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Abstract
In online karaoke, the decision process in choosing a song
is different from that in music radio, because users usually
prefer songs that meet their vocal competence besides their
tastes. Traditional music recommendation methods typical-
ly model users’ personalized preference for songs in terms of
content and style. However, this can be improved by con-
sidering the degree of matching the vocal competence (e.g.
pitch, volume, and rhythm) of users to the vocal require-
ments of songs. To this end, in this paper, we develop a
karaoke recommender system by incorporating vocal compe-
tence. Along this line, we propose a joint modeling method
named CBNTF by exploiting the mutual enhancement be-
tween non-negative tensor factorization (NTF) and support
vector machine (SVM). Specifically, we first extract vocal
(i.e., pitch, volume, and rhythm) ratings of a user for a song
from his/her singing records. Since these vocal ratings en-
code users’ vocal competence from three aspects, we treat
these vocal ratings as a tensor, exploit an NTF method,
and learn the latent features of users’ vocal metrics. These
factorized features are simultaneously fed into an SVM clas-
sifier and then we use the trained classifier to predict the
overall rating of a user with respect to a song. In addi-
tion, we propose an enhanced objective function to exploit
the mutual enhancement between NTF and SVM, and de-
vise an effective method to solve this objective as a coupled
least-squares optimization problem via a maximum margin
framework. With the estimated model, we compute the sim-
ilarity between users and songs in terms of pitch, volume and
rhythm and recommend songs to users. Finally, we conduct
extensive experiments with real-world online karaoke data.
The results demonstrate the effectiveness of our method.

Keywords: Karaoke-song recommendation, Singing
competence, Non-negative tensor factorization

1 Introduction

Online karaoke is a music service that allows users to
sing karaoke, practice singing, distribute recordings, and
challenge friends. Users can access online karaoke service
with only a microphone and a computer connected to
the internet. Nowadays, online karaoke is increasingly
popular as a social entertainment platform, and a large
amount of karaoke songs are available. Thus, karaoke
recommendation is important because it can help these users
identify appropriate karaoke songs, receive high ratings, and
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moreover, improve karaoke experience.
Unlike classic music recommendation, online karaoke

has unique characteristics [1]. For example, if one receives a
high overall rating on a karaoke song, he/she probably not
just favors the song but also has vocal competence to sing the
song well. Thus, when choosing karaoke songs, users often
care about whether their vocal competence meets the vocal
requirements of songs. The unique characteristics of online
karaoke provide us an opportunity to exploit vocal compe-
tence for enhancing karaoke recommendation. However, this
is a non-trivial task. There are three major challenges. First,
as historical karaoke singing records encode the information
about users’ vocal competentence [2], careful methods need
to be designed to learn the representations of users’ vocal
competence from these singing records. Second, since the
representations of users’ vocal competence will be utilized
to predict overall ratings of karaokes, it is rather difficult to
find the optimal representations that can help enhance the
prediction of overall ratings. Finally, due to the evaluation
bias of karaoke machine and the sparse singing records of a
user for a song, a user’s vocal competence learned from his-
torical overall ratings might be over-fitted and cannot fully
capture his/her inborn vocal competence in real world. The
modeling method thereby needs to be robust enough to over-
come the data bias.

Indeed, in the decision process of choosing karaoke
songs, users not only take the content and style of songs
into account, but also consider the degree of matching
requirements of songs to their vocal competence. In this
way, they can sing the chosen songs well and receive high
scores. With the development of computational acoustic
analysis, we can extract multi-aspect vocal ratings (e.g.,
ratings of pitch, volume, and rhythm) by analyzing users’
karaoke singing recordings. Specifically, after preprocessing
the karaoke records, we obtain the audio records which
encode users’ vocal performance. Then, given such records,
we extract ratings of pitch, volume and rhythm. Later,
we exploit a non-negative tensor factorization method to
model the generative process of vocal ratings as user × song
× audio. Therefore, we can factorize the extracted multi-
aspect vocal ratings and learn the latent features of users’
vocal competence.

To tackle the first challenge, a tensor factorization is
employed to examine the multi-aspect vocal ratings and es-
timate the latent features of vocal competence of users. A
straight idea is to feed the factorized latent features to a
classifier and use such classifier to predict the overall rat-
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ings. However, to help tensor factorization to learn the most
discriminative latent factors, it is not effective to model the
decomposition and classification independently [3]. Conse-
quently, we present a joint modeling method to exploit the
mutual enhancement between NTF and SVM. We attempt
to find a non-negative decomposition for the multi-aspect vo-
cal ratings as well as learn a classifier in the factorized space.
Therefore, the decomposition in our procedure has potential
to enhance the classification performance. Furthermore, to
overcome the bias and sparsity of karaoke overall ratings,
we plug-in an additive term into the representation of users’
vocal competence, so that we allow the competence repre-
sentation to vary during the learning process.

