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Abstract—Matrix completion is the task of recovering a data
matrix from a sample of entries, and has received significant
attention in theory and practice. Normally, matrix completion
considers a single matrix, which can be a noisy image or a rating
matrix in recommendation. In practice however, data is often
obtained from multiple domains rather than a single domain.
For example, in recommendation, multiple matrices may exist
as user×movie and user×book, while correlations among the
multiple domains can be reasonably exploited to improve the
quality of matrix completion. In this paper, we consider the
problem of aligned matrix completion, where multiple matrices
are recovered that correspond to different representations of
the same group of objects. In the proposed model, we maintain
consistency of multiple domains with a shared latent structure,
while allowing independent patterns for each separate domain.
In addition, we impose the low-rank structure of a matrix with a
novel regularizer which provides better approximation than the
standard nuclear norm relaxation.

I. INTRODUCTION

Matrix completion is a widely investigated problem with

significant theoretical and practical interests where one intends

to recover a data matrix from a small fraction of observed

entries. Under certain conditions, i.e., the partially observed

matrix is low-rank and incoherent, various algorithms can

be designed to reconstruct the matrix [1]. The technique of

matrix completion has been successfully applied to various

tasks including collaborative filtering [2], video denoising [3],

transductive learning [4], etc., where a single matrix is con-

sidered and reconstructed.

In practice however, data is often obtained from multiple

domains rather than a single domain. For example, in computer

vision, an object can be captured by cameras from different

angles; in recommendation, a user can rate items in different

domains of movies, books, or music. In this context, infor-

mation from multiple domains can be represented as multiple

aligned matrices, which correspond to different representations

of the same group of objects.

In general, there exist intrinsic correlations among the

multiple domains. For example, a user that rates “romance”

higher than “horror” in the movie domain may have the same

preference in the book domain. Intuitively, the correlations, if

appropriately exploited, can be helpful to model the objects

better and improve the quality of prediction. This motivates

the multi-view learning principle [5], [6] that exploits the un-

derlying consistency among different views. However, multi-

view learning normally considers complete data from multiple

sources; while in many circumstances the data matrices from

multiple domains may be incomplete and need to be recon-

structed. In the meantime, the technique of collective matrix

factorization (CMF) [7] learns low-rank representations given

a collection of matrices with shared factors, and can work on

the task of reconstructing multiple related matrices. Never-

theless, the principle of CMF is restricted in the sense that it

assumes all the domains share the same latent representations;

while in practice, there exist scenarios where individual ma-

trices may have strong domain-specific patterns, and lack of

distinction between the consistent and domain-specific factors

may imply improper transfer of information among different

domains and degeneration of prediction performance.

On the other hand, in matrix completion, it is common to

assume that the partially observed matrix is low-rank, which

can be enforced with various rank regularizers. Given the NP-

hardness of the rank minimization problems, a widely used

relaxation of the rank function is the nuclear norm. It is shown

in [1] that low-rank solutions can be recovered perfectly via the

nuclear norm under incoherence assumptions. Unfortunately,

in real applications, the underlying matrix may have no

incoherence property and the data may be grossly corrupted.

Moreover, the nuclear norm suffers from the limitation that

it adds up all the singular values with equal weights which

implies that large singular values are penalized more than

small ones; whereas the large singular values, corresponding

to more important components, should be penalized less to

preserve the major information. This issue can get even worse

when reconstructing multiple matrices simultaneously with

varied degrees of sparsity.

In this paper, we propose the novel model of Aligned

Matrix Completion (Aligned MC), where multiple matrices are

recovered simultaneously that correspond to different views of

the same group of objects. The above two issues are addressed

in the proposed model. We factorize the latent representations

for multiple domains by maintaining consistency with a shared

latent structure while allowing independent factors for each

separate domain. In addition, to overcome the imbalanced

penalization of different singular values, we impose the low-

rank structure of a matrix with a general singular value

regularization and further extend it to the scenario of multiple

domains. Theoretical analysis is then included with conver-
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gence guarantees. The proposed framework is evaluated on

synthetic data as well as the empirical task of recommendation

in multiple domains which predicts a user’s preference on

multiple types of items.

The rest of the paper is organized as follows. In Section II

related work is discussed. Next in Section III we propose the

novel method of Aligned Matrix Completion (Aligned MC).

Rigorous convergence analysis of the proposed algorithm is

conducted in Section IV, followed with experimental results

summarized in Section V to demonstrate the empirical effec-

tiveness of the proposed method. The paper is then concluded

in Section VI.

II. RELATED WORK

In matrix completion, it is common to assume that a

partially observed matrix has low rank structure, which entails

a rank minimization problem. To tackle this problem which

is NP-hard in general, the nuclear norm is normally used as

a convex relaxation of the rank function. To overcome the

issue of imbalanced penalization of different singular values

of the nuclear norm, various non-convex rank relaxations

are proposed with a weighted sum of singular values while

choosing appropriate and fixed weights in a non-descending

order [8]-[10]. A more recent work [11] tries to minimize a

reweighted nuclear norm for a better approximation of the

rank function as well as the observed matrix with provable

convergence. In this paper, we present a family of singular

value regularization functions and generalize a group of non-

convex rank relaxations with a more elaborate convergence

analysis. We further extend the methodology to aligned matrix

completion in multiple domains, and tackle the empirical task

of recommendation in multiple domains.

