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Abstract

The problem of Matrix Completion (MC) refers to the pro-

cess of adding entries for unknown or missing values in a

matrix. In this paper, we study the convex matrix comple-

tion problem in the form of trace norm bounding. Specif-

ically, we propose a robust solution for this problem based

on trace-ball optimization, which can creatively change the

original trace norm constraint into the problem of low-rank

matrix factorization. Therefore, by searching in a ball space

defined by the new trace constraint, the rank of new matrix

can be self-determined such that the local minimum for ma-

trix factorization is the global minimum for the original ma-

trix completion task. Meanwhile, we define a free parameter

γ to control the model complexity of our approach in terms

of how well it fits the training data. Particularly, we identify

a value of γb, which is the minimal value of the trace norm,

in a way such that the model can exactly fit the known en-

tries in the matrix. Furthermore, we also empirically reveal

an important property of our approach: that is, a variable

η∗ generated by γ is always stable with the increase of the

amount of training data. This can help to speed up the tuning

of optimal parameters for large matrices. Finally, extensive

experiments on several real-world datasets clearly validate

the effectiveness of the proposed approach.

1 Introduction

Matrix Completion (MC) [15] is the process of adding

entries for unknown and missing values in a matrix. While

MC has been widely used in a number of data mining

methods such as collaborative filtering [21, 17, 10, 23],

compressed sensing [6] and nonnegative matrix factorization

(NMF) [24], the most commonly-used scenario of MC is to

find a low rank approximation for the partially observed real-

valued matrix [5, 4, 18, 8]. Since minimizing the matrix rank

directly is intractable, the trace norm (or nuclear norm) is

widely used as a convex relaxation of the matrix rank [6].
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In this study, we consider the convex MC problem in the

form of bounding trace norm [14], which aims at minimizing

the error term with the constraint that the trace norm is

not bigger than a threshold. Indeed, this is a Semi-Definite

Programming (SDP) problem, which has been explored by

some researchers [14] in the past few years. However, there

are still several open questions along this line. First, as we

know, traditional SDP methods (e.g., interior point method)

are usually second-order methods. The memory complexity

is very expensive, Therefore, would it be possible for us to

design a first-order memory-efficient approach for solving

such SDP-like MC problem? Second, what is the impact of

threshold parameters on the learning process? Finally, does

the best tuned parameter on small datasets still have good

performance on larger datasets?

To this end, in this paper we propose a robust solu-

tion for the convex MC problem based on trace-ball opti-

mization, which creatively change the original Semi-Definite

constraint into the problem of low-rank matrix factoriza-

tion. Therefore, by searching in a ball space defined by the

new trace constraint, the rank of new matrix can be self-

determined such that the local minimum solution for matrix

factorization can be used for constructing global minimum

solution for the original matrix completion task. Meanwhile,

we define a free parameter γ to control the model complexity

of our approach in terms of how well it fits the training data.

Particularly, we identify a value of γb, which is the minimal

value of the trace norm, such that the model can exactly fit

the known entries in the matrix. Furthermore, we also em-

pirically reveal an important property of our approach, i.e., a

variable η∗ generated by γ is always stable with the increase

of training data, which can help to speed up the tuning of

optimal parameters for large matrices. Specifically, the con-

tributions of this paper can be summarized as follows.

• First, we propose a novel first-order low-rank approach

for solving the convex MC problem in the form of

trace norm bounding, which is based on the trace-

ball optimization. Meanwhile, we also give both the

theoretical and empirical analysis on the correctness of

the proposed approach.

• Second, we discuss how the model parameter controls

how well the model fits the training data, and also

propose an empirical method which helps to save time

in parameter tuning for large-scale MC problems.
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• Last, we conduct extensive experiments on several real-

world datasets. The experimental results clearly val-

idate the effectiveness of our proposed method com-

pared with traditional baselines.

2 Problem Statement

In this study, we consider the MC problem in the form of

bounding trace norm [14]:

min F (X) =
∑

(i,j)∈Ω

(R̂ij −Rij)
2

s.t. X =

[
W1 R̂

R̂′ W2

]
� 0

tr(X) ≤ γ,

(I)

where tr(X) is the trace of X , and X � 0 means that X is a

positive semi-definite matrix, γ is the only free parameter.

Obviously, it is a SDP problem. Solving this problem

by traditional SDP method (e.g., interior point method) is

memory inefficient, since 1) we have to hold the total matrix

X in the memory; 2) most traditional SDP methods are based

on interior point method, which is a second order-method.

For MC problems, it means that the traditional SDP methods

need O(N4) memory storage, where N is the number of

rows (or columns) of X .

Motivated by the recent development in low-rank

method for solving SDP problems [16], we propose to ad-

dress the problem by low-rank factorization which allows

the sparse representation of the original incomplete matrix

R. Specifically, we cancel the positive semi-define constraint

X � 0 by letting X = Y Y ′, where Y ∈ R
N×p. Then, we

turn the original SDP problem into the following non-convex

problem:

min F (Y Y ′)
s.t. tr(Y Y ′) ≤ γ.