To this end, in this paper, we develop a song recom-
mender system for online karaoke by mining the correlations
among overall ratings given by a karaoke machine and multi-
aspect vocal ratings given by acoustic analysis. Along this
line, we propose a joint modeling method to incorporate vo-
cal competence by exploiting the mutual enhancement be-
tween NTF and SVM. Specifically, we first define and extract
the multi-aspect vocal (i.e., pitch, volume, and rhythm) rat-
ings of a user for a song based on their karaoke recordings
using acoustic analysis. We then exploit an NTF method to
model the generative process of vocal ratings as user × song
× audio. Moreover, we feed the factorized latent features
of user competence, song requirements, and vocal measure-
ments into an SVM classifier and use this classifier to classify
the overall ratings. In addition, we propose an enhanced ob-
jective function by jointly modeling both multi-aspect rating
factorization and overall rating prediction and solve this ob-
jective as a coupled least-squares optimization problem via a
maximum margin method for parameter estimation. Final-
ly, we conduct extensive experiments with real world online
karaoke data. The results demonstrate the effectiveness of
the proposed method.

2 Preliminaries

In this section, we first formalize the problem of karaoke
songs recommendation, then introduce the definitions and
collections of multi-aspect vocal ratings given by acoustic
analysis and overall ratings given by a karaoke machine,
and finally illustrate the overview of the Competence Based
Nonnegative Tensor Factorization, named CBNTF.

2.1 Problem Statement
In this paper, we aim at developing a karaoke recom-

mender system by modeling the impact of users’ vocal com-
petence on choosing a karaoke song. Formally, given a user,
the developed recommender system should return a ranked
list of karaoke songs for him/her, such that the ranked song
list can help to maximize the expectation or probability of
receiving highest overall ratings of the karaoke performance.
Essentially, the central tasks are (1) to learn and extract the
vocal competence of users and vocal requirements of songs,
and (2) then to incorporate the degree of matching users’
vocal competence to songs’ vocal requirements for karaoke

Table 1: Mathematical Notations.
Symbol Description

X tensorial ratings data (∈ RI1×I2×I3 )

xijk rating of k-th vocal feature in j-th song sung

by i-th user

y label of a singing record

N dimension of X
In length of the n-th mode of X
R rank of X

U(n) n-th latent factor matrix (∈ RIn×R)

u
(s)
i i-th principal component of U(s)

∆ui potential singing competence of i-th user

δ the constraint of ∆u

λ regularization parameter

∥ · ∥F Frobenius norm

Seq(·) sequence of MIDI notes

recommendation.

2.2 Multi-Aspect Vocal Ratings and Overall
Rating

We first introduce multi-aspect vocal ratings. The
karaoke singing record of a user for a song is associated with
three-dimensional information: (1) user, (2) song, and (3)
audio signal. Therefore, we propose to model such user-
song-audio relations using a three-dimensional tensor, with
each element representing a single-aspect vocal rating of
a user for a song. In particular, we denote the tensor as
X ∈ RI1×I2×I3 , where I1 is the number of users, I2 is the
number of songs, and I3 is the number of audio features.
Then, xijk in X denotes the rating of the vocal feature k
in the song j sung by the user i, for example, the rhythm
rating of user #1 for song #2 is 88.

Mathematically, we use the CP decomposition of X [4],
which is formulated as:
(2.1)

X ≈
R∑

r=1

u(1)
r ◦ u(2)

r ◦, . . . , ◦u(N)
r = [U(1),U(2), . . . ,U(N)].

Here, we denote In as the length of n-mode and R as the
rank of tensor X , such that U(n) = [u

(n)
1 , . . . ,u

(n)
R ] ∈ RIn×R.

Table 1 lists the notations used in this paper.
Assume that an online karaoke service uses a binary

rating system and rates a karaoke record as good (+1) or
bad (−1). Let {X ,y} denote the observed data, where X is
the tensor of multi-aspect vocal ratings of a set of karaoke
recordings, and yi = {+1,−1} denotes the binary overall
ratings of karaoke performance.

2.3 The Overview of Our Model
Figure 1 shows that our proposed method consists of

three major steps as follows:
Extracting Multi-Aspect Vocal Ratings: Given a

group of users, we first collect their historical karaoke record-
ings. Then, in order to characterize users’ singing compe-
tence, we extract the features of pitch, volume, and rhythm
as multi-aspect ratings while removing the background mu-
sic. Furthermore, the recommended songs should be a binary
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Figure 1: The Framework of Competence Based Nonnega-
tive Tensor Factorization.

vector, thus, we adopt a pre-defined threshold to determine
such songs.

Learning Users’ Vocal Competence: We treat the
ratings of pitch, volume and rhythm of users for songs as
a rating tensor. Then, we propose a maximum-Margin
joint model to factorize multi-aspect vocal ratings, and
learn the latent representations (i.e., latent factors) of users’
competence simultaneously.

