpropagation pass of final MLP for the same reason of
feedforward pass.

For pooling layer in the second stage of feature extractor, the derivative of
xl−1
j is computed by the upsampling function up(·), which is an inverse operation

opposite to the subsampling function down(·) for the backward propagation of
errors in this layer.

∂E

∂xl−1
j

= up(
∂E

∂xl
j

)

For filter layer in second stage of feature extractor, derivative of zlj is computed
similar to that of MLP’s hidden layer:

δlj =
∂E

∂zlj
=

∂E

∂xl
j

∂xl
j

∂zlj
= sigmoid

′
(zlj) ◦ up(

∂E

∂xl+1
j

)

where ◦ denotes element-wise product. Since the bias is a scalar, to compute its
derivative, we should summate over all entries in δlj as follows:

∂E

∂blj
=

∑

u

(δl
j)u

The difference between kernel weight kl
ij and MLP’s weight wl

ij is the weight

sharing constraint, which means the weights between (kl
ij)u and each entry of xl

j

must be the same. Due to this constraint, the number of parameters is reduced by
comparing with the fully-connected MLP, Therefore, to compute the derivative
of kernel weight kl

ij , it needs to summate over all quantities related to this kernel.
We perform this with convolution operation:

∂E

∂kl
ij

=
∂E

∂zlj

∂zlj

∂kl
ij

= δlj ∗ reverse(xl−1
i )
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where reverse(·) is the function of reversing corresponding feature map. Finally,
we compute the derivative of xl−1

i as follows:

∂E

∂xl−1
i

=
∑

j

∂E

∂zlj

∂zlj

∂xl−1
i

=
∑

j

pad(δlj) ∗ reverse(kl
ij)

where pad(·) is a function which pads zeros into δl
j from two ends, e.g., if the

size of kl
ij is nl

2, then this function will pad each end of δl
j with nl

2 − 1 zeros.

Gradients Applied. Once we obtain the derivatives of parameters, it’s time
to apply them to update parameters. To converge fast, we utilize decay and
momentum strategies [16]. The weight wl

ij in MLP is updated in this way:

wl
ij = wl

ij +Δwl
ij

Δwl
ij = momentum ·Δwl

ij − decay · ε · wl
ij − ε · ∂E

∂wl
ij

where wl
ij represents the weight between xl−1

i and xl
j , Δwl

ij denotes the gradient

of wl
ij , and ε denotes the learning rate. The kernel weight kl

ij , the bias term blj in

filter layer and bl in MLP are updated similar to the way of wl
ij . The same as [18],

we set momentum = 0.9, decay = 0.0005 and ε = 0.01 for our experiments. It
is noted that [19] claimed that both the initialization and the momentum are
crucial for deep neural networks, hence, we consider how to select these values
as a part of our future work.

4 Experiments

In this section, we will conduct two groups of experiments on real-world data
sets from two different application domains. Particularly, we will show the per-
formance of our methods via comparing with other baseline models in terms of
both efficiency and accuracy.

To the best of our knowledge, indeed, there are many public time series data
sets available, e.g., the UCR Suite [20]. However, we decide not using the UCR
Suite for the following reasons. First, we focus on the classification of multivariate
time series, whereas most data sets in UCR Suite only contain univariate time
series. Second, data sets in UCR Suite are usually small and CNN may not
work well on such small data sets [21]. Thus, we choose two data sets which are
collected from real-world applications, and we will introduce the data sets in the
next subsections.

We consider three approaches as baseline methods for evaluation: 1-NN (ED),
1-NN (DTW-5%) and MLP. Here, 1-NN (ED) and 1-NN (DTW-5%) are the
methods that combine Euclidean Distance and Window Constraint DTW [7]) 1

with 1-NN, respectively. Besides these two state-of-the-art methods, MLP is

1 Following the discoveries in [7], we set the optimal window constraint r as 5%.
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chosen to demonstrate that the feature learning process can improve the clas-
sification accuracy effectively. For the purpose of comparison, we record the
performance of each method by tuning their parameters. Notice that some other
classifiers are not considered here, since it is difficult to construct hand-crafted
features for time series and many previous works have claimed that feature-based
methods cannot achieve the accuracy as high as 1-NN methods. Also, we do not
choose the full DTW due to its expensive time consumption. Actually, at least
more than a month will be cost if we use full DTW in our experiments.