(II)

To this end, the high memory complexity problems of tra-

ditional SDP methods for MC problems are perfectly ad-

dressed. However, there are still two questions left:

1. Can we solve Problem (II) to get the solution of (I)?

What is the relationship between these two problems?

How is the rank of Y in Problem (II) set?

2. How does γ controls the model complexity in terms of

how well it fits the training data? Can we speed up the

tuning of the optimal parameter γ∗ for large matrices?

For the first question, we will demonstrate the positive

answer with both detailed theoretical and empirically analy-

sis in Section 3. For the second question, we will study the

properties of the γ parameter empirically and have some in-

teresting findings in Section 4. Interested readers can also

directly jump to Section 4 for the detailed discussion on γ as

there is no difficulty without the understanding of Section 3.

3 The Solution to Problem (I)

In this section, we first analyze the relationship between the

local minimum of Problem (II) and the global minimum of

Problem (I). Specifically, we propose the theoretical analysis

on the condition when the local minimum of Problem (II)

can be used to construct the global minimum of Problem (I).

Then, we proposed the Trace Ball optimization (TBall for

short) method to Problem (II). Finally, we give the example

to intuitively show the correctness of our solution. Before

detailing the analysis, we give the notations first, some of

which are adopted from [16].

Notations. We use R, R+, R
p, and R

p×q to denote

the space of real numbers, nonnegative real numbers, real

p-dimensional column vectors, and real p × q matrices,

respectively. For A ∈ R
p×q , A′ ∈ R

q×p means the transpose

matrix of A. We use ‖ · ‖ to denote the Euclidean norm for

vectors. By S
p we denote the space of real p× p symmetric

matrices, and we define S
p
+ and S

p
++ to be the subsets of Sp

consisting of the positive semi-definite and positive definite

matrices, respectively. For a matrix X ∈ S
p, we write X � 0

and X ≻ 0 to indicate that X ∈ S
p
+ and X ∈ S

p
++,

respectively. We let tr(X) denote the trace of a matrix

X ∈ R
n×n, i.e. the sum of the diagonal elements of X .

For A,B ∈ R
p×q , we define A◦B ≡ tr(A′B). It is obvious

that tr(X) = I ◦X , where I is the identity matrix.

For a differentiable function F (X), the notation

∇XF (X0) refers to the gradient of F (X) at X0 with respect

to the variable X . Finally, ||R||∗ denotes the nuclear norm

of R, which is also called the trace norm of R.

3.1 From local optimum to global optimum. Motivated

by the results in [3, 1, 16], we have the following properties

that embody the relationship of Problem (I) and Problem (II).

Next, we will propose Lemmas 3.1 and 3.2 and Theo-

rems 3.1 and 3.2. These properties guarantee that we can get

the global minimum of Problem (I) by achieving the local

minimum of Problem (II).

LEMMA 3.1. Provided that F (X) is a convex function of

X . X is a optimal solution of Problem (I) if and only if there

exists a σ ∈ R+ and a symmetric matrix S ∈ S
N such that

the following conclusions hold:

(3.1)

1) tr(X) ≤ γ,
2) X � 0,
3) σ(tr(X)− γ) = 0,
4) S � 0,
5) SX = 0,

where S = ∇XF (X) + σI .

The proof of the above lemma is a little complicated,

we provide the proof in the Appendix as it does not related

to the main idea of this work, which just verifies the KKT

condition to Problem (I).
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LEMMA 3.2. If Y is a local optimum of Problem (II), then

there exists an α ∈ R+ such that

1) tr(Y Y ′) ≤ γ,
2) α(tr(Y Y ′)− γ) = 0,
3) SY Y = 0.

where SY = ∇XF (Y Y ′) + αI

Proof. These are the first-order KKT conditions of Prob-

lem (II) (see [2]).

With the above two lemmas, we also have the following

two theorems, which are similar to those in [3, 1, 16]. The

proof of these two theorems is omitted due to the space

limitation. Interested readers could refer to the three citation

papers.

THEOREM 3.1. Provided that F (X) is a convex function

of X . An Y which satisfies the conclusions of Lemma 3.2

provides a global minimum point Y Y ′ of Problem (I) if the

matrix

(3.2) SY = ∇XF (Y Y ′) + αI

is positive semi-definite, where α = −∇XF (Y Y ′)◦Y Y ′

tr(Y Y ′) .

THEOREM 3.2. In the case p = N , any local minimum

Y ∈ R
N×N of Problem (II) provides the global minimum

X = Y Y ′ of Problem (I).

Now, the above two theorems actually provide us a

method to solve Problem (I) via solving Problem (II). Algo-

rithm 1 summarizes this process. First, we solve Problem (II)

with the setting that the rank of Yp is set to p (p = 1 in the

first round). Then, by Theorem 3.1, if SYp
� 0 then we get

a global minimum YpY
′
p of Problem (I). If not, updating p

to (p + 1) we repeat the same process again. To verify if a

matrix is positive semi-definite, we can only check whether

all its eigenvalues are non-negative.