Exploiting the Matching Degree between Users
and Songs for Karaoke Recommendation: We assume
that all the users has their own potential singing competence,
i.e., u′

i = ui+△ui, where ui is i-th user’s singing competence
extracted from the recordings and △ui is the potential
singing competence. In our formulation, △u is imposed
with a constraint, i.e., △u ≤ δ, where δ is a predefined
threshold to bound users’ potential vocal competence. Then,
we jointly combine the tasks of tensor decomposition and
SVM classification as a unified objective. In addition, an
efficient optimization approach is developed to solve this
formulation. Finally, we can predict the overall ratings with
respect to the three learned latent factor matrices. The top-
n songs with highest ratings are recommended.

3 Vocal Competence Based Karaoke
Recommendation

In this section, we introduce the vocal competence based
karaoke recommendation method.

3.1 Multi-aspect Vocal Ratings Acquisition
To obtain a user’s multi-aspect vocal ratings, we first

convert the waveform of a singing record to a sequence
of MIDI notes. A typical MIDI file contains both the
singing melody, and its accompaniment and most melodies
are not on the same tune with the ground-truth music scores.
For example, the largest value of a MIDI note may not
associated with the singer, but the instruments. In practice,
a MIDI note τ is converted from Hertz, i.e., τ = ⌊12 ×
log2

(
Hz
440

)
+ 69.5⌋. Then we perform a cleaning procedure

to remove the background music and obtain users’ singing
characteristics. Here, we adopt the strategy in [2] which uses
the original acoustic sound to measure the correctness of a
singing performance of pitch, volume and rhythm. Formally,
given a cover version c and the original version c′, we let

Seq(c) = {τ1, τ2, . . . , τK} and Seq(c′) = {τ ′
1, τ

′
2, . . . , τ

′
K} be

the MIDI note sequences of c and c′ respectively.
Pitch-based ratings. In analysis of singing perfor-

mance, the pitch is related to the degree of highness or low-
ness of a tone. In other words, to achieve a high score, users
should sing a sequence of correct notes with appropriate du-
ration. The notes of background accompaniment are often
above or below the singing record so that the mixture of the
background accompaniment and the vocal sound is harmon-
ic. Based on this observation, a sequence of MIDI notes can
be adjusted by shifting the suspect notes several octaves up
or down, so that the range of adjusted notes conforms to the
normal range. For a MIDI note τt in Seq(c), if τt is abnor-
mal, then we adjust it as τ ′

t = τt − ⌊τt − τ̄ + 6 |τ |⌋, where τ̄
is the average value of MIDI notes in Seq(c) and |τ | is the
normal range of the sung notes in a sequence and |τ | = 24 in
practice. The adjusted sequence is denoted as ˜Seq(c) which
is used for pitch-based ratings, i.e.,

(3.2) Rpitch = ˜Seq(c).

Volume-based ratings. Volume refers to the intensity
of sound in a piece of music. A simple strategy for extracting
volume-based ratings is to compare a cover version with
the original version. After adjusting abnormal elements of
Seq(c) and Seq(c′) by using Eq.(3.2), we have two adjusted
sequences of MIDI notes ˜Seq(c) and ˜Seq(c′). Then a volume-
based rating of c is computed by:

(3.3) Rvolume = I × exp
[
sim

(
˜Seq(c), ˜Seq(c′)

)]
,

where sim(·) is used to measure the similarity between
˜Seq(c) and ˜Seq(c′). I is associated with the range of a

rating. For example, if a pitch-based rating is between 0
and 100, then I = 100.

Rhythm-based ratings. Rhythm represents the onset
and duration of successive notes and rests performed by
a user. Professional singers sometimes elicit emotional
response from the audience during the liberty of the time.
However, in the scenario of karaoke, users have to follow
the flow of the accompaniment because of the prerecorded
accompaniment. Thus, the strategy of extracting rhythm-
based ratings is based on the comparison of the onsets of
notes sung in cover versions and original versions. In this
work, we adopt Dynamic Time Warping (DTW) [5] which
can calculate the similarity between two time series based
on finding an optimal match between them even if they
are not identical in size. For two sequence ˜Seq(c) and
˜Seq(c′), we have the DTW distance between them, i.e.,

SimDTW ( ˜Seq(c), ˜Seq(c′))). Then

(3.4) Rrhythm = I × exp
[
SimDTW

(
˜Seq(c), ˜Seq(c′)

)]
,

where I is configured with the same setting adopted in
Eq.(3.3), i.e. I = 100.

To this end, for song j sung by user i, we extract the
three aspect ratings and aggregate them into a vector, i.e.,
xij: = {Rpitch

ij , Rvolume
ij , Rrhythm

ij }. After extracting users’
vocal ratings, we aggregate them as a three-dimensional
tensor X .
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3.2 The Maximum-Margin Joint Model

We introduce the proposed maximum-margin joint
model which combines the modelings of multi-aspect vocal
ratings and overall ratings together. By solving this join-
t optimization problem, we can learn the optimized latent
representations of pitch, volume, and rhythm which preserve
the structural information of the multi-aspect rating tensor
while effectively discriminate the karaoke overall ratings via
the max-margin learning process.