Various efforts have been devoted to recommendation in

multiple domains, among which transfer learning is a widely

applied principle [12]-[14], where the model for each domain

needs to be trained separately with the source domain and the

target domain specified. On the other hand, multiple recom-

mendation tasks on different domains can be performed simul-

taneously by effectively exploiting the correlations between

domains [7], [15]. Specifically, collective matrix factoriza-

tion (CMF) [7] jointly factorizes multiple matrices assuming

common latent factors for all the domains, which may be

hardly true in practice especially in scenarios with strong

domain-specific patterns for each domain. To address that, a

recent work of group-sparse matrix factorization (GSMF) [16]

incorporates group sparsity on the latent factors, allowing

different factors selected for different domains. However it

does not necessarily entail a common subset of factors for each

domain. In this paper, we consider the task of reconstructing

matrices in multiple domains simultaneously. To achieve that

we factorize the latent representations of multiple domains

with a shared latent structure and independent factors for each

separate domain to integrate consistency and independency

across various domains in the model.

III. ALIGNED MATRIX COMPLETION

A. Generalized Low-rank Matrix Completion

We first consider the low-rank matrix completion problem

in a single domain. Given a noisy matrix Y ∈ R
n×m with

N observations, the principle of low-rank matrix completion

tries to find a matrix X that the entries of X indexed by

Ω = {(i, j)|Xij is observed} are as close to Y as possible,

namely XΩ ≈ YΩ, and rank(X) ≤ l. Considering the risk

of estimating XΩ with a loss function �, the low-rank matrix

completion problem can be formulated as

min
X

�(XΩ) + λ · rank(X). (1)

This rank minimization problem is NP-hard in general due

to the non-convexity and discontinuity of the rank function. A

common strategy is to relax it with the nuclear norm || · ||∗ as

a low-rank approximation:

min
X

�(XΩ) + λ||X||∗ (2)

Although the low-rank approximation (2) is the tightest

convex relaxation of (1) [17], the nuclear norm may not be a

good approximation of the rank function due to the fact that

it adds up all the singular values equally, which implies that

large singular values are penalized more heavily than small

ones. Therefore, we propose a family of Generalized Singular

Value Regularization (GSVR) functions

h(X) =
∑
i

ri(σi(X)) (3)

where σi(X) denotes the i-th largest singular value of X and

each ri is a general function of the corresponding singular

value σi(X), which can be flexibly designed to reflect the

inherent structure of the matrix.

Essentially, GSVR represents a family of singular value

regularization functions and generalizes a group of methods in-

cluding Truncated Nuclear Norm Regularization (TNNR) [8],

Reweighted Nuclear Norm (RNN) [11], etc. Note that h(X)
is allowed to be convex or non-convex regarding X . Never-

theless, we will design a proximal algorithm with convergence

guarantees to solve the matrix completion problem with the

generalized singular value regularization.

B. Aligned Matrix Completion in Multiple Domains

In multi-domain scenarios, given observations indexed by

{Ωd, d = 1, . . . , D} from D domains: {Y d ∈ R
n×md , d =

1, . . . , D} where matrices {Y d} are aligned in rows, correla-

tions among the multiple domains can be exploited to improve

the quality of matrix completion. Specifically, we assume

there exist consistency shared among multiple domains as

well as independent patterns for each separate domain. In the

case of multi-domain recommendation where matrices {Y d}
correspond to rating matrices on different types of items such

as user×movie and user×book, it is natural to assume that

users have some mutual interests across domains, as well as

some distinct interests in each domain.
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Consider the latent factors of users and items by factorizing

a rating matrix X = UV �, where U and V correspond to

low-rank user×latent factor and item×latent factor matrices.

In multiple domains, the consistent patterns can be represented

by a shared user×latent factor matrix U . As a consequence,

the observations in the d-th domain can be factorized as

Y d
Ωd

= (UV d�
+ ŨdṼ d�

+ εd)Ωd
, where Xd = UV d�

represents shared user interests on the d-th domain; and X̃d =
ŨdṼ d�

corresponds to domain specific user preference. The

rating behaviors of shared user interests on various domains

can be summarized in the matrix X = [X1, . . . , XD] =

U · [V 1� , . . . , V D�
], which is a horizontal concatenation of

{Xd}. To learn the shared and domain specific user interests,

we apply a general singular value regularizer h0 on X , and

hd on X̃d for d = 1, . . . , D. The optimization problem can

then be formulated as

min
X, {X̃d},

d = 1, . . . , D

�(X, X̃1, . . . , X̃D)+h0(X)+

D∑
d=1

hd(X̃
d). (4)

In this paper, we use � =
∑D

d=1
Nmax

Nd
||Y d

Ωd
−(Xd+X̃d)Ωd

||2F
to measure the reconstruction error and balance the losses of

different domains, where Nd is the number of observations in

domain d and Nmax is the maximum of {Nd}. Regularization

functions h0, {hd} are designed as the weighted sum of the

singular values with non-descending weights wi, which is a

special form of (3):

h(X) =

rank(X)∑
i=1

wiσi(X),

wi = pen1 +
pen2

1 + e−γ(i−k)
.

(5)

Here pen1 and pen2 are positive constants. wi is designed such

that the first k singular values are penalized less to preserve

the major information of a matrix, where γ determines the

sharpness of the sigmoid function. In the meantime, the non-

descending singular value regularization h(X) is no longer

convex with respect to X . Nevertheless, a sub-linear conver-

gence rate can still be achieved by our algorithm as proved in

the following section.

IV. OPTIMIZATION AND CONVERGENCE ANALYSIS

In this section, we will build the optimization algorithm and

discuss the convergence properties.

A. Proximal Gradient Algorithms for Single and Multiple
Variables

The matrix completion problem with generalized singular

value regularization (GSVR) (3) for single and multiple vari-

ables can be formulated as

min
X∈Rn×m

Φ(X) = �(X) + h(X), (6)

and

min
X1,...,XD

Φ(X1, ..., XD) = �(X1, . . . , XD) +

D∑
d=1

hd(X
d),

(7)

respectively. With a slight abuse of notation, D here represents

the number of matrix variables, rather than the number of

domains in the previous section.

