
KV-Direct: High-Performance In-Memory Key-Value
Store with Programmable NIC

Bojie Li*§† Zhenyuan Ruan*‡† Wencong Xiao•† Yuanwei Lu§†

Yongqiang Xiong† Andrew Putnam† Enhong Chen§ Lintao Zhang†

†Microsoft Research §USTC ‡UCLA •Beihang University

ABSTRACT
Performance of in-memory key-value store (KVS) continues
to be of great importance as modern KVS goes beyond the
traditional object-caching workload and becomes a key in-
frastructure to support distributed main-memory computation
in data centers. Recent years have witnessed a rapid increase
of network bandwidth in data centers, shifting the bottleneck
of most KVS from the network to the CPU. RDMA-capable
NIC partly alleviates the problem, but the primitives provided
by RDMA abstraction are rather limited. Meanwhile, pro-
grammable NICs become available in data centers, enabling
in-network processing. In this paper, we present KV-Direct, a
high performance KVS that leverages programmable NIC to
extend RDMA primitives and enable remote direct key-value
access to the main host memory.

We develop several novel techniques to maximize the through-
put and hide the latency of the PCIe connection between
the NIC and the host memory, which becomes the new bot-
tleneck. Combined, these mechanisms allow a single NIC
KV-Direct to achieve up to 180 M key-value operations per
second, equivalent to the throughput of tens of CPU cores.
Compared with CPU based KVS implementation, KV-Direct
improves power efficiency by 3x, while keeping tail latency
below 10 µs. Moreover, KV-Direct can achieve near linear
scalability with multiple NICs. With 10 programmable NIC
cards in a commodity server, we achieve 1.22 billion KV
operations per second, which is almost an order-of-magnitude
improvement over existing systems, setting a new milestone
for a general-purpose in-memory key-value store.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’17, Shanghai, China
© 2017 ACM. 978-1-4503-5085-3/17/10. . . $15.00
DOI: 10.1145/3132747.3132756

CCS CONCEPTS
•Information systems→ Key-value stores; •Hardware→
Hardware-software codesign;

KEYWORDS
Key-Value Store, Programmable Hardware, Performance

ACM Reference format:
Bojie Li*§† Zhenyuan Ruan[1]‡† Wencong Xiao•† Yuanwei
Lu§† and Yongqiang Xiong† Andrew Putnam† Enhong Chen§

Lintao Zhang† . 2017. KV-Direct: High-Performance In-Memory
Key-Value Store with Programmable NIC. In Proceedings of SOSP

’17, Shanghai, China, October 28, 2017, 16 pages.
DOI: 10.1145/3132747.3132756

1 INTRODUCTION
In-memory key-value store (KVS) is a key distributed system
component in many data centers. KVS enables access to a
shared key-value hash table among distributed clients. His-
torically, KVS such as Memcached [25] gained popularity
as an object caching system for web services. Large web
service providers such as Amazon [17] and Facebook [3, 57],
have deployed distributed key-value stores at scale. More
recently, as main-memory based computing becomes a major
trend in the data centers [18, 58], KVS starts to go beyond
caching and becomes an infrastructure to store shared data
structure in a distributed system. Many data structures can
be expressed in a key-value hash table, e.g., data indexes in
NoSQL databases [12], model parameters in machine learn-
ing [46], nodes and edges in graph computing [67, 74] and
sequencers in distributed synchronization [37]. For most of
these applications, the performance of the KVS is the key
factor that directly determines the system efficiency. Due to
its importance, over the years significant amount of research
effort has been invested on improving KVS performance.

Earlier key-value systems [17, 25, 57] are built on top
of traditional OS abstractions such as OS lock and TCP/IP
stack. This puts considerable stress on the performance of

*Bojie Li and Zhenyuan Ruan are co-first authors who finish this work during
internship at Microsoft Research.

137

SOSP ’17, October 28, 2017, Shanghai, China B. Li et al.

Client NIC CPU

Server

Mem

Network

(a) Software / two-sided RDMA.

Client NIC CPU

Server

Mem

Network

(b) One-sided RDMA.

Client NIC CPU

Server

Mem

Network

FPGA

(c) KV-Direct.

Figure 1: Design space of KVS data path and processing device. Line indicates data path. One KV operation (thin line)
may require multiple address-based memory accesses (thick line). Black box indicates where KV processing takes place.

the OS, especially the networking stack. The bottleneck is
exacerbated by the fact that physical network transport speed
has seen huge improvements in the last decade due to heavy
bandwidth demand from data center applications.

More recently, as both the single core frequency scaling
and multi-core architecture scaling are slowing down [21, 69],
a new research trend in distributed systems is to leverage Re-
mote Direct Memory Access (RDMA) technology on NIC to
reduce network processing cost. One line of research [36, 37]
uses two-sided RDMA to accelerate communication (Fig-
ure 1a). KVS built with this approach are bounded by CPU
performance of the KVS servers. Another line of research
uses one-sided RDMA to bypass remote CPU and shift KV
processing workload to clients [18, 55] (Figure 1b). This
approach achieves better GET performance but degrades per-
formance for PUT operations due to high communication
and synchronization overhead. Due to lack of transactional
support, the abstraction provided by RDMA is not a perfect
fit for building efficient KVS.