Specifically, in the new round the initial value of Yp+1

is set to [Yp|0] (adding a column of zero vector to Yp)),

which is a saddle point of the feasible set in the space

R
N×(p+1) of Problem (II). At this time, the eigenvector vmin

of the minimal eigenvalue ρmin of SYp
actually provides a

decent direction Zp+1 = [0|vmin] ([0|vmin] means adding

the column vector vmin to a N ×p zero matrix) to search for

a better solution. Finally, Theorem 3.2 guarantees that we

can always find the global minimum if the p is increased one

by one until large enough.

In Algorithm 1, Line 6 checks whether SYp
is positive

semi-definite. If ρmin ≥ −ε, SYp
can be viewed as positive

semi-definite. Here, ρmin is the minimal eigenvalue of SYp
,

ε is a small positive value to control the accuracy of the

algorithm which is set to 10−5 in this study.

Algorithm 1 Solution to Problem (I).

Input:

Accuracy level, ε;

Incomplete matrix, R;

Trace constraint, γ;

Output: X;

1: p = 1, stop = 0;

2: random initial Yp ∈ R
N×p s.t. tr(YpY

′
p) ≤ γ;

3: while stop 6= 1 do

4: Find a solution Yp of Problem (II) by exploiting a

decent direction Zp if available, which satisfies the

conclusions of Lemma 3.2;

5: Find the smallest eigenvalue ρmin and the corre-

sponding eigenvector vmin of matrix SYp
;

6: if ρmin ≥ −ε then

7: stop = 1;

8: else

9: p = p+ 1;

10: Yp = [Yp−1|0];
11: A decent direction from the saddle point Yp is given

by Zp = [0|vmin].
12: end if

13: end while

14: Return X = YpY
′
p ;

3.2 Trace Ball Optimization. Next, we propose the so-

lution to Problem (II), whose output Y satisfies the conclu-

sions of Lemma 3.2. The only constraint in Problem (II) is

tr(Y Y ′) ≤ γ, which makes the feasible set of this problem a

ball sphere and its inside with the radius
√
γ in space RN×p.

This is why we call our method to Problem (II) Trace Ball

Optimization. Let g(Y ) = F (Y Y ′), the method is summa-

rized in Algorithm 2.

When ▽g(Yt) = 0, the conclusions of Lemma 3.2 hold

with α = 0. If ▽g(Yt) 6= 0, we search the solution in the

feasible set of tr(Y Y ′) ≤ γ. Generally, we use the gradient

descent method, in each round of which we find a proper

direction and a step τ > 0 to decrease the objective function.

As shown in Figure 1 we have the following 4 cases:
• Case 1: tr(YtY

′
t ) < γ, Yt is inside the feasible set.

Then, the problem in Equation (3.3) has the solution

τ > 0 as shown in Figure 1(a).

(3.3)
τ = argmin

τ
g(Yt − τ · ▽g(Yt))

s.t. ||Yt − τ · ▽g(Yt)||2 ≤ γ

• Case 2: tr(YtY
′
t ) = γ and tr(Yt▽g(Yt)

′) > 0. It

means Yt is on the sphere and the opposite of ▽g(Yt)
points into the feasible set. Then, the problem in

Equation (3.3) has the solution τ > 0 as shown in

Figure 1(b).
• Case 3: tr(YtY

′
t ) = γ and ∃α > 0 s.t. ▽g(Yt) =

−2αYt. Then, the conclusions of Lemma 3.2 hold as

shown in Figure 1(c).
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• Case 4: Yt is on the sphere and the opposite of ▽g(Yt)
points outside the feasible set. By solving the problem

in Equation (3.4) we can still find the decent vector.

Here, we normalize the size of Yt+1 such that it is on

the sphere and also decreases the objective function.

As shown in Figure 1(d) the red line shows the decent

vector we get.

(3.4) τ = argmin
τ

g(
√
γ · Yt − τ · ▽g(Yt)

||Yt − τ · ▽g(Yt)||
)

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 1: Sphere decent vector searching.

Algorithm 2 Solution to Problem (II).

Input:

Initial Y0 ∈ R
N×p s.t. tr(Y0Y

′
0) ≤ γ;

Incomplete matrix, R;

Trace constraint, γ;

Output: Y , which satisfies the conclusions of Lemma 3.2;

1: t = 0;

2: while ▽g(Yt) 6= 0 do

3: if tr(YtY
′
t ) < γ or tr(Yt▽g(Yt)

′) > 0 then

4: Search τ by the problem in Equation (3.3);

5: Yt+1 = Yt − τ · ▽g(Yt);
6: else if ∃α > 0 s.t. ▽g(Yt) = −2αYt then

7: Break;

8: else

9: Search τ by the problem in Equation (3.4):

10: Yt+1 =
√
γ · Yt−τ ·▽g(Yt)

||Yt−τ ·▽g(Yt)||
;

11: end if

12: t = t+ 1;

13: end while

14: Return Y = Yt;

3.3 The running example. First we sample our example

dataset from the widely-used MovieLens [19] dataset, we

randomly sampled 1,000 ratings, which involve with 35

users and 43 movies. Among these 1,000 ratings, we use

800 for training and the remaining 200 for testing. Figure 2

shows the training process by solving Problem (I) with γ =
25. It shows that as the increase of iterations the loss function

F (Y Y ′) continuously decreases. Each bar indicates that a

local minimum of Problem (II) was found there, and the

length of the bar stands for −ρmin to the corresponding SYp

(ρmin is the minimal eigenvalue of the matrix SYp
). As we

can see, −ρmin decreases up to 0 as the iteration continues.