To solve the problems, we first define the proximal map

Pμ
h , μ > 0 for h:

Pμ
h (Mt) = arg min

X∈Rn×m

1

2
||X −Mt||2 + μh(X), (8)

which is actually solving the problem

Xt+1 = arg min
X∈Rn×m

�(Xt) + 〈∇�(Xt), X −Xt〉

+
1

2μ
||X −Xt||2 + h(X),

(9)

where Mt = Xt − μ∇�(Xt).
Problem (6) can now be solved by iteratively solving for

Pμ
h (Mt) to find the closest point Xt+1 in the feasible set

defined by h(Mt), after going along the direction of −∇�(Xt)
with a small step to get an intermediate solution Mt. However,

each ri is not separable with respect to X . Based on the

following lemma, a solution of (8) with penalties in (3) can

be found in an easier way.

Lemma 1. [18] Let || · || be a unitarily invariant norm on
R

n×m (i.e., ||LXR|| = ||X|| for any unitary matrix L, R)
and let F : R

n×m → R be a unitarily invariant function
(i.e., F (LXR) = F (X) for any unitary matrix L, R and any
X ∈ R

n×m). Let A = UΣV � ∈ R
n×m be given, Diag(x)

be a diagonal matrix with x on its diagonal, and h be a non-
decreasing function on [0,∞). Then X∗ = UDiag(x∗)V � is
a global optimal solution of the problem

min
X

F (X) + h(||X −A||) (10)

where x∗ is the global optimal solution of the problem

min
x
F (Diag(x)) + h(||Diag(x)− Σ||). (11)

It is worthwhile to further our discussion regarding this

lemma. If we set g(x) = F (diag(x)), then g can be viewed

as an extension of the symmetric gauge function for F , in

which case g is a function on R
n whose value is invariant

under permutations but could be variant under sign changes

of components. Due to these facts, we can view a unitarily

invariant function F as an extension of a unitarily invariant

norm. More examples of symmetric gauge functions in normed

vector space and analyses can be found in [19]. As a result,

if the empirical risk � is measured by a norm in vector space,

or more generally by a unitarily invariant function, and non-

smooth regularization terms {hd} penalize the unitarily invari-

ant norms of variables non-decreasingly, Lemma 1 indicates

that the proximal map could be computed in an easier way.
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Algorithm 1 GSVR Proximal Gradient (GSVR-PG) Algorith-

m for a Single Variable

Input: Observed matrix Y for each view, Lipschitz constant

L and stop criterion ε.
Output: Recovered matrix X

Initialize: X = 0, μ < 1/L
while ||Xt+1 −Xt||2 ≥ ε||Y ||2 do
Mt = Xt − μ∇Xt

�(Xt)
Xt+1 = Pμ

h (Mt)
end while

Algorithm 2 GSVR Proximal Gradient (GSVR-PG) Algorith-

m for Multiple Variables

Input: Observed matrices {Y d} for each view, the largest

Lipschitz constant Lmax and stop criterion ε.
Output: Recovered matrices {Xd}

Initialize: Xd = 0, μ < 1/Lmax

while ∃Xd such that ||Xd
t+1 −Xd

t ||2 ≥ ε||Y d||2 do
for d = 1, . . . , D do
Md

t = Xd
t − μ∇Xd

t
�(Xd

t )

Xd
t+1 = Pμ

hd
(Md

t )
end for

end while

Corollary 1. The proximal map Pμ
h of h in the form of (5)

can be computed as:

Pμ
h (Mt) = UDiag(x∗)V �,

xi =

{
σi(Mt)− μwi, if σi(Mt) > wi

0, otherwise

(12)

Proof. It is obvious that the Frobenius norm is unitarily

invariant, h(θ) = θ2 is nondecreasing on [0,∞), and penalties

defined as in (3) are also unitarily invariant and separable for

each singular value. Given that all assumptions of Lemma 1

are satisfied, the proximal maps of {ri} can be calculated by

Pμ
ri(Mt) = UDiag([0, . . . , x∗i , . . . , 0])V

�,

x∗i = arg min
xi∈R

1

2
||σi(Mt)− xi||2 + μ ri(xi).

(13)

The second equation of (13) is a univariate optimization

problem, which is much easier to solve.

Based on the above, the proximal map Pμ
h can be computed

separately as

Pμ
h (Mt) =

∑
i

αiP
μ
ri (Mt), (14)

which means Pμ
h is strictly equal to the convex combination of

{Pμ
ri}. Substituting (12) into (13) and (14), we can complete

the proof.

The proximal method for a single matrix variable is de-

scribed in Algorithm 1.

In the multivariate scenario, we use an alternating update

scheme which updates each variable with a small step in

sequence:

Xd
t+1 = arg min

Xd∈Rn×m
�(Xd

t ) + 〈∇�(Xd
t ), X

d −Xd
t 〉

+
1

2μ
||Xd −Xd

t ||2 + hd(X
d),

d = 1, . . ., D sequentially.

(15)

The algorithm designed for this update strategy is summarized

in Algorithm 2.

B. Convergence Analyses

In this subsection, we will analyze the convergence of

sequences generated by Algorithm 1 and Algorithm 2 for the

single- and multiple-matrix completion problems respectively.

It is worth noting that the mild conditions required in the

proofs, including Assumptions (A1), (A2), (A3) and (A4), are

satisfied by a large number of functions, which will not affect

the generalization ability of the proximal algorithm in general.