The Modeling of Tensor. Given a tensor of multi-
aspect ratings X ∈ RI1×I2×I3 , the nonnegative factorization
of X in terms of the CP decomposition is as follows:

(3.5) X ≈
R∑

r=1

u(1)
r ◦ u(2)

r ◦ u(3)
r

Note that the audio-level features contain the information
of users’ singing competence which can be extracted from
their recordings. The audio-level features learned in Eq.(3.5)
are denoted as the s-mode U(s). For the i-th user, the
corresponding ratings of U(s) is u

(s)
i . Then we can transfer

the classification from {X ,y} into {u(s)
i , yi} (1 ≤ i ≤ Is).

The optimal factorization of non-negative tensorial data
is reformulated as a coupling least-squares optimization
problem and then we can update one column vector at a
time. In particular, the minimization problem in the s-th
mode is:

min
u
(s)
i

: ∥x(s)
i − u

(s)
i ∥

2 +Ω(x
(s)
i )

s.t. u
(s)
i ≥ 0, 1 ≤ i ≤ Is,

(3.6)

where Ω(·) is a regularized penalty.
Then, we use tensor decomposition to capture the un-

derlying patterns in the user-song-audio tensor. Combining
the vectors of the rank-one components, we get three la-
tent factor matrices representing pair relations {user, song},
{user, audio} and {song, audio}.

The Modeling of SVM. To achieve greater gener-
alized discriminating power, our optimization problem also
intends to reduce the misclassification error and maximize
the margin of the classifier in the feature space. With the
discriminative labels of each recording {yi}Isi=1 and the hy-
perplane parameter w, the acquired latent factor matrices
can be fed into an SVM loss function, such as:

(3.7) L(u
(s)
i , yi,w) = max{0, 1− yiw

⊤u
(s)
i }.

Furthermore, in karaoke song recommendation applica-
tions, although some features rely on the content information
of songs, however, if a user’s singing recordings are sparse, we
can not fully predict a user’s inherent singing competence,
because his/her singing ratings may suffer from overfitting
problem. Moreover, it is still possible for a user to choose
difficult songs if he/she likes challenges. Hence, besides the
observed ratings, our proposed method takes users’ poten-
tial singing competence into consideration. Formally, the
potential singing competence of the i-th user is denoted as

∆u
(s)
i and is formulated as an additive parameter subjected

to u
(s)
i , i.e.,

u
(s)
i ← u

(s)
i +∆u

(s)
i

To provide prior information of ∆u
(s)
i , there is a con-

straint imposed on users’ potential competence in our objec-
tive function, such that ∥∆u

(s)
i ∥ ≤ δi. The bound δi has a

similar effect of the standard deviation in the Gaussian noise
model [6]. Another reason to use this constraint to bound

∆u
(s)
i is that there is an intuitive geometric interpretation

in the resulting formulation, as shown in Section 6.

The Maximum Margin Joint Model. As stated
before, the goal of our proposed approach is to find a non-
negative decomposition for a tensorial data as well as learn
a classifier in the factorized space. With users’ potential
competence considered, we have the following problem:

min
ui

:γ∥x(s)
i − u

(s)
i ∥

2

+w⊤w + ρ

Is∑
i=1

L(yi,w · (u(s)
i +∆u

(s)
i ) + b)

s.t. ui ≥ 0, ∆u
(s)
i > δ, 1 ≤ i ≤ Is,

(3.8)

where γ and ρ are parameters to control the approximate
error and classification loss respectively, and b is the bias
term. Eq.(3.8) results in a set of latent factors that simulta-
neously reduce the reconstruction error while ensuring a low
misclassification error.

Note that the traditional solution for SVM classifiers is
generally obtained in the dual domain [7]. However, since

the weight vector w and the components u
(s)
i are inherently

coupled in Eq.(3.8), it is complicated to obtain the dual
formulation. Inspired by the idea of primal optimizations
of non-linear SVMs [8], we adopt the well-known kernel
trick here to capture the non-linear structures implicitly.
Therefore, the weight vector w can be replaced with a
functional form

(3.9) f(u) =

Is∑
i=1

αik(ui,u),

where k(·, ·) is a kernel as given by Mercer’s theorem [9].
After replacing w by f(u), Eq.(3.8) is revised as follows:

min
u
(s)
i

: γ∥x(s)
i − u

(s)
i ∥

2 +

Is∑
i=1

L(yi,

Is∑
j=1

k(u
(s)
i ,u

(s)
i )αi)

+ λ

Is∑
i,j=1

αiαjk(u
(s)
i +∆u

(s)
i ,u

(s)
j +∆u

(s)
j )

s.t. u
(s)
i ≥ 0, ∆u

(s)
i > δ, 1 ≤ i ≤ Is,

(3.10)

which is the objective function of our proposed jointly
maximum margin model. Here, λ = 1/ρ and γ is the relative
weight between the loss function and the margin.
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Algorithm 1 The Learning Process of CBNTF