Finally, it will reach or cross 0, which means that SYp

becomes positive semi-definite. This example empirically

shows the correctness of the proposed method.
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Figure 2: The training process of the running example (with

γ = 25.0). Each bar indicates that a local minimum of

Problem (II) was found there, and the length of the bar stands

for −ρmin for the corresponding SYp
.

4 Discussion on the Parameter γ

In this section, we discuss the properties on the parameter

γ in Problem (I). Here, γ is used as the upper bound of the

trace of the resultant matrix. Intuitively, γ controls the model

complexity and is closely related to how well the resultant

matrix fits the training data.

Before we detail the effect of γ, we first look at the

following optimization problem:

min tr(X)

s.t. R̂ij = Rij , (i, j) ∈ Ω,

X =

[
W1 R̂

R̂′ W2

]
� 0.

(III)

This problem actually aims to achieve the minimal value of

tr(X) such that the training error equals to 0. In this study

this minimal trace value for the target matrix R is denoted

by γb(R) (or γb if R is clearly given by the context). For the

description convenience, we set γ = η · γb (η > 0) in the

following. Next, we will show that the parameter η controls

how well the resultant R̂ fits the training data.

4.1 The effect of η. We consider three situations, namely

η = 1, η < 1, and η > 1.
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4.1.1 When η = 1. First, when η = 1 (i.e. γ = γb) we

have the property:

THEOREM 4.1. Problem (I) with γ = γb is equivalent to

Problem (III). It means the solution of Problem (I) with η = 1
is also the solution of Problem (III), and vice versa.

Proof. To prove Theorem 4.1, we assume that X1
b is the so-

lution of Problem (III) and X2
b is the solution of Problem (I)

with γ = γb. Thus, we have

(4.5) X1
b =


W 1

1 R1
b

R1′

b W 1
2


 � 0, X2

b =


W 2

1 R2
b

R2′

b W 2
2


 � 0

Then we have γb = tr(X1
b ), tr(X2

b ) ≤ γb and

R1
b(i, j) = Rij , (i, j) ∈ Ω, immediately. Here R1

b(i, j)
means the i-th row the j-th column entity of matrix R1

b .

Obviously, X1
b is a solution of Problem (I), because

X1
b � 0, tr(Xb) = γb ≤ γb, F (X) ≥ 0 and F (X1

b ) = 0.

Now we prove X2
b is also a solution of Problem (III)

by contradiction. Firstly, we show that R2
b(i, j) = Rij ,

(i, j) ∈ Ω. If not, we have F (X2
b ) > 0. From above

we know that X1
b is also a solution of Problem (I) and we

have F (X1
b ) = 0. So we have F (X2

b ) > F (X1
b ), which

contradicts the fact that X2
b is the solution of Problem (I).

Secondly, we show that tr(X2
b ) = γb. If not, because

tr(X2
b ) ≤ γb, we have tr(X2

b ) < γb = tr(X1
b ). Together

with X2
b � 0 and R2

b(i, j) = Rij , (i, j) ∈ Ω, it contradicts

the fact that X1
b is the solution of Problem (III). So we have

X2
b � 0, R2

b(i, j) = Rij , (i, j) ∈ Ω and tr(X2
b ) = γb,

which means X2
b also a solution of Problem (III).

It indicates that when η = 1 the objective function

F (X) in Problem (I) can be minimized to 0.

4.1.2 When η < 1. Second, when η < 1 (i.e. γ < γb)

it is clear that the minimal value of the loss function F (X)
in Problem (I) is strictly bigger than 0. It means that there

exists the training errors under this situation. The smaller η
is, the more strict constraint imposed on the model, and the

less degree that the resultant R̂ fits the training data. Thus, η
can be used to avoid training over-fitting.

4.1.3 When η > 1. Third, when η > 1 (i.e. γ >
γb) the objective function F (X) in Problem (I) can also

be minimized to 0. However, the performance becomes

unstable since η > 1 greatly relaxes the model complexity.