4.1 Activity Classification (Weakly Labeled Data)

Data Set. We use the weakly labeled PAMAP2 data set for activity classifica-
tion . It records 19 physical activities performed by 9 subjects. On a machine
with Intel I5-2410 (2.3GHz) CPU and 8G Memory (our experimental platform),
according to the estimation, it will cost nearly a month for 1-NN (DTW-5%) on
this data set if we use all the 19 physical activities. Hence, currently, we only
consider 4 out of these 19 physical activities in our work, which are ‘standing’,
‘walking ’, ‘ascending stairs ’ and ‘descending stairs ’. And each physical activity
corresponds to a 3D time series. Moreover, 7 out of these 9 subjects are chosen.
Because the other two either have different physical activities or have different
dominant hand/foot.
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Fig. 4. Prediction time of each model on
training sets with different size
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Fig. 5. The box-and-whisker plot of clas-
sification accuracy on BIDMC data set

Experiment Setup. We normalize each dimension of 3D time series as x−μ
σ ,

where μ and σ are mean and standard deviation of time series. Then we apply
the sliding window algorithm to extract subsequences from 3D time series with
different sliding steps. To evaluate the performance of different models, we adopt
the leave-one-out cross validation (LOOCV) technique. Specifically, each time
we use one subject’s physical activities as test data, and the physical activities
of remaining subjects as training data. Then we repeat this for every subject.
To glance the impact of depths, we evaluate two models: MC-DCNN(1), MC-
DCNN(2). They are 1-stage and 2-stages feature learning models, respectively.

Experimental Results To evaluate efficiency and scalability of each model,
we get five data splits with different volumes by setting sliding step as 128, 64,
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32, 16, 8, respectively. In addition, to ensure each subsequence to cover at least
one pattern of time series, we set the sliding window length as 256.

As is well known, feature-based models have an advantage over lazy classifica-
tion models (e.g., k-NN) in efficiency. As shown in Fig. 4, the prediction time of
1-NN model increases linearly as the size of training data set grows. In contrast,
the prediction time of our MC-DCNN model is almost constant no matter how
large the training data is.

We also evaluate accuracy of each model on these five data splits. Fig. 6 shows
the detailed accuracy comparisons of each subject at different step settings. From
this figure we can see that for each subject our MC-DCNN model is either the
most accuracy one or very close to the most accuracy one. Especially, for subject
3, the 2-stages MC-DCNN leads to much better accuracy than other approaches.
We suppose that 2-stages MC-DCNN may learn high-level and robust feature
representations so that it has a good generalization. We also show the average
and standard deviation of accuracy in Table 1. From the table we can see that our
model leads to the highest average accuracy and the lowest standard deviation.

Table 1. Average and standard deviation of accuracy of each model at different sliding
step. Bold numbers represent the best results.

Step 1-NN (DTW-5%) MLP 1-NN (ED) MC-DCNN(1) MC-DCNN(2)
128 83.46 (0.063) 77.89 (0.076) 79.05 (0.076) 88.73 (0.057) 90.34 (0.031)
64 84.51 (0.070) 80.09 (0.098) 80.25 (0.089) 90.38 (0.050) 91.00 (0.033)
32 84.44 (0.080) 82.49 (0.096) 80.74 (0.094) 90.28 (0.063) 91.14 (0.031)
16 84.16 (0.094) 84.34 (0.104) 81.74 (0.096) 90.75 (0.062) 93.15 (0.019)
8 83.61 (0.104) 84.83 (0.115) 82.28 (0.103) 90.53 (0.065) 93.36 (0.015)



Time Series Classification Using MC-DCNN 307

4.2 Congestive Heart Failure Detection (Well Aligned Data)

Data Set Well aligned BIDMC data set was downloaded from Congestive Heart
Failure database 2 [13]. Long-term electrocardiograph (ECG) data was recorded
from 15 subjects, each of them suffers severe Congestive Heart Failure. Different
from PAMAP2 data, in BIDMC data set, each type of heart failure corresponds
to a 2D time series. In this experiment, we consider four types of heartbeats to
evaluate all the models: ‘N’, ‘V’, ‘S’, ‘r’.