Moreover, compared to existing work [8], [10], the more

explicit analyses established in this subsection will guarantee

that a large number of classical objective functions can be

optimized by our proposed algorithm, which will converge to

a critical point with a superior upper bound of the number of

required iterations.

This subsection is arranged as follows. We start from the

assumptions of � and h, and explain the KL property which

plays an important role in proving the convergence. Then

the convergence guarantee in the scenario of single matrix

variable is derived. Next, we will go though the proof of

convergence in the multivariate scenario, followed by showing

the effectiveness of the alternating proximal method for our

specific problem of aligned matrix completion (4) explicitly.

Before going through the details, we make the following

assumptions about � and h to facilitate the analysis.

(A1) Function � : R
n×m → R is lower bounded, con-

tinuously differentiable with L-Lipschitz continuous

gradient (w.r.t. the Euclidean distance, or Frobenius
norm for matrices). That is, there exists a positive

constant L such that

||∇�(A)−∇�(B)|| ≤ L||A−B||, ∀A,B ∈ dom�
(16)

(A2) Each penalty component ri : R → R is a proper,

lower bounded function.

(A3) Function Φ has the KL property.

As an important property in the following analysis, the

definition of the Kurdyka-Łojasiewicz (KL) property [20] is

summarized below. Before that we first define the distance

from any subset S ⊂ R
n to any point x ∈ R

n as

dist(x, S) = inf{||y − x||, y ∈ S}. (17)

Definition 1. (KL property) Let σ : R
n → (−∞,+∞] be

proper and lower semi-continuous.
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(i) A function σ has the KL property at μ̄ ∈ dom ∂σ := {u ∈
R

n : ∂σ(u) �= ∅} if there exist η ∈ (0,+∞], a neighborhood
U of ū and a function ψ ∈ Ψη , such that for all

u ∈ U ∩ [σ(ū) < σ(u) < σ(ū) + η], (18)

the following inequality holds

ψ′(σ(u)− σ(ū))dist(0, ∂σ(u)) ≥ 1. (19)

(ii) If σ satisfies the KL property at each point of dom ∂σ,
then σ is called a KL function.

Now we will go further to show how the KL property works

in the proof of convergence.

Lemma 2. (Uniformized KL property) [21] Let Θ be a
compact set and let σ : Rn → (−∞,+∞] be a proper and
lower semi-continuous function. Assume that σ is constant on
Θ and satisfies the KL property at each point of Θ. Then there
exist ε > 0, η > 0 and φ ∈ Φη such that for all ū in Θ and
all u in the following intersection:

{u ∈ R
n : dist(u,Θ) < ε} ∩ [σ(û) < σ(u) < σ(û) + η],

(20)

the following inequality holds

φ′(σ(u)− σ(û)) dist(0, ∂σ(u)) ≥ 1. (21)

This lemma indicates that, if the KL property holds in the

neighborhood of critical points [21], the proximal algorithm

is guaranteed to converge to a critical point in finite steps. As

a consequence, the convergence analysis will be considerably

simplified by using this property.

Equipped with this tool, one can prove that Algorithm 1 for

a single matrix variable will converge to a critical point after

entering its neighborhood. The overall convergence properties

can be summarized in the following theorem.

Theorem 1. If assumptions (A1), (A2) and (A3) hold, penalty
h is defined as in (3), and functions � and {ri} are definable;
given a step size μ < 1/L, the sequence {Xt}t∈N generated by
the Generalized Singular Value Regularization-Proximal Gra-
dient (GSVR-PG) algorithm has finite length and converges to
a critical point of (6). That is

(i) The sequence {Xt}t∈N has finite length,
∞∑
t=1

||Xt+1 −Xt|| <∞ (22)

(ii) The sequence {Xt}t∈N converges to a critical point X∗ of
(6).

Following Lemma 1 and Assumptions (A1) (A2) (A3), we

can derive this theorem according to [22] and [23]. It is worth

noting that, if ri is a concave function, one can use its first

order approximation to bound the proximal map from above

as demonstrated in [24] and [11].

Next we will prove the convergence of Algorithm 2

for problem (4) with the multivariate function �(·, . . . , ·) :
R

n1×m1 × . . . × R
nD×mD → R. To begin we also need an

assumption similar to (A1) regarding its structure.

(A4) Multivariate function �(X1, . . . , XD) is lower

bounded, continuously differentiable, and has Ld-
Lipschitz continuous partial gradient with respect to

each Xd. Meanwhile, ∇� is Lipschitz continuous on

bounded subsets of Rn1×m1 × . . .×R
nD×mD → R.

That is, for each bounded subsets B1 × . . . × BD,

there exists a constant M > 0, such that for all

(X1, . . . , XD) ∈ B1 × . . . × BD, the following

inequality holds:

||(∇X1�(X1
1 , . . . , X

D
1 )−∇X1�(X1

2 , . . . , X
D
2 ), . . . ,

∇XD�(X1
1 , . . . , X

D
2 )−∇XD�(X1

2 , . . . , X
D
2 ))||

≤M ||(X1
1 −X1

2 , . . . , X
D
1 −XD

2 )||.
(23)

Here the main difference with the single variable case is that

we make one more assumption on the gradient. We can see

that � in our problem (4) is C2 continuous and following the

Mean Value Theorem, Assumption (A4) will be satisfied.

To analyse the convergence property of Algorithm 2, we

first show that the sequence generated by Algorithm 2 would

converge to some limit points if assumptions hold, and these

limit points would be a subset of critical points of Φ. This

result is also known as subsequence convergence. Then, based

on the properties of the KL function, we can guarantee that

the algorithm will converge to one of the critical points, which

is also known as the global convergence.