We use the dataset used in Figure 2 to futher demon-

strate the effect of η. For different value of η for Problem (I),

we calculate the training error and testing error (in terms of

Root Mean Square Error, RMSE for short) of the correspond-

ing solution which optimizes Problem (I). Figure 3 shows

that as the increase of η the training error becomes smaller

monotonously. When η >= 1, the training error equals to 0,

and can not decrease further. As to the testing error, it first

decreases as the increase of η. Then, when η ≥ 0.3 the test-

ing error increases. Especially when η > 1, the testing error

increases rapidly and then becomes unstable. Note that in

this example the model performs the best around η = 0.3. In

summary, Figure 3 shows that the parameter η acts to control

how well the model fits the training data.
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Figure 3: The training error vs. testing error

4.2 The stable η for high performance. Next, we will

empirically show that a stable η can always output high

performance for different sized incomplete rating matrices

datasets from a same data source.
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Figure 4: The best η∗ of different sized datasets

To show this empirical result, we first randomly sample

7 different-sized datasets, denoted by R1, · · · , R7, from the

MovieLens dataset. For any Ri (i = 1, · · · , 7), we randomly

split it into two parts, 80% for training, 20% for test. The

sizes of these datasets are shown at the top of the histogram

in Figure 4. For each dataset Ri, we tune the optimal γ∗(Ri)
for Problem (I) to get the best performance on its testing

data, and also compute γb(Ri) in Problem (III). We find

that γ∗(Ri) changes a lot for different dataset Ri. However,

η∗ = γ∗(Ri)
γb(Ri)

remains stable for i = 1, · · · , 7. Figure 4 shows

the sizes of the 7 datasets and the corresponding η∗. It is

clear that this best η∗ is always around 0.3 for all these 7

datasets. The experimental section will further illustrate this

observation on different datasets.

In other words, we observe that the same η∗ may

always output high performance when the size of the training
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datasets become bigger and bigger. It indicates that the

effects of the same η on the model complexity are similar

even for different datasets, in spite that the values of γb may

change for different datasets.

The identification γ∗ for different sized datasets.

With this observation we can easily identify γ∗ in Problem

(I) for the best performance on the different sized datasets

from a same data source. Assume that we originally have a

small matrix R1 and a big one R2. For R1 we can tune the

best γ∗(R1) for Problem (I) and compute γb(R1) in Problem

(III). When R1 changes to R2 with bigger size, we can also

compute γb(R2). Then, since
γ∗(R2)
γb(R2)

≈ γ∗(R1)
γb(R1)

, we can

set γ∗(R2) = γb(R2) · γ∗(R1)
γb(R1)

, which may still output high

performance on R2.

Therefore, the proposed method is extremely helpful for

parameter tuning for large scale matrix. The value of η∗,

which works well on the sampled small dataset, may still

perform well even when the size of the dataset become larger.

It greatly helps to save much time for parameter tuning for

large scale matrix completion.

Solving Problem (III). Clearly, in order to identify

η∗ we have to get γb first by solving Problem (III). For

this problem, we use the penalty method [9] which turns

the optimization problem with constraint to the lagrange

function form without constraint and then use the low-rank

method in [1] to solve it. The penalty method ensure that

we can get an approximate solution of the original problem

within a tolerance (the difference between R̂ and R). The

tolerance level is set to 10−5 in this study.

5 Experiment

In this section, we evaluate our method on different data

collections. We will show that compared with previous

trace norm regularization methods [18, 5], the best model

parameter of our method is much more stable as the datasets

evolve from smaller ones to bigger ones.

5.1 The baseline methods for comparison. We choose

the Trace Regularization (TReg for short) method [18, 5]

in the form of Problem (IV) as the baseline method for

comparison.

min
∑

(i,j)∈Ω

(R̂ij −Ri,j)
2 + λ||R̂||∗. (IV )

Generally speaking, since the left term and right term

in Problem (IV) do not change in the same magnitude,

the parameter λ may vary a lot for the best performances

on different datasets. To alleviate this issue we can also

normalize the left term by |Ω| as follows:

min
1

|Ω|
∑

(i,j)∈Ω

(R̂ij −Ri,j)
2 + µ||R̂||∗. (V )

However, we still cannot totally address it since the rank

of R̂ cannot be estimated. It is also clear that Problem (V) is

equivalent to Problem (IV) with µ = λ/|Ω|.

For our method in Problem (I), we set γ = η∗ · γb. In

this way we actually use γb (from Problem (III)) to normalize

the trace norm, which helps to eliminate the inconsistency

from different-sized data sets (from the same source). Thus,

the same η∗ may always work well when the size of dataset

changes. Our experiments will further validate this.

Table 1: Basic statistics of data sets.
id m n |Ω| |Ω|/(m× n)

MovieLens

M1 116 251 7,699 0.2644

M2 168 413 14,485 0.2088

M3 265 681 28,496 0.1579

M4 364 908 43,389 0.1313

M5 463 1,084 58,550 0.1167

M6 568 1,270 75,813 0.1051

M7 670 1,402 91,727 0.0977

Jester

J1 223 120 16,984 0.6347

J2 438 140 33,798 0.5512

J3 867 140 66,693 0.5495

J4 1,283 140 98,205 0.5467

J5 1,566 140 116,735 0.5325

J6 1,804 140 133,390 0.5282

5.2 Data preparation and experiment summary. We

randomly sampled two groups of different sized dataset-

s from two data sources, namely MovieLens [19] and

Jester [11]. We randomly splitted each dataset into two part-

s, 80% for training, 20% for test. The basic statistics of the

two group of datasets are shown in Table 1. In the following

we will empirically show that:

• For the different sized datasets, the best parameter for

our method is much more stable than those for the

compared methods.
• If we use the best parameter tuned at dataset whose

size is the smallest, the performance of our method is

significantly better than others when the size of dataset

becomes larger.