Experiment Setup. We still normalize each univariate of 2D time series as
mentioned before. Different from weakly data, we extract subsequences centered
at aligned marks (red dotted line in Fig. 1). And each subsequence still has a
length of 256. Similar to the classification of individuals’ heartbeats [12], we mix
all data of 15 subjects and randomly split it into 10 folds to perform 10-folds cross
validation. Because as [12] noted, it can be able to obtain huge amounts of labeled
data in this way and a unhealthy individual may have many different types of
heartbeats. To glance the impact of depths, we also evaluate two models: MC-
DCNN(1), MC-DCNN(2). The former performs 1-stage feature learning, and
the latter performs 2-stages. To determine the epochs, we separate one third of
training data as validation set. As shown in Fig. 7, we set epoch to 40 and 80
for 1-stage and 2-stages MC-DCNN models respectively. Since the test error is
stable when epochs are greater than them.

Experimental Results. We illustrate the accuracy of each model on BIDMC
data set in Fig. 5. From this figure, we can see that accuracies of 1-stage MC-
DCNN and 2-stages MC-DCNN models are 94.67% and 94.65%, which are also
higher than the accuracies of 1-NN(ED) (93.64%), 1-NN(DTW-5%) (92.90%)
and MLP (94.22%). Due to the space limit we do not report the prediction
time of each model on BIDMC data set. However, the result is similar to Fig. 4
and it also supports that feature-based models have an advantage over lazy
classification models (e.g., k-NN) in efficiency.
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Fig. 7. Test error on validation set, left) 1-stage MC-DCNN model and right) 2-stages
MC-DCNN model. The vertical purple line indicates the determined epoch.

5 Related Work
Many time series classification methods have been proposed based on different
sequence distance measurements. Among these previous works, some researchers

2 http://www.physionet.org/physiobank/database/chfdb/

http://www.physionet.org/physiobank/database/chfdb/
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claimed that 1-NN combined DTW is the current state of the art [6, 7]. How-
ever, the biggest weakness of 1-NN with DTW model is its expensive computa-
tion [7]. To overcome this drawback, a part of researchers explored to speed up
the computation of distance measure (e.g., DTW) in certain methods (e.g., with
boundary conditions) [7]. While another part of researchers tried to reduce the
computation of 1-NN by constructing data dictionary [12, 7, 14, 22]. When the
data set grows large, all these approaches improve the performance significantly
in contrast to simple 1-NN with DTW. Some feature-based models have been
explored for time series classification [2, 23], however, most of previous works
extracted the hand-crafted statistical features based on domain knowledge, and
achieved the performance not as well as sequence distance based models.

Feature learning (or representation learning) is becoming an important field
in machine learning community in recent years [9]. The most successful feature
learning framework is deep neural networks, which build hierarchical represen-
tations from raw data [10, 11, 24]. Particularly, as a supervised feature learning
model, deep convolutional neural networks achieve remarkable successes in many
tasks such as digit and object recognition [18], which motivates us to investigate
the deep learning in time series field. In the literature, there are few works on
time series classification using deep learning. Ref.[25] explored an unsupervised
feature learning method with convolutional deep belief networks for audio clas-
sification, but in frequency domain rather than in time domain. Ref.[3] adopted
a special time delay neural network (TDNN) model for electroencephalography
(EEG) classification. However, their TDNN model only included a single hid-
den layer, which is not deep enough to learn good hierarchical features. To the
best of our knowledge, none of existing works on time series classification has
considered the supervised feature learning from raw data. In this paper, we ex-
plore a MC-DCNN model for multivariate time series classification and intend
to investigate this problem in another way.

6 Conclusion and Future Work

Time series classification is becoming very important in a broad range of real-
world applications, such as health care and activity recognition. However, most
existing methods have high computational complexity or low prediction accu-
racy. To this end, we developed a novel deep learning framework (MC-DCNN)
to classify multivariate time series in the paper. This model learns features from
individual univariate time series in each channel automatically, and combines in-
formation from all channels as feature representation at final layer. A traditional
MLP is concatenated to perform classification. We evaluated our MC-DCNN
model on two real-world data sets. Experimental results show that our MC-
DCNN model outperforms the competing baseline methods on both data sets,
especially, the improvement of accuracy on weakly labeled data set is significant.
Also, we showed that 2-stages MC-DCNN is superior to 1-stage MC-DCNN. It
provides the evidence that the deeper architecture can learn more robust high-
level features, which is helpful for improving performance of classification.
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There are several research directions for future work. First, in this paper
we simply use the 1-stage and 2-stages feature learning for better illustration,
and in the future we plan to study and extend other deep learning models for
multivariate time series classification on more data sets. Second, we also intend
to perform unsupervised algorithms on unlabeled data to pre-train the networks.
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