Input: The tensorial training data and their corresponding
class labels, i.e., X ∈ RI1×I2···×IN , where yi ∈ {−1,+1},
i = 1, 2, · · · , In, given a kernel k

Output: The principle decomposition components of each
mode {U1, · · · ,UN} and classifier coefficients vector α

1: repeat
2: for n = 1 to N do
3: compute ∇α on Eq.(4.13)
4: update Hα on Eq.(4.14)
5: update α on Eq.(4.15)
6: for i = 1 to In do
7: update u

(s)
i on Eq.(4.17)

8: update H
(s)
ui on Eq.(4.18)

9: end for
10: end for
11: until max iteration or convergence

4 Solving the Joint Optimization Problem

Many well-known methods can be adopted to solve the opti-
mization problem formulated in Eq.(3.10), such as Newton’s
method and Gradient Descent. Although Newton’s method
enjoys a faster convergence rate than gradient descent, cal-
culating the Hessian inverse may be expensive if the size of
Hessian is large. Furthermore, since Hessian is not invertible
for any kernel, we adopt conjugate gradient. Without com-
puting the invert of the Hessian, we can achieve a reasonable
solution with only a couple of steps.

Update α. The first-order gradient of Eq.(3.10) with
respect to α is

∇α = 2λKα+

Ir∑
i=1

ki
∂L

∂t
|t=kT

i
α,(4.11)

where ∂L
∂t

is the partial derivative of L(y, t) with respect to
its second argument. Moreover, it implies that the optimal
function can be formulated as a linear combination of kernel
functions evaluated at training samples. Notice that L can
be any loss function, such as Hinge loss and ϵ-insensitive loss.
Here, we consider a quadratic loss, i.e., the L2 penalization
of the training errors

(4.12) L(yi, f(ui)) = max(0, 1− yif(ui))
2.

For a given value of vector α, a point ui is a support vector
if the loss on this point is non-zero, i.e., yif(ui). We can
reorder the training points such that the first n entries are
support vectors. Then, let Io be the n× n diagonal matrix
with first n entries being 1 and others 0. The gradient with
respect to α is

(4.13) ∇α = 2(λKα+KIo(Kα−Y)),

and the Hessian is,

(4.14) Hα = 2(λK+KIoK).

Each step consists of the following update:

(4.15) α← α− γH−1
α ∇α,

where γ is the step size for line search or backtracking. In
our experiment, we use the default value of γ = 1.

Update u
(s)
i . Let u

(s)
in

be the n-th element of u
(s)
i .

While all the other factor matrices are fixed, the problem
of Eq.(3.10) becomes a quadratic problem and analytically

solvable. Therefore, we can learn u
(s)
i by updating u

(s)
in

one

by one. For clarity, the update rule of u
(s)
in

is as follows

u
(s)
in

=
∑

(xi1,...,iN

∏
l̸=n

u
(l)
ilk

), ∀k

=(B
(s)
in

+ λIK)−1c
(s)
in

.

(4.16)

where the (k1, k2) entry of B
(s)
in

∈ RK×K is∑
u
(s)
in

(
∏

l̸=n u
(l)
ilk1

∏
l ̸=n u

(l)
ilk2

), and the k-th entry of c
(n)
in
∈

RK is
∑

u
(s)
in

(xi1,...,iN

∏
l̸=n u

(l)
ilk

).

Then, the gradient of Eq.(3.10) with respect to ui
(r) is:

∇ui = −2γx
(s)
i + 2γu

(s)
i + 2λαi

Is∑
j=1

αju
(s)
j +

2(

nν∑
j=1

ljαju
(s)
j )[i ∈ nν ] + αi

nν∑
j=1

lju
(s)
j ).

(4.17)

The Hessian with respect to ui
(r) is:

Hui
(r) = 2γ + (2λα2

i + 4liαi[i ∈ nν ])Ins,(4.18)

where [i ∈ nν ] is an indicator function and Ins is an identity
matrix of sized Is. To avoid calculating the inverse, we adopt
Cholesky decomposition which also takes O(K3). Thus, in
each iteration, updating each row of all the factor matrices
only takes O(|Ω|NK(N +K) +K3 ∑N

n=1 In).

Solution of ∆u
(s)
i . Our goal is to construct separating

hyperplanes in the feature space using individuals’ singing
ratings and the mapped potential competence. However, the
mapped competence region may correspond to an irregular
shape in the feature space, which brings difficulties to our
optimization problem. Thus, we propose an approximation
strategy for updating ∆ui based on the first-order Taylor ex-
pansion of k, which is k(ui+∆ui, ·) = k(ui, ·)+∆uT

i k
′(ui, ·)

where k′(ui, ·) denotes the gradient of k with respect to ui.

