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ABSTRACT

Influence maximization is the problem of finding a set of
seed nodes in social network for maximizing the spread of
influence. Traditionally, researchers view influence propa-
gation as a stochastic process and formulate the influence
maximization problem as a discrete optimization problem.
Thus, most previous works focus on finding efficient and
effective heuristic algorithms within the greedy framework.
In this paper, we view the influence maximization problem
from the perspective of data reconstruction and propose a
novel framework named Data Reconstruction for Influence
Maximization(DRIM). In our framework, we first construct
an influence matrix, each row of which is the influence of a n-
ode to other nodes. Then, we select k most informative rows
to reconstruct the matrix and the corresponding nodes are
the seed nodes which could maximize the influence spread.
Finally, we evaluate our framework on two real-world data
sets, and the results show that DRIM is at least as effective
as the traditional greedy algorithm.
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1. INTRODUCTION

In recent years, social network sites such as Facebook! and
Twitter? have become very popular and many people com-
municate with each other on them. Therefore, social net-
work is now an important platform for viral marketing [4].
Unlike traditional marketing strategies, viral marketing only
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targets at a small set of influential individuals (nodes) in the
network. Thus, the key problem is how to figure out these
influential nodes. To this end, Kempe et al. [9] formulate it
as a discrete optimization problem known as influence maxi-
mization problem. In their paper, two classical propagation
models were discussed: Linear Threshold (LT) model [7]
and Independent Cascade(IC) model [5]. Furthermore, they
proved that influence maximization is an NP-hard problem
in both models and proposed a greedy solution. Due to the
submodular property of this problem, the greedy algorithm
can approximate the optimal solution within a constant fac-
tor. Meanwhile, Monte Carlo simulation is used to estimate
the influence spread (i.e., the expected number of nodes that
will be influenced) of the node set in the greedy algorithm,
as influence propagation is treated as a stochastic process in
both LT and IC models.

One of the biggest challenges of the greedy algorithm
is that we need to run Monte Carlo simulation sufficient-
ly many times (e.g., 10,000) for accurately estimating the
influence spread, i.e., very time-consuming. Thus, the fol-
lowing researchers mainly focus on reducing the calculation.
Leskovec et al. [11] exploited the submodular property and
proposed CELF algorithm which is 700 times faster than the
greedy algorithm without effectiveness loss. Chen et al. [3]
proposed degree discount heuristic algorithm which is much
faster than the greedy algorithm but not as effective as it.
Along this line, several other heuristic algorithms have been
proposed [2, 4, 6, 15]. These algorithms exploit the property
of the social network or approximate the influence propaga-
tion models for computing the influence spread of a set of
nodes faster [1]. In this way, they speed up the algorithm
but are usually less effective.

However, we can explore other aspects of the influence
maximization problem besides searching for more effective
heuristics. That is, we may think about this problem from a
different perspective. Actually, influence maximization finds
some influential nodes whose influence can cover the whole
network, which is similar to selecting some informative rows
to reconstruct a matrix. Inspired by [16, 8], in this paper we
treat influence maximization as a data reconstruction prob-
lem. Specifically, we propose a novel framework called Da-
ta Reconstruction for Influence Maximization(DRIM) which
finds the influential nodes by minimizing the reconstruction
error. In our framework, we first construct an influence ma-
trix, each row of which is the influence of a node to other
nodes. Then, we try to select kK most informative rows to
reconstruct the influence matrix and the corresponding n-
odes are the seed nodes which could maximize the influence



spread. We verify our framework on two real-world data set-
s, and the experimental results show that DRIM is at least
as effective as the greedy algorithm. Our contributions can
be summarized as follows:

o We view the influence maximization problem from the
perspective of data reconstruction and propose a novel
framework named DRIM to solve it.

e We evaluate the proposed framework on two real-world
data sets. Experimental results show that DRIM is at
least as effective as the traditional greedy algorithm.