For simplicity, we use the following abbreviations in the

(t+ 1)-th iteration:

�t+1(X
d
t ) = �(X1

t+1, . . . , X
d−1
t+1 , X

d
t , . . . , X

D
t ),

�t+1(X
d
t+1) = �(X1

t+1, . . . , X
d
t+1, X

d+1
t , . . . , XD

t ).
(24)

We also define

ρ = min{μ−1 − L1, . . . , μ
−1 − LD}, (25)

the sequence generated by Algorithm 2 as

Zt = (X1
t , . . . , X

D
t ), ∀t ≥ 0, (26)

and
D∑

d=1

||Xd
t−1 −Xd

t ||2 = ||Zt−1 − Zt||2. (27)

Then following (24), we get

Φt(Zt) = �t(Zt) +
D∑

d=1

hd(X
d
t ). (28)

To prove the global convergence, we start with extending

the proof of convergence properties from single-variate case

to multivariate case, which are summarized in Lemma 3 and

Lemma 4.

Lemma 3. (Convergence properties) Suppose that Assump-
tions (A2) and (A4) hold. The following assertions hold.
(i) The sequence {Φ(Zt)}t∈N is non-increasing and

ρ

2
||Zt+1 − Zt||2 ≤ Φ(Zt)− Φ(Zt+1), ∀t ≥ 0. (29)
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(ii) We have
∞∑
t=1

D∑
d=1

||Xd
t+1 −Xd

t ||2 =
∞∑
t=1

||Zt+1 − Zt||2 <∞, (30)

then limt→∞ ||Zt+1 − Zt|| = 0.

Proof. Since Xd
t+1, d = 1, . . . , D, is the optimal solution of

problem (9), in the (t+ 1)-th iteration we have

〈∇Xd
t
�t+1(X

d
t ), X

d
t+1 −Xd

t 〉+ hd(X
d
t+1)

+
1

2μ
||Xd

t+1 −Xd
t ||2 ≤ hd(X

d
t )

(31)

Following assumption (A4), we have

�t+1(X
d
t+1)≤ �t+1(X

d
t ) +

Ld

2 ||Xd
t+1 −Xd

t ||2
+〈∇Xd

t
�t+1(X

d
t ), X

d
t+1 −Xd

t 〉 (32)

Combining (31), (32) we get

�t+1(X
d
t+1) + hd(X

d
t+1) ≤ �t+1(X

d
t ) + hd(X

d
t )

− μ−1 − Ld

2
||Xd

t+1 −Xd
t ||2

(33)

Adding up the above inequalities regarding d = 1, 2, ..., D, for

all t ≥ 0 we have

Φ(Zt)− Φ(Zt+1) =
D∑

d=1

[�t(X
d
t ) + hd(X

d
t )

− �t+1(X
d
t+1)− hd(Xd

t+1)]

≥
D∑

d=1

μ−1 − Ld

2
||Xt+1 −Xt||2.

(34)

Following (34), we have that the sequence {Φ(Zt)}t∈N is non-

increasing, and since Φ is bounded from blow according to

Assumption (A4), it will converge to some real number φ.

Meanwhile, Since we choose the step size smaller than the

reciprocal of the largest Lipschitz constant Lmax as shown in

Algorithm 2, from (25) it follows that

D∑
d=1

μ−1 − Ld

2
||Xt+1 −Xt||2 ≥ρ

2
||Zt+1 − Zt||2. (35)

Combining (34) and (35), (i) is proved.

By summing up (29) from t = 0 to N − 1 and taking the

limit N →∞, we can prove (ii).

Based on Lemma 3, we can conclude that in O(1/ε)
iterations, Algorithm 2 will stop. This assertion is summarized

as follows.

Corollary 2. Let {(X1
t , . . . , X

D
t )} be the sequence generated

by Algorithm 2 with μ < 1/Lmax, which converges to some
limit points {(X1∗, . . . , XD∗)}. Then for all T ≥ 0, we have

min
0≤t≤T

∑
d=1,...,D

||Xd
t+1 −Xd

t ||2

≤ 2(Φ(X1
0 , . . . , X

D
0 )− Φ(X1∗, . . . , XD∗))

ρT
.

(36)

This corollary can be achieved by summing up (34) and

rearranging the inequality.

Next, to understand the characteristics of the points that

Algorithm 2 will converge to, we need the following lemma

to analyze the limit point(s).

Lemma 4. (The lower bound of the iterate gap based on

subgradient) Suppose that assumptions (A2) and (A4) hold.
Let {zk}k∈N be the sequence generated by Algorithm 2 which
is assumed to be bounded. For each iteration t > 0 and
d = 1, ..., D, define

Ad
t =μ−1(Xd

(t−1) −Xd
t ) +∇Xd�t(Zt)

−∇Xd�t(X
d
(t−1)),

d = 1, . . . , D.

(37)

We have (A1
t , . . . , A

D
t ) ∈ ∂Φ(Zt), and

||(A1
t , . . . , A

D
t )|| ≤((D − 1)M + (1 +D)μ−1)||Zt − Zt−1||,

∀t > 0.
(38)

Proof. Recalling (9), the optimal condition implies

∇Xd�t(X
d
t−1) + μ−1(Xd

t −Xd
t−1) + udt = 0,

d = 1, . . . , D,
(39)

where uit ∈ ∂hi(X1
t ). It is clear that

∇Xd�t(X
d
t ) + udt ∈ ∂XdΦ(Zt)

d = 1, . . . , D,
(40)

then we can conclude (A1
t , . . . , A

D
t ) ∈ ∂Φ(Zt).