5.3 Tuning the best parameter. For each data set, we

train the model on the training data, and find the best model

parameter based on the performance on the test data. For

our model, the model parameter η changes from 0.0 to 2.0

by the step of 0.01. For the TReg method we find that its

performance becomes worse when λ > 10.0. Thus, we

let λ change from 1.0 to 10.0 by the step of 0.1. Tables 2

and 3 show the best model parameter and the corresponding

performance in terms of RMSE on the evolving datasets

from the two data sources, respectively.

Table 2 shows that as the datasets changed from M1 to

M7 the best parameter η∗ of our TBall method is always

around 3.1. Its relative change rate (in terms of the ratio

between the standard deviation and the average) is 0.0668.

However, the best parameter λ∗ changes from 2.9 to 5.4
and the relative change rate is 0.1768. Thus, the best model

parameter of the TBall method is much more stable than that

of the TReg method. From Table 2 we can also see that the
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best performance of the TBall method in terms of RMSE is

comparable with that of the TReg method. The average of

TReg is slightly better than that of TBall. Table 3 shows

similar results on the data collection of Jester.

Table 2: Tuning the best parameter on MovieLens
TBall TReg

data set η∗ RMSE λ∗ λ∗/|Ω| RMSE

M1 0.30 0.9641 2.9 4.6782E-04 0.9601

M2 0.26 0.9267 3.8 3.2624E-04 0.9229

M3 0.32 0.9293 4.2 1.8325E-04 0.9255

M4 0.32 0.9289 4.6 1.3200E-04 0.9209

M5 0.31 0.9102 4.8 1.0235E-04 0.9000

M6 0.32 0.9089 5.0 8.2319E-05 0.9008

M7 0.32 0.9120 5.4 7.3394E-05 0.9060

ave 0.31 0.9257 4.4 1.9534E-04 0.9194

std 0.0205 0.0182 0.7754 1.3723E-04 0.0193

std/ave 0.0668 0.0197 0.1768 0.7025 0.0210

Table 3: Tuning the best parameter on Jester
TBall TReg

data set η∗ RMSE λ∗ λ∗/|Ω| RMSE

J1 0.25 4.3273 4.5 3.3040E-04 4.2939

J2 0.24 4.4100 5.5 2.0405E-04 4.3843

J3 0.26 4.3654 6.8 1.2687E-04 4.3413

J4 0.24 4.3408 7.4 9.3937E-05 4.3120

J5 0.26 4.3168 7.7 8.2548E-05 4.2921

J6 0.26 4.3305 8.6 8.0585E-05 4.3110

ave 0.25 4.3485 6.8 1.5306E-04 4.3225

std 0.0090 0.0314 1.3769 8.9865E-05 0.0320

std/ave 0.0357 0.0072 0.2040 0.5871 0.0074

5.4 A fixed model parameter for different sized dataset-

s. In the following we show how the models perform if the

parameters are set to the ones which output the best perfor-

mance on the smallest data set. As shown in Table 2, on

M1 the best parameters for the three models are η = 0.30,

λ = 2.9 and λ/|Ω| = 4.6782E − 04. Then, fixing these pa-

rameters we test the performances of the three models on the

datasets changed from M2 to M7 by 5-fold cross validation.

Table 4 shows these performances in terms of RMSE. It is

clear that under this situation the method of TBall is signifi-

cantly better than the other two models. It indicates that the

model parameter tuned on the initial data set may still work

well when the sizes of training datasets become larger. As

shown in Table 5 we can see the similar results on the data

collection of Jester.

Table 4: RMSE of different sized datasets on MovieLens
TBall TReg

data set η = 0.30 λ = 2.9 λ/|Ω| = 4.6782E − 04
M2 0.9303±0.0053 0.9499± 0.0039 0.9361± 0.0047
M3 0.9279±0.0025 0.9591± 0.0038 0.9778± 0.0028
M4 0.9222±0.0035 0.9632± 0.0043 1.0141± 0.0029
M5 0.9144±0.0028 0.9605± 0.0050 1.0401± 0.0025
M6 0.9118±0.0033 0.9658± 0.0038 1.0635± 0.0029
M7 0.9095±0.0034 0.9679± 0.0052 1.0815± 0.0028
avg 0.9193±0.0074 0.9611± 0.0058 1.0189± 0.0499

Table 5: RMSE of different sized datasets on Jester
TBall TReg

data set η = 0.25 λ = 4.5 λ/|Ω| = 3.3040E − 04
J2 4.3939±0.0171 4.4137± 0.0206 4.4917± 0.0180
J3 4.3515±0.0070 4.5022± 0.0122 4.6101± 0.0099
J4 4.3434±0.0091 4.5803± 0.0190 4.7092± 0.0033
J5 4.3285±0.0180 4.5929± 0.0137 4.7484± 0.0138
J6 4.3124±0.0136 4.6082± 0.0173 4.7979± 0.0139
avg 4.3459±0.0274 4.5394± 0.0727 4.6715± 0.1090

6 Related Work and Discussion

Matrix completion technique has been widely used in a

number of data mining methods such as collaborative filter-

ing [21, 17], compressed sensing [6] and nonnegative ma-

trix factorization (NMF) [24]. Approximating a target matrix

R ∈ R
m×n with missing values by the convex method has

been studied widely. Candes and Plan [5] give out a usual

formulation of this problem:

min ||X||∗
s.t.