2. FINDING INFLUENTIAL NODES

In this section, we propose a new framework to solve the
influence maximization problem from the perspective of da-
ta reconstruction. We first review the definition of influ-
ence maximization problem, and then describe the proposed
framework in detail.

Let G = (V,E,T) represent a social network, where V/
is the node set and FE is the edge set. If there is an edge
from node ¢ to node j in E, ¢;; in influence propagation
matrix T = [t;, j]n«n is the influence transmission probability
from i to j. According to the definition of Kempe et al. [9],
influence maximization problem is a discrete optimization
problem: given a social network, and a number k, find k
nodes, called the seed set, such that by activating them,
the expected number of final activated nodes is maximized.
Different from traditional methods, we find the influential
seed nodes from the perspective of data reconstruction. The
proposed framework contains two steps:

1. Construct an influence matrix X € RY*YN | where x; €
RY¥ indicates the influence of node i.

2. Select k most informative rows from the matrix X to
reconstruct it, and we can find the influential seed n-
odes simultaneously.

2.1 Constructing Influence Matrix

There are a few ways to construct the influence matrix.
However, in IC and LT model, we have to use Monte Carlo
simulation to estimate the influence spread which is very
time-consuming. Thus we turn to the linear model proposed
by Xiang et al. [14]. In their model, we can get a closed-form
solution of the influence of a single node or a set of nodes.
Specifically, the influence from ¢ to j, fi—;, is defined as :

fimi =i, a; >0, forj=i
1 . .
fing = T, Z trjfimk, forj#i
keN,

where N; = {j1,j2,...jm} is j’s neighborhood node set, a;
and \; are two parameters of the model®.

According to the solution given by Xiang et al. [14], we
can obtain the influence vector f; = [fi1, fis2, .. fimsn] of
node i by solving the linear system rPip, = e;, where
P=(I+ X —T)""'. And f; is exactly the i-th row of the
influence matrix X.

2.2 Finding Influential Nodes

Given influence matrix, we can find influential nodes with
data reconstruction method. Since each row of the influence
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matrix is the influence of a node to other nodes, finding
informative rows to reconstruct the influence matrix essen-
tially means finding influential nodes whose influence can
cover the whole network. Specifically, we try to select k
most informative rows to reconstruct the influence matrix
and the corresponding nodes are the seed nodes. Inspired
by [16, 8], we formulate this problem as follows:
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(1)
where AT = [a1,...an]. B = [B1,...,, )7 is an auxiliary
variable to control nodes selection. We impose {1 norm [13]
on B to induce sparsity. If 5; = 0, the j-th column must be
0 which means the j-th node is not selected.

We’d like to give more implication about the nonnegative
constraints [10] used in Eq. (1). Since one’s influence will
not fade with the existence of others, which shares a similar
assumption with IC model, the nonnegative constraints used
here can make the result more interpretable. That is, it
allows only additive, not subtractive, combination of the
nodes’ influence vectors.

By fixing aj’s and setting the derivative of J with respect
to B to be zero, we can obtain the closed-form solution of

3:

(2)

By fixing 3, the remaining problem can be solved by pro-
jected gradient descent. The gradient is :

% = —2X(x; — X" a;) + 2diag(8) 'a;i  (3)

Thus the update formula is:

aJ(ai)
aai

) (4)

a; = maz(0,a; — C

Algorithm 1 gives the details of the procedure.

Algorithm 1: Influential Nodes Selection

Input: seeds number k£ and the influence matrix X
Output: k influential nodes
initialize A with random numbers
set f; = 0,Vj
while not converge do

update B by Eq. (2)

while not converge do

update A by Eq. (4)
end

end
return the subscripts of k largest values in 8

3. EXPERIMENTS

We provide validation on two real-world data sets. One of
them is the Wikipedia who-votes-on-whom network (Wiki-
Vote), and the other one is the collaboration network from
DBLP. Specifically, we demonstrate that our framework is
at least as effective as the greedy algorithm.