Based on Assumption (A4) and assuming that the sequence

{Zt}t∈N is bounded, for d = 1, . . . , D − 1 we have

||Ad
t || ≤μ−1||Xd

t−1 −Xd
t ||+ ||∇Xd�t(Zt)−∇Xd�t(Zt−1)||

≤μ−1||Xd
t−1 −Xd

t ||+M ||Zt − Zt−1||
≤(M + μ−1)||Xd

t−1 −X1
t ||+M

∑
d′ 	=d

||Xd′
t−1 −Xd′

t ||

≤(M + μ−1)||Zt−1 − Zt||,
(41)

where we use the fact that ∇� is M -Lipschitz continuous on

bounded subsets. For d = D, following the Lipschitz contin-

uous gradient property of XD and the fact that μ−1 ≥ LD,

we have

||AD
t || ≤μ−1||XD

t−1 −XD
t ||+ ||∇XD�(XD

t−1)−∇XD�(XD
t )||

≤μ−1||XD
t−1 −XD

t ||+ μ−1||XD
t−1 −XD

t ||
≤2μ−1||XD

t−1 −XD
t ||.

(42)

When t > 0, we can conclude

||(A1
t , . . . , A

D
t )|| ≤

D∑
d=1

||Ad
t ||

≤((D − 1)M + (D + 1)μ−1)||Zt − Zt−1||.
(43)
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By modifying the two lemmas above, we can conclude the

properties of the limit point set. Let {Zt}t∈N be the sequence

generated by Algorithm 2 from Z0. The set of all limit points

is denoted by

limit(Z0) = {Ẑ ∈ R
n1×m1 × . . .× R

nD×mD :

∃ an increasing sequence of integers {tl}l∈N,
Ztl → Ẑ as tl →∞}.

(44)

Lemma 5. (Properties of limit(Z0)) [25] Suppose that as-
sumptions (A2) and (A4) are satisfied. Let {Zt}t∈N be the
sequence generated by Algorithm 2 with start point Z0. The
following assertions hold.

(i) ∅ �= limit(Z0) ⊂ crit (Φ), where crit (Φ) is the set of
critical points of Φ.

(ii) We have

lim
t→∞ dist(Zt, limit(Z0)) = 0. (45)

(iii) limit(Z0) is a non-empty, compact and connected set.
(iv) The objective Φ is finite and constant on limit(Z0).

This lemma follows the demonstration that both the upper

and lower bounds go to the same limit point where the gradient

is 0, which indicates (i) and (ii). Then by viewing limit(Z0)
as an intersection of non-empty compact sets, we can validate

(iii). Since the convergence of the sequence has been proved

(in assertion (i)) already, we can obtain (iv). The explicit proof

of this lemma could be found in [25], we omit the details here.

In the end, we can conclude the convergence properties in

the multivariate scenario in the following theorem.

Theorem 2. (Main) If assumptions (A2), (A3) and (A4)
hold, a step size is chosen such that μ < 1/Lmax where
Lmax is the maximum of {Ld}d=1,...,D, then the sequence
{(X1

t , . . . , X
D
t )}t∈N generated by any alternative proximal

gradient method, such as Algorithm 2, will have finite length
and converge to a critical point of (7). That is

(i) The sequence {Zt}t∈N has finite length,
∞∑
t=1

||Zt+1 − Zt|| <∞ (46)

(ii) The sequence {Zt}t∈N converges to a critical point Z∗ of
(7).

Proof. Based on Lemma 1 to Lemma 4, We can see that all

conditions of Theorem 1 in [25] are satisfied. By extending

the proof to the multivariate case, we can complete the proof

here.

The next thing we need to prove is that Φ has the KL

property. Following [23] [25] [26], the proper and lower semi-

continuous function σ will satisfy the KL property at any point

of their domains, given σ is semi-algebraic. This is a sufficient

condition of the KL property. The family of semi-algebraic

functions could be summarized as follows.

Definition 2. (Semi-algebraic sets and functions)

(i) A subset S of Rn is a real semi-algebraic set if there exists
a finite number of polynomial functions gij , g′ij : R

n → R

such that

S = ∪p
j=1∩q

i=1{u ∈ R
n, gij(u) = 0 and g′ij(u) < 0} (47)

(ii) A function r : Rn → (−∞,+∞] is called semi-algebraic
if its graph

{(u, ξ) ∈ R
n+1 : r(u) = ξ} (48)

is a semi-algebraic subset of Rn+1.

It is worth mentioning that the definitions above could be

extended to R
n×m. Following the definitions, we can prove

that our objective Φ has the KL property.

Theorem 3. An objective Φ defined in (4) with a penalty
defined in (5) satisfies the KL property.

Proof. As we can see, � defined in (4) can be viewed as the

sum of quadratic functions which are semi-algebraic. Hence

� is also semi-algebraic, and its graph in R
n1×m1 × . . . ×

R
nD×mD × R is

{(X1, . . . , XD, ξ) ∈ R
n1×m1×. . .×RnD×mD×R+ : �−ξ = 0}

(49)

When hd is defined as (5), we first investigate the auxiliary

function h′ : Rn×md × R
n×k × R

md×k → R, which satisfies

h′(X,U, V ) = h(X), U�U = I and V �V = I . Its graph in

R
n×md × R

n×k × R
md×k × R can be written as

{(X,U, V, t) : σi ∈ R+, X = Udiag({σi})V �,

U�U − I = 0, V �V − I = 0, and

k∑
i=1

wiσi − ξ = 0}
(50)

We can see that the graph of h′ in the subspace R
n×md

is exactly the graph of h. Base on Definition 2, (50) is

a semi-algebraic set. Then following the Tarski-Seidenberg

Theorem [27], the graph of h is also a semi-algebraic set,

since its image can be obtained with the projection of a semi-

algebraic set on the space of the first coordinate. It is obvious

that the polynomial functions describing the graph of Φ is the

sum of polynomial functions describing the graph of � and

(50) for all hd. Thus the graph of Φ a semi-algebraic subset

of Rn1×m1×. . .×RnD×mD×R. This completes the proof.