∑
(i,j)∈Ω

(Xij −Rij)
2 ≤ δ (V I)

where δ ≥ 0. If δ = 0, this problem is equal to Problem (III).

Candès and Tao [7] proved that when an incomplete matrix

R has certain properties (e.g., strong incoherence property

and |Ω| ≥ C(m + n)6/5r log (m+ n), where r is the rank

of R), solving Problem (III) can recover R with high prob-

ability. Similar results are also provided in [6]. In [21] the

authors proposed maximum-margin matrix factorization. It

minimizes the trade-off between the trace norm of X and its

hinge-loss relative to the known value. In [4] the authors

proposed the singular value thresholding (SVT) algorithm

for Problem (III). Jaggi et al. [14] solved Problem (II) by

turning the bounded trace constraint into equality trace con-

straint, and then directly applied the Hazan’s method [12].

Wang et al. [22] extended the orthogonal matching pursuit

procedure [20] from the vector case to the matrix case and

apply it to the matrix completion problem.

All of the above previous works focus on improving

MC algorithms on the perspectives of effectiveness and

efficiency, few of them pay attention to the problem that

the best tuned parameter on the sampled small dataset may

not perform well on the larger datasets from the same data

source. In this paper, we proposed an empirical studied on

this problem, and found that the ratio of the best tuned γ∗

(for Problem (II)) and γb (the solution of Problem (III)) is

almost invariant when the size of the training datasets (from

the same source) varies.

The solution to Problem (I) is mainly inspired by [16].

It provides the method for solving optimization problems

defined on the cone of positive semi-definite matrices with

the equality constraints. Their problem is different to ours

in the sense that they use the equality constraints while we

has the inequality constraints. It is not a trivial task to extend
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the framework to handle the inequality constraints, and we

also give the theoretical proof and empirical study on the

correctness of the proposed method.

7 Conclusion

In this paper, we proposed a first-order efficient solution

for convex matrix completion problem based on trace-ball

optimization. Specifically, we first proposed to change the

original trace norm constraint into the problem of low-rank

matrix factorization. Therefore, by searching in a ball space

defined by the new trace constraint, the rank of new matrix

can be self-determined such that the local minimum for

matrix factorization is the global minimum for the original

matrix completion task. Meanwhile, we explored the free

parameter γ to control the model complexity of our approach

in terms of how well it fits the training data. Moreover, we

also empirically revealed that a variable η∗ generated by γ
is always stable with the increase of training data, which

can help to speed up the tuning of optimal parameters for

large matrices. Finally, we conducted extensive experiments

on two real-world datasets. Experimental results clearly

validate the effectiveness of the proposed approach.
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Appendix

The proof of Lemma 3.1:

Proof. “⇒”: Given X∗ and σ ∈ R+ such that the conclusions (3.1) hold,

we prove X∗ is the optimal solution of Problem (I).

From 1), 2) we know X∗ ∈ {X : tr(X) ≤ γ,X � 0}. For any

X ∈ {X : tr(X) ≤ γ,X � 0}, from the convex property of function

F (X) we have

(7.6) F (X)− F (X∗) ≥ ∇XF (X∗) ◦ (X −X∗).

From 4) we have

(7.7)
S ◦X = tr(SX)

= tr(X
1

2 SX
1

2 ) ≥ 0,

where X
1

2 is the square root of X , which is also a positive semi-definite

matrix. Note that there is only one square root of a positive semi-definite

matrix X [13].

From 5) we have

(7.8) S ◦X∗ = tr(SX∗) = 0

With the above properties, we consider the following two circum-

stances, namely tr(X∗) < γ or tr(X∗) = γ.

When tr(X∗) < γ:

From 3) we know σ = 0, so we have ∇XF (X∗) = S.

(7.9)

∇XF (X∗) ◦ (X −X∗) = S ◦ (X −X∗)

= S ◦X − S ◦X∗

≥ 0

When tr(X∗) = γ:

(7.10)

∇XF (X∗) ◦ (X −X∗)

= (S − σI) ◦ (X −X∗)

= S ◦X + σ(γ − tr(X)) ≥ 0

So in both the circumstances we have F (X) − F (X∗) ≥ 0 (based

on (7.6)), which means X∗ is the optimal solution of the Problem (I).

“⇐”: Given X∗ is the optimal solution of the Problem (I), we prove

there exists a σ ∈ R+ such that the all the conclusions in (3.1) hold.