Table 1: Statistics of Data Sets
Name Nodes Edges

Wiki-Vote | 7,115 103,689
DBLP-IR | 8,958 27,732
DBLP-ML | 8,896 26,629

DBLP-DM | 10,347 33,466

3.1 Experimental Setup

Data Sets. The first data set is downloaded from S-
NAP*. The second data set is downloaded from DBLP®. As
for the second data set from DBLP, we focus on three re-
search domains (i.e., three subnetworks), which are “Infor-
mation Retrieval”(IR), “Data Mining”(DM) and “Machine
Learning”(ML). We select the papers that are published be-
fore January 2013 from several top-ranked journals and con-
ferences for each domain. The authors of these papers are
used as nodes in the collaboration network. When two au-
thors have one co-authored paper, an edge will be added
between the corresponding nodes.

The propagation probability of an edge (¢,7) is set to
%, as widely used in the literature [9, 3, 6, 15]. In
order to make the linear system in Section 2.1 converge, we
slightly change the probability by multiplying it with a small
real number. For the propagation probability in real world
is quite small, we set it as 0.1 in our experiment.

In total, we get four social networks. More detailed infor-
mation is shown in Table 1.

Parameter Settings. There are two parameters: o and
A in linear model. When we compute the influence matrix,
we set the same « value for all nodes. Here, we set the a to
1, which means that each node has full confidence of itself
and the self-influence is 1. As for A, we choose the same
value as [14], which is 0.176. In the data reconstruction
step, there is a parameter v that controls the sparsity of
the matrix. We have tried a few values in our experiment
and discovered that the algorithm gets its best performance
when v equals to 0.4.

Baseline Algorithms. We compare the proposed frame-
work, referred as DRIM, with three baseline algorithms on
the IC model. The baseline algorithms are as follows:

e Greedy: The greedy algorithm is proposed by Kempe
et al. [9]. For each candidate seed set S, we run 10,000
times simulations to obtain the influence spread of S.

e Degree Discount: Degree Discount algorithm is a
heuristic algorithm proposed by Chen et al. [3]. We
set parameter p of this algorithm to 0.01, the same
value used in [3].

e PageRank: PageRank [12] is often used in network
structure and social influence analysis, e.g., Chen et
al. [2] also used it as a baseline algorithm in their pa-
per. We run PageRank (with damping factor d = 0.85)
in the network, and use the top k£ nodes as the influ-
ential seeds.

Given the output of each algorithm, we use it as the initial
seeds to compute their influence spread on the IC model. In
the computation process, we run 10,000 Monte Carlo simu-
lations to obtain an estimation of the influence spread.

“http://snap.stanford.edu
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3.2 Experimental Results

Effectiveness validation. We run tests on four social
networks to obtain influence spread results. The seed set
size k ranges from 1 to 100, and the parameter 7 is 0.4.
Figure 1 shows the influence spread results on the four social
networks. The influence spread results in Figure 1 show
that DRIM and Greedy obviously outperform the Degree
Discount and PageRank. DRIM and Greedy have a
similar effectiveness when the seed size k is small. However,
when k increases, DRIM has a bit better performance than
Greedy. We can discover such a tendency in all four social
networks. Actually, Table 2 compares the influence spread
results of DRIM and Greedy when k is greater than 80.
In Table 2, we use “+” and “-” to denote the wins and losses
of DRIM compared with Greedy respectively. When we
pay attention to the nodes these algorithms find, we discover
another interesting phenomenon: DRIM and Greedy find
the same top 10 influential nodes on Wiki-Vote data set. As
for other social networks, most of the influential nodes that
DRIM and Greedy find are the same, when k increases
from 10 to 100. Finally, Table 3 shows the high number of
the same influential nodes found by DRIM and Greedy.
This phenomenon demonstrates the effectiveness of DRIM
from another angle.