It is clear that in (4), {∇Xd�} for all d = 1, . . . , D are

Lipschitz continuous and M = D. Then following Theorem 2

and Theorem 3, we can get following conclusion.

Corollary 3. Algorithm 2 will converge to a critical point in
finite steps when solving problem (4).

Corollary 2 shows that the GSVR-PG algorithm can achieve

O(1/T ) sub-linear convergence rate for problem (4) under

general conditions. For aligned matrix problem, if we choose

{hd} as (5), it is easy to verify that, in each iteration, the

extra computational complexity of introducing a shared matrix

will be 1 to D times the cost of solving the problems in each

domain separately, which is O(Dnmmax{rank(Xd)}), linear
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regarding the number of domains in the worst case. Besides,

following Corollary 3, there exists a positive integer tl such

that Algorithm 2 will converge faster than Ω(1/T ) when t >
tl. In practice, we find that both Algorithm 1 and Algorithm

2 converge almost linearly, which indicates they are practical

for large scale problems.

C. Accelerated Computation for Large Datasets

The most time consuming part of the proximal method

above is an SVD computation in each iteration, which makes

its scalability an issue in real-world applications. To accelerate

the convergence, we use line-search to choose μ(t) instead of

a constant step size. Specifically, one can increase μ(t) by

μ(t) = ημ(t−1), η > 1 and make sure the inequality

�(Xd
(t+1)) < �(Xd

(t))− σ||Xd
(t+1) −Xd

(t)||2, σ ∈ (0, 1) (51)

is strictly satisfied unless μ(t+1) < 1/Lmax. In the meantime, a

larger step size would lead to fewer positive components when

solving shrinkage-thresholding problems, which implies lower

rank of Xd
(t+1) and fewer singular values to compute. This

strategy guarantees that (34) is satisfied and the convergence

is still promised.

Furthermore, as we observe from the convergent sequence,

the rank may start and decrease from a large number which

entails inefficient computation at the beginning. We use a

decreasing sequence {τ0, . . . , τl} with τl ≤ 1 to reduce

the number of singular values above the threshold. In each

iteration, the proximal map is computed as P
τ(t)μ(t)

h (M(t)).
It is clear that the convergence property is not affected as

{τi} is a finite sequence. In practice, we set τ0 = 102 and

τ(i+1) = max{1, 0.7 × τi}. Besides, stochastic SVD [28] is

also a practical approach to compute singular values for large

datasets.

V. EXPERIMENTS

To evaluate our method of aligned matrix completion

(Aligned MC), we conduct experiments on both synthetic data

and the task of multi-domain recommendation. We compare

with the following baselines including both traditional matrix

completion approaches and recommendation methods:

• SVT [29], a traditional matrix completion method which

minimizes the nuclear norm.

• SVP [9], a matrix completion method based on singular

value projection.

• TNNR [8], a matrix completion method which optimizes

the truncated nuclear norm.

• PMF [30], probabilistic matrix factorization which is also

a classical collaborative filtering method.

• CMF [7], a matrix factorization method that decomposes

multiple matrices jointly, assuming common latent factors

for all the domains.

• GSMF [16], a group-sparse matrix factorization method

that incorporates group sparsity on the latent factors

across multiple domains.

To investigate the behavior of the proposed method, we also

evaluate the performance of Aligned MC where the GSVR

term in (4) is replaced by the standard nuclear norm (Aligned

MC-NN). In addition, as aforementioned, the proposed GSVR-

PG algorithm is applicable for a family of singular value

regularization functions including the truncated nuclear norm

(TNNR), therefore in the experiments we compare the solu-

tions of TNNR produced by our proposed algorithm (TNNR-

PG) and the original algorithm in [8] (TNNR-Original) on the

synthetic data to evaluate the effectiveness of the optimization

algorithms.

TABLE I
STATISTICS OF THE MULTI-DOMAIN RECOMMENDATION DATA

Domains Book Movie

#Users 13090 13090
#Items 17590 17922

Sparsity 99.66% 98.68%

A. Synthetic Data

The synthetic data is constructed on two domains for exper-

imental investigation. We randomly generate two 100 × 100
matrices with shared and distinct components as follows:

Zd =Md +Dd, Y d
Ω = Zd

Ω + ε, d = 1, 2. (52)

Here {Zd} are the ground truth for all the domains, and

{Y d
Ω} are the noisy observed matrices. The shared components

are generated by Md = ABd where A is shared across all

the domains, A ∈ R
100×10 and Bd ∈ R

10×100 consist of

i.i.d. Gaussian entries with variance 25. The distinct parts

are generated by Dd = P dQd where P d ∈ R
100×10 and

Qd ∈ R
10×100 also consist of i.i.d. Gaussian entries but

with variance 100. The observation indexes {Ωd} are sampled

uniformly at random. The variance of the shared components is

set smaller than that of the distinct components to simulate real

situations. The measure of relative error RE =
∑2

d=1 ||Xd∗−
Zd||/(∑2

d=1 ||Zd||) is used to evaluate the quality of the

recovered matrices Xd∗. We set the parameters pen1 and

pen2 in (5) proportional to the noise level, C1σ and C2σ
respectively, where constants C1, C2 ≥ 0 and σ is the standard

variance of noise, γ = 20 and k = 10 for both shared and

distinct parts.