By fixing ∆u
(s)
i to ∆ū

(s)
i , the problem of Eq.(3.10) can be

converted to a simple second-order cone program (SOCP)
which yields a solution w =

∑
i yiᾱi. An optimal solution of

∆u
(s)
i is thus acquired, i.e.,

(4.19) ∆u
(s)
i = yiδi

vi

∥vi∥

where vi =
∑

yjᾱjk
′(ui,uj +∆ūj). The details of the

proposed maximum-margin joint model are summarized in
Algorithm 1.

5 Top-n Song Recommendation

In the recommendation stage, we use the learned latent
factor matrices to predict overall ratings of songs and
recommend top-n songs. Formally, given a set of I test
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users denoted as a 3-order tensor X ∈ RI×J×K , we first solve
the maximum-margin joint model which yields three latent
feature matrices U(1), U(2) and U(3). Each row u

(1)
i , u

(2)
j

and u
(3)
k of these factor matrices correspond to the latent

factors associated with each particular user, song, and audio.
Then the features in U(1) are taken as input for the SVM
classifier and predict the labels y

(1)
i . Here, y

(1)
i is a binary

vector where y
(1)
ij = 1 means that the i-th user has singing

competence to handle the j-th song. Thus, for each user,
we can pick out songs labeled +1 for song recommendation.
Further more, a tensor X̂ can be computed by multiplying
three latent factor matrices U(1), U(2) and U(3) together via
tensor product
(5.20) X̂ = U(1) ×2 U

(2) ×3 U
(3)

where ×n is the tensor product to multiply a matrix on the
n-th dimension with a tensor. The element x̂ijk denotes the
predicted rating of the vocal feature k in song j sung by the
user i. The predicted overall rating Rij of song j for user
i is Rij =

∑K
k=1 x̂ijk, Therefore, we can recommend top-n

songs with the highest overall ratings and labeled as +1.

6 Experimental Results

We provide an empirical evaluation of the performances of
the proposed method on real-world karaoke data.

6.1 Experiment Setup
Data Description. We evaluate our method on the

real world karaoke data from August 2011 to June 2012.
To alleviate the sparsity problem, we only consider the
songs which have been sung more than 3 different users
and users who have sung more than 10 songs. In the
Figure 2, we can observe that more than 80% users can
perform an overall rating more than 70. By applying a rating
threshold σ = 70, the song recommendation is reduced into
a binary classification problem. A song is a positive sample,
if the overall rating is more than σ, otherwise a negative
sample. Table 2 presents the statistics of the data used in
the experiments.

Table 2: Statistics of the data set.

# Users
# Positive # Negative # Vocal

songs songs features

28,472 669,890 96,761 213

Evaluation Metrics. We use the following metrics to
evaluate the performances of our karaoke song recommenda-
tion algorithm.

• MAE. Mean absolute error takes the mean of the
absolute difference between each prediction and ratings
for users in the test set.

MAE =
1

|T|
∑
i,j,k

|yi,j,k − ŷi,j,k|,

where yi,j,k denotes actual singing rating of vocal-
feature value k in karaoke song j sung by user i, ŷi,j,k

represents the predicted vocal-feature value and |T|
is the number of predicted values. The MAE is the
average absolute deviation of predictions to the ground
truth data. The smaller MAE indicates the better
prediction accuracy.
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Figure 2: The distribution of singing recordings w.r.t
average of pitch-based ratings and volume-based ratings.

.• MacroF1. The macroF1 metric calculates the average
of F1 scores of all the labels.

MacroF1(h,D) = 1

n

n∑
i=1

2× ∥h(xi) ∩Yi∥1
∥h(xi)∥1 + ∥Yi∥1

.

• MicroF1. The microF1 is the calculation of F1

regardless of classes. The F1-score can take both the
precision and the recall into account, thus can be viewed
as a harmonic mean of precision and recall.

MicroF1(h,D) =
2×

∑n
i=1 ∥h(xi) ∩Yi∥1∑n

i=1 ∥h(xi)∥1 +
∑n

i=1 ∥Yi∥1
.

Here, the function h(xi) counts the “hits” of the
prediction model for a song xi where a rating from the
ground truth is among the ratings predicted.

• AUC. The area under the ROC curve, is also used to
capture the overall recommendation performance [10].
The range of AUC is the interval [0, 1] and the AUC of
a random classifier is 0.5.

Baseline algorithms. We compared our proposed al-
gorithm with the following baseline methods, in which CB-
SR is a state-of-the-art algorithm for song recommendation:

• Support Vector Machine (SVM): Support Vector
Machine, a typical maximum-margin classifier, is ap-
plied after vectorizing the input tensor on each class
using the one vs. all scheme. We use the open source
software LIBSVM [11].

• Support Tucker Machine (STM): Support Tucker
Machine [12] is a tensor-based model of SVM.

• Logistic Tensor Regression (LTR): Logistic Tensor
Regression is a modified tensor-based logistic regression
method for classification [13].