Case Study. We show a case study by illustrating the
names of influential seed nodes (k=10) in DM domain in Ta-
ble 4. From Table 4, we can see that the influential authors
found by DRIM and Greedy are quite similar. Because
of the lack of ground truth, we refer to top authors list in
DM domain provided by Microsoft Academic Search®. This
list ranks the authors in DM domain according to their field
rating. The first four authors found by DRIM is exactly
the top-4 authors in the list of Microsoft Academic Search.
However, the fifth and seventh authors found by DRIM are
ranked 147 and 466 in the list of Microsoft Academic Search.
The remaining four authors are ranked top-100 in the list of
Microsoft Academic Search. The influential authors found
by Greedy have a similar phenomenon. The results show
that neither DRIM nor Greedy simply ranks the influence
of a single author. In fact, both algorithms select influential
nodes that could maximize the influence spread.

Table 3: Number of the same nodes found by DRIM
and Greedy.

k
data sot 10 | 20 | 50 | 100
Wiki-Vote 10 [ 15 | 41 | 84
DBLP-IR 8 |18 |35 | 72
DBLP-ML 9 | 17|38 | 72
DBLP-DM 8 | 17|33 | 72

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel framework to solve
influence maximization problem from the perspective of data
reconstruction. The proposed framework first constructs the
influence matrix, and then finds the influential seed nodes
with data reconstruction method. The experimental results
show that the proposed framework is at least as effective
as the traditional greedy algorithm and outperforms other
heuristic algorithms.

Shttp://academic.research.microsoft.com



500

Influence Spread
w
8
3

w
S
S

250

N
o
=]

hel b=l o
3 200 3 200 § 20
2 @ & 200
@ 150 @ 150 Q
8 S & 150
3 100 ! 3 100 f E]
——DRIM H ——DRIM € ——DRIM £ 100 ——DRIM
[ —— Greedy - —— Greedy - —— Greedy - Fo —— Greedy
100 Degree Discount 50 Degree Discount 50 Degree Discount 50/ Degree Discount
——PageRank F2 —+— PageRank r. ——PageRank 4 —¢—PageRank
0 20 40 60 80 100 % 20 40 60 80 100 % 20 40 60 80 100 % 20 40 60 80
K K K K
(a) Wiki-Vote (b) DBLP-IR (¢) DBLP-ML (d) DBLP-DM

Figure 1: Influence spread on four social networks.

Table 2: Comparison of influence spread of DRIM and Greedy.

100

k 81 | 82|83 |84 |8 | 8 | 87 | 88 | 89 [ 90 | 91 [ 92 [ 93 |94 | 95|96 | 97 | 98 | 98 | 99 | 100
data set
Wiki-Vote + | + | - +|+|+ |+ |+ + |+ +]|+|+|+|+]|+]|+|+]|+ ]|+ +
DBLP-IR + | - + | - - + |+ +|+ |+ +]+ |+ +|+|F+|+]+]|+]+ +
DBLP-ML + |+ +|+|+|+|+|+|+ |+ |+ |+ + |+ +]+|+|+]+]|+ +
DBLP-DM + |+ |+ |+ +| - + |+ + |+ |+ |+ + |+ |+ +]|+|+]+ ]|+ +

Table 4: Names of influential seed nodes (k=10) in
DM domain found by DRIM and Greedy.

DRIM Greedy

J. Han J. Han

P.S. Yu P.S. Yu
R.Agrawal R.Agrawal
C. Faloutsos | W. Fan

W. Fan Y. Tao

Q. Yang C.S. Jensen
B.W. Wah C. Faloutsos
E. Bertino E. Bertino
J. Pei Q. Yang

S. Shekhar J. Pei

There are several future directions related to this work.
First, we will parallelize Algorithm 1 to speed up the pro-
posed framework. Second, we try to preprocess the network
with clustering method to reduce the size of the influence
matrix. Third, we believe that the idea used to solve the in-
fluence maximization problem can be applied to solve other
similar discrete optimization problems. Thus we’ll extend
our framework to solve other similar problems.
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