We know that X∗ satisfy both 1) and 2), because they are constraints

of Problem (I). We also know tr(X∗) ≥ 0 for the reason of X∗ � 0.

Thus, we have 0 ≤ tr(X∗) ≤ γ. Next, we consider the the following three

circumstances, namely tr(X∗) = 0, tr(X∗) = γ, or 0 < tr(X∗) < γ.

When tr(X∗) = 0:

We set σ = 0. Then, 3) is satisfied, and S = ∇XF (X∗).

(7.11) tr(X∗) = tr((X∗)
1

2 · (X∗)
1

2 ) = 0 ⇔ (X∗)
1

2 = 0

Thus, X∗ = (X∗)
1

2 · (X∗)
1

2 = 0 ⇒ SX∗ = 0, indicating 5) is satisfied.

Next, we prove 4) by contradiction. We assume there exists y0 ∈ RN

that y′0∇XF (X∗)y0 < 0. Let y = γ
||y0||

y0. We consider the following

function:

(7.12) G(t) = F (X∗ + t · yy′), t ∈ [0, 1]

Obviously, we have

(7.13) {X∗ + t · yy′ : t ∈ [0, 1]} ⊆ {X : tr(X) ≤ γ,X � 0}

Then, we have

(7.14)

∂G(t)
∂t

|t=0 = y′∇XF (X∗)y

= ( γ
||y0||

)2y′0∇XF (X∗)y0 < 0

(7.12), (7.13) and (7.14) together indicate that we can find another

matrix X∗ + t · yy′ (t ∈ [0, 1]) such that

(7.15) F (X∗ + t · yy′) < F (X∗)

It contradicts with the fact that X∗ is the optimal solution of the Problem (I).

Thus, for any y0 ∈ RN , we have y′0Sy0 = y′0∇XF (X∗)y0 ≥ 0, which

means S � 0.

When tr(X∗) = γ:

Clearly, 3) holds.

We let σ = −
∇XF (X∗)◦X∗

γ
. First, we prove σ ≥ 0 by

contradiction. Assume σ < 0, then ∇XF (X∗) ◦ X∗ > 0. Consider

the following function:

(7.16) H(t) = F ((1− t)X∗), t ∈ [0, 1]

Obviously, we have

(7.17) {(1− t)X∗ : t ∈ [0, 1]} ⊆ {X : tr(X) ≤ γ,X � 0}

(7.18)
∂H(t)

∂t
|t=0= −∇XF (X∗) ◦X∗ < 0

Similarly, we can see that the fact that X∗ is the optimal solution of

Problem (I) contradicts with (7.16), (7.17) and (7.18). Thus, σ ≥ 0.

Next, we prove 4) by contradiction. We assume there exists y0 ∈ RN

such that y′0Sy0 < 0. Let y = γ
||y0||

y0. We consider the following

function:

(7.19) G(t) = F ((1− t)X∗ + t · yy′), t ∈ [0, 1]

Obviously, we have

(7.20) {(1− t)X∗ + t · yy′ : t ∈ [0, 1]} ⊆ {X : tr(X) ≤ γ,X � 0}

(7.21)

∂G(t)
∂t

|t=0 = S ◦ yy′ − S ◦X∗

= ( γ
||y0||

)2y′0Sy0 < 0

We can see that the fact that X∗ is the optimal solution of the

Problem (I) contradicts with (7.19), (7.20) and (7.21). Thus, for any

y0 ∈ RN , we have y′0Sy0 ≥ 0, which means S � 0.

Then, we have

(7.22)

0 = S ◦X∗ = tr(SX∗)

= tr((X∗)
1

2 S(X∗)
1

2 )

= tr(((X∗)
1

2 S
1

2 )(S
1

2 (X∗)
1

2 ))

= tr((S
1

2 (X∗)
1

2 )′(S
1

2 (X∗)
1

2 ))

⇔ S
1

2 (X∗)
1

2 = 0

⇒ SX∗ = S
1

2 (S
1

2 (X∗)
1

2 )(X∗)
1

2 = 0
Thus, 5) is also proved.

When 0 < tr(X∗) < γ:

We set σ = 0. Thus, 3) is satisfied. Now, we prove ∇XF (X∗) � 0

and ∇XF (X∗)X∗ = 0, which corresponds to 4) and 5).

We can prove ∇XF (X∗) � 0 almost the same as what we do in the

situation “tr(X∗) = 0”, with a slight change that t varies in [0, 1−
tr(X)

γ
].

Then, we prove ∇XF (X∗) ◦ X∗ ≥ 0 and ∇XF (X∗) ◦ X∗ ≤ 0

by contradictions, which we can consider the following two functions

respectively.

(7.23)
H1(t) = F ((1 + t)X∗), t ∈ [0, γ

tr(X)
− 1]

H2(t) = F ((1− t)X∗), t ∈ [0, 1]

Now we have ∇XF (X∗) ◦ X∗ = 0. Similar to (7.22), we have

∇XF (X∗)X∗ = 0 immediately.

Therefore, the proof is complete.
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