• Competence Based Song Recommendation
(CBSR): This is a learning-to-rank scheme for recom-
mending songs, which takes singers’ vocal competence
into consideration [14].

In the recommendation stage, we set a threshold rating
σ and recommended songs whose predicted rating are more
than σ. Note that the karaoke site has scored the users’
singing performance. We randomly split the processed data
into training data (70%) and test data (30%) and collected
the results. We repeated this procedure for 10 times and
reported the average performances.
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Figure 3: Effectiveness of Model Parameters

6.2 Performance Comparison
First of all, to evaluate the influence of training dataset

size over the classification accuracy, we conduct experiment
using different configurations of training dataset size, as
shown in Figure 3(a). We observe that the performance
by all competing algorithms improves as the number of
training samples increases. Our method achieves the best
classification performance in most cases, because our method
is able to learn more discriminative features when more
training data are provided.

In addition, we investigated the influence of the tensor
rank R on the classification performance, as shown in
Figure 3(b). With different configurations of the tensor rank,
we note that the classification performance become stable
when the tensor rank is 5.

Furthermore, we evaluate the performance in terms of
three kinds of metrics. From Table 3 we can make the
following observations:
• In principle, our method is a discriminative-generative

model that is formulated as a joint optimization frame-
work of tensor factorization and support vector ma-
chine. Thus, the features learned by our method not
only preserve the intrinsic multi-view structural infor-
mation on tensorial audio signal data, but also include
the discriminative information derived from the max-
margin learning process.

• The classification performance of tensor-based ap-
proaches, such as STM and LTR, are superior to those
vectorized-based approaches, such as SVM. STMmakes
full use of the data structural information and reduces
the number of decision parameters of classification sig-
nificantly. This is mainly because tensor-based feature
representations can effectively preserve the structural
information on the original data.

6.3 Effectiveness of Latent Factor Matrices
In this subsection, we show the interpretable nature of

our proposed method for discriminative analysis in karaoke
song recommendation. Let U(1), U(2), U(3) denote three
latent factors learned from the optimization problem, i.e.,
U(1) captures user-song relations, U(2) captures user-audio
relations, and U(3) captures audio-song relations, and we
present some interpretation of U(3). Note that the other
two latent factors U(1) and U(2) are rather sparse because
most users only sing a small set of songs.

Visualization of latent factor U(3). Each row in
the nonnegative matrix U(3) can be treated as a song. For
example, U(3)(j, :) can be viewed as a latent feature of j-

-4

-3

-2

-1

0

1

2

3

4

5

543210-1-2-3-4

Songs

(a) Latent Factor U(3)

Pop

R
o
c
k

Classical

Jazz

(b) Four Genres of Songs

Figure 4: Each song is present as a blue circle. With four
different genres of songs highlighted one by one, we can
observe that songs of the same genre are easily concentrated.

th song. To illustrate U(3) in a 2-D figure, we adopt t-
SNE1, which is commonly used for the visualization of high-
dimensional data [15], to assist our data analysis. Then U(3)

is illustrated in Figure 4(a), where each circle corresponds to
a song and its size is proportional to the singing frequency
in the song dataset. Then, we randomly select four types
of songs and highlight them by orange circles, as shown
in Figure 4(b). We observe that the songs of a type are
much more easily to be concentrated. Therefore, given a
set of karaoke songs, our method can identify vocal features
and simultaneously classify the songs of different types (e.g.,
Rock, Pop and Classic).

6.4 Effectiveness of Users’ Singing Compe-
tence

Users’ potential singing competence ∆u is bounded by
δ and imposed as a constraint in our formulation. In this
subsection, we visualize the classification performance over
two different δ to get a more straightforward observation.
Specially, we randomly pick a song and collect the corre-
sponding karaoke records. As shown in Figure 5, purple dots
and blue dots represent users performing good and bad re-
spectively. The users’ potential competence are represented
by circles with their sizes proportional to individuals’ poten-
tial competence of the corresponding user. We can find that
the resulting formulation has an intuitive by adopting the
bounded potential competence. Furthermore, by modeling
∆u on singing competence, our method becomes more sen-
sitive to users’ multi-aspect ratings rather than the overall
ratings. This is because we can find a choice of ∆u, such
that u+∆u is far from the decision boundary and will not be
a support vector. Therefore, comparing to overall ratings,
the multi-aspect ratings can reveal the more trust-worthy
singing competence.

6.5 Convergence Issues
In this subsection, we discuss the convergence of the

proposed CBNTF by evaluating the variation of root-mean-
square error (RMSE) from the point of tensor reconstruction
during the iterations. Here, the objective function proposed
in Eq.(3.10) is a weighted combination of the NTF cost
and the classifier (SVM) cost. We optimized this objective
function using conjugate gradient and solved a set of convex

1http://homepage.tudelft.nl/19j49/t-SNE.html
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Table 3: Recommendation Performance Comparison.