We run all algorithms 10 times to obtain the means and

standard deviations of RE under each observed ratio and

noise level. The results are shown in Figure 1. We can first

observe that CMF and SVT fail to recover the matrices in

all settings. The performance of CMF is likely due to the

fact that the distinct components are more significant than

the shared part, contradicting with the assumption of CMF;

while the number of observed entries does not satisfy the

recovery condition of SVT, which explains its degeneration of

performance. On the other hand, the benefits of a shared latent

structure with domain-specific patterns are verified by smaller

RE values of Aligned MC-NN compared with SVT, especially

when the observation ratio drops to 40%. Meanwhile, the

improvement of Aligned MC over Aligned MC-NN justifies
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Fig. 1. Relative error versus noise with different observation ratios

TABLE II
COMPARISON OF PERFORMANCE WITH DIFFERENT TRAINING RATIOS. RESULTS ARE PRESENTED IN THE FORM OF RMSETEST (RMSETRAIN ).

Domains Training SVP TNNR-PG PMF CMF GSMF Aligned MC

Book
80% 0.9606(0.4898) 0.8801 (0.6144) 0.7809 (0.5235) 0.8172 (0.6362) 0.7813 (0.5684) 0.7389 (0.4008)
60% 1.0147(0.4658) 0.9066 (0.5663) 0.7967 (0.5353) 0.8517 (0.6523) 0.7962(0.6078) 0.7479 (0.4550)
40% 1.1571(0.4175) 1.0239 (0.5563) 0.8397 (0.5083) 0.9345 (0.6227) 0.8030 (0.5643) 0.7558 (0.4911)

Movie
80% 0.7661(0.6011) 0.7336 (0.6524) 0.7342 (0.6014) 0.7325 (0.6228) 0.7315 (0.6177) 0.7130 (0.6367)
60% 0.7870(0.5905) 0.7429 (0.6391) 0.7432 (0.5952) 0.7423 (0.6142) 0.7401(0.5978) 0.7209 (0.6643)
40% 0.8387(0.5616) 0.7752 (0.6259) 0.7678 (0.5764) 0.7829 (0.5784) 0.7870 (0.4892) 0.7342 (0.6885)

the advantage of the GSVR regularization over the standard

nuclear norm. All the other algorithms perform reasonably

when the observation ratio is above 60%. Comparing the

results of TNNR-PG and TNNR-Original, we confirm the

stability of our proposed optimization algorithm. When the

ratio decreases to 50%, the RE values of all the baselines

grow faster with increasing noise than Aligned MC. When

the observed ratio drops to 40%, all the comparing methods

fail to recover the matrices correctly even if the observations

are noiseless; whereas Aligned MC is capable of exploit the

correlations among multiple domains to significantly alleviate

the sparsity problem, which justifies our motivation.

B. Multi-Domain Recommendation

To measure the performance of aligned MC in the practical

task of multi-domain recommendation, we use the data from a

public website Douban1, where users can rate movies, books

and music, etc. We take two domains of ratings, books and

movies in our experiment. We remove users and items with

less than 10 ratings to provide enough ratings for split into

training and test sets for evaluation. A dataset is then obtained

containing 13090 users with 17590 ratings on books and 17922

ratings on movies. All ratings take values from 1 to 5. The

details of the dataset are listed in Table I.

To evaluate the quality of recommendation, we use Root

Mean Square Error, RMSE(X) =
√||XΩ − YΩ||2/N , to

measure the discrepancy of predictions and the ground truth.

We compare to both matrix completion algorithms and rec-

ommendation methods here as well. The parameters of our

algorithm are set as follows: for the shared part, pen1 = 65,

pen2 = 300, γ = 5 and k = 20; for the distinct part,

1http://www.douban.com

pen1 = 45, pen2 = 300, γ = 5 and k = 30. We conduct

the experiments with different training ratios (80%, 60% and

40%) for a comprehensive comparison. The training sets are

sampled uniformly at random and the procedure is repeated

10 times. The results are summarized in Table II, where test

RMSE values are shown with training RMSE values inside

the brackets. Bold values indicate the best performance on the

test data that is statistically significant with 95% confidence.

The results of SVT, TNNR-Original and Aligned MC-NN are

not reported here because they have to compute more than

600 singular values in the first dozens of iterations which

are too expensive to produce the results in time. On the

other hand, TNNR-PG adopts the proposed Algorithm 1 and

avoids exhaustively computing the smaller singular values,

which shows the capability of our algorithms for large scale

problems.

From Table II, we can observe that all the recommenda-

tion methods achieve comparable performance in the movie
domain, which contains relatively sufficient training data.

Meanwhile in the book domain, CMF does not perform very

well as the training set is extremely sparse and the connection

between domains is weaker than it assumes. The performance

of GSMF, which allows different factors for different domains,

is comparable to PMF, and better than the other baselines.

TNNR-PG performs comparably with the recommendation

methods in the movie domain, while in the book domain the

performances of the matrix completion approaches degenerate

significantly. This is probably because SVP and TNNR are

more sensitive to noise when sparsity is high. The last column

records the results of our proposed method of Aligned MC

which demonstrates significant superiority over the comparing

algorithms. This justifies that Aligned MC can effectively

exploit the consistency while modeling independency across
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multiple domains with the benefits of improving the quality

of recommendation.

VI. CONCLUSION

In this paper we consider the problem of matrix completion

in multiple domains where multiple related matrices are recon-

structed simultaneously. We propose the method of Aligned

Matrix Completion, where we maintain consistency among

all the domains while allowing independency of each separate

domain. A general weighted singular value regularization is

introduced for low-rank matrix completion, with theoretical

convergence guarantee. Empirical results on synthetic data and

the multi-domain recommendation task validate the capability

of Aligned MC to effectively recover the low-rank structure of

matrices and exploit the correlations among multiple domains

to alleviate the sparsity problem.
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