Method MAE AUC MacroF1 MicroF1

SVM 0.2427± 0.0263 0.7852± 0.0226 0.7091± 0.0209 0.7198± 0.0121

CBSR 0.2091± 0.0398 0.7016± 0.0190 0.6481± 0.0255 0.6308± 0.0318

LTR 0.2083± 0.0213 0.7193± 0.0189 0.6681± 0.0263 0.6890± 0.0117

STM 0.2658± 0.0289 0.7562± 0.0234 0.7031± 0.0415 0.7151± 0.0325

CBNTF 0.1831 ± 0.0013 0.7864 ± 0.0272 0.7173 ± 0.0562 0.7834 ± 0.0423
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Figure 5: Classification performance over constraint δ of
users’ potential singing competence.
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Figure 6: Convergence comparison of the objective function
and tensor reconstruction. The x-axis shows the number of
iterations, and the y-axis shows the RMSE on validation
data (lower is better).

sub-problems in each step. The tensor reconstruction error,
i.e., ∥X −

∑R
r=1 u

(1)
r ◦u(2)

r ◦u(3)
r ∥2, is the the NTF cost which

means the discrepancy between the approximation obtained
by the proposed algorithm and the original data.

In Figure 6, we can see that tensor reconstruction could
converge after 400 iteration and achieve a RMSE of 0.2683
on the validation set. In contrast, the objective function
converges after 100 iterations and achieves a better RMSE.
This implies that there is mutual enhancement between
decomposition and classification in our procedure.

7 Related Work

In the literature, a lot of methods have been proposed to
address song recommendations, such as [1, 16]. Traditional
song recommendation systems are proposed for discovering
songs which satisfy users’ listening interest. [17] proposes
a content-based model which uses low level features, such
as moods and rhythms, to represent user’s preference of the
songs. In recent years, recommender systems are mainly
dominated by content-based and collaborative filtering ap-
proaches. Content-based (CB) recommender systems learn
the user’s preference for specific types of songs by analyzing
the songs’ descriptions. The prediction of the unrated songs
is based on ratings for similar songs rated by the same user.
In Collaborative Filtering (CF) strategies, the prediction of
the unrated songs is based on the opinion of users with sim-
ilar tastes. Most of the work in recommender systems has
focused on recommending the most relevant items to indi-
vidual users [18], but the circumstance of the user typically
is not considered when the recommendations take place.

On the other hand, matrix factorization methods are al-
so applied to perform these prediction, such as [19]. Matrix
factorization has become a popular CF technique. However,
the similarity compared to other users will be poor for the
users whose tastes are unusual to the population. As a gen-
eralization of matrix factorization, tensor factorization has
been studied from an algebraic perspective and witnessed
a renewed interest. Recently, tensor factorization methods
have been used in various applications such as social network
analysis and recommendation [20]. A supervised tensor fac-
torization method via max margin has appeared recently
[21]. However, a major problem with tensor factorization is
that the prediction accuracy is typically influenced by the
sparse observations in real datasets. Generalized coupled
tensor factorization [22] and a few other studies [23] try to
factorize observed tensors while incorporating side informa-
tion simultaneously. Previous work attempts to recommend
songs that is perceptually similar to what users have pre-
viously listened to, by measure the similarity between the
audio signals. The similarity metrics are usually defined ad
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hoc, by incorporating prior knowledge about music audio.
Karaoke singing recommendation is a relatively a new

area, because users’ singing skills should be taken into ac-
count in the karaoke song recommendations. However,
karaoke songs typically contain background accompaniments
and it does not make sense to directly compare users’ singing
performance with the original song recordings. To tackle
this problem, [14] proposed a learning-to-rank scheme for
recommending songs based on an analysis of singer’s vo-
cal competence. They require a professional recording pro-
cess to extract users’ singing characteristics, namely singer
profiles, and build a learning-to-rank model recommending
songs matching users’ vocal competence. There are two ma-
jor drawbacks in this system: the one is that it requires a
complex vocal competence extraction process; the other is
that it does not consider users’ potential ability. For exam-
ple, users’ singing skill will improve even their performance
scores are not good in the singing history.

8 Conclusion

In this paper, we proposed a joint modeling method
for karaoke recommendation by mining historical karaoke
singing records. Specifically, we first defined and extracted
multi-aspect vocal (i.e., pitch, volume, and rhythm) ratings
of users for songs based on their records. Since we need to
learn the representations of the vocal competence of users,
we exploited a nonnegative tensor factorization method to
factorize vocal ratings as users×songs×audio. Besides, we
used an SVM classifier to classify overall ratings and regu-
larized the tensor factorization of vocal ratings by feeding
the factorized latent features into the SVM classifier. Fur-
thermore, we devised an effective method to solve the joint
objective function, to simultaneously optimize both tensor
factorization and SVM, and moreover, to effectively recom-
mend karaoke songs. Finally, extensive experiments with
real-world online karaoke data demonstrated the effective-
ness of the proposed method comparing to the state-of-the-
art benchmark algorithms.
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