In the meantime, another trend is emerging in data center
hardware evolution. More and more servers in data centers
are now equipped with programmable NICs [10, 27, 64]. At
the heart of a programmable NIC is a field-programmable
gate array (FPGA) with an embedded NIC chip to connect
to the network and a PCIe connector to attach to the server.
Programmable NIC is initially designed to enable network
virtualization [24, 44]. However, many found that FPGA
resources can be used to offload some workloads of CPU and
significantly reduce CPU resource usage [14, 30, 52, 60]. Our
work takes this general approach.

We present KV-Direct, a new in-memory key-value system
that takes advantage of programmable NIC in data center. KV-
Direct, as its name implies, directly fetches data and applies
updates in the host memory to serve KV requests, bypass-
ing host CPU (Figure 1c). KV-Direct extends the RDMA
primitives from memory operations (READ and WRITE) to
key-value operations (GET, PUT, DELETE and ATOMIC
ops). Compared with one-sided RDMA based systems, KV-
Direct deals with the consistency and synchronization issues
at server-side, thus removes computation overhead in client

and reduces network traffic. In addition, to support vector-
based operations and reduce network traffic, KV-Direct also
provides new vector primitives UPDATE, REDUCE, and
FILTER, allowing users to define active messages [19] and
delegate certain computation to programmable NIC for effi-
ciency.

Since the key-value operations are offloaded to the pro-
grammable NIC, we focus our design on optimizing the PCIe
traffic between the NIC and host memory. KV-Direct adopts
a series of optimizations to fully utilize PCIe bandwidth and
hide latency. Firstly, we design a new hash table and mem-
ory allocator to leverage parallelism available in FPGA and
minimize the number of PCIe DMA requests. On average,
KV-Direct achieves close to one PCIe DMA per READ oper-
ation and two PCIe DMAs per WRITE operation. Secondly,
to guarantee consistency among dependent KV operations,
KV-Direct includes an out-of-order execution engine to track
operation dependencies while maximizing the throughput of
independent requests. Thirdly, KV-Direct exploits on-board
DRAM buffer available on programmable NIC by implement-
ing a hardware-based load dispatcher and caching component
in FPGA to fully utilize on-board DRAM bandwidth and
capacity.

A single NIC KV-Direct is able to achieve up to 180 M KV
operations per second (Ops), equivalent to the throughput of
36 CPU cores [47]. Compared with state-of-art CPU KVS
implementations, KV-Direct reduces tail latency to as low as
10 µs while achieving a 3x improvement on power efficiency.
Moreover, KV-Direct can achieve near linear scalability with
multiple NICs. With 10 programmable NIC cards in a server,
we achieve 1.22 billion KV operations per second in a single
commodity server, which is more than an order of magnitude
improvement over existing systems.

KV-Direct supports general atomic operations up to 180 Mops,
equal to normal KV operation and significantly outperforms
the number reported in state-of-art RDMA-based system:
2.24 Mops [36]. The atomic operation agnostic performance
is mainly a result of our out-of-order execution engine that
can efficiently track the dependency among KV operations
without explicitly stalling the pipeline.

138

KV-Direct SOSP ’17, October 28, 2017, Shanghai, China

2 BACKGROUND
2.1 Workload Shift in KVS
Historically, KVS such as Memcached [25] gained popular-
ity as an object caching system for web services. In the
era of in-memory computation, KVS goes beyond caching
and becomes an infrastructure service to store shared data
structure in a distributed system. Many data structures can
be expressed in a key-value hash table, e.g., data indexes in
NoSQL databases [12], model parameters in machine learn-
ing [46], nodes and edges in graph computing [67, 74] and
sequencers in distributed synchronization [37, 45].

The workload shifts from object cache to generic data
structure store implies several design goals for KVS.

High batch throughput for small KV. In-memory compu-
tations typically access small key-value pairs in large batches,
e.g., sparse parameters in linear regression [48, 74] or all
neighbor nodes in graph traversal [67], therefore a KVS
should be able to benefit from batching and pipelining.

Predictable low latency. For many data-parallel compu-
tation tasks, the latency of an iteration is determined by the
slowest operations [59]. Therefore, it is important to control
the tail latency of KVS. CPU based implementations often
have large fluctuations under heavy load due to scheduling
irregularities and inflated buffering.

High efficiency under write-intensive workload. For
cache workloads, KVS often has much more reads than
writes [3], but it is no longer the case for distributed compu-
tation workloads such as graph computation [61], parameter
servers [46]. These workloads favor hash table structures that
can handle both read and write operations efficiently.

Fast atomic operations. Atomic operations on several
extremely popular keys appear in applications such as central-
ized schedulers [63], sequencers [37, 45], counters [76] and
short-term values in web applications [3]. This requires high
throughput on single-key atomics.

Support vector-type operations. Machine learning and
graph computing workloads [46, 67, 74] often require oper-
ating on every element in a vector, e.g., incrementing every
element in a vector with a scalar or reducing a vector into the
sum of its elements. KVS without vector support requires
the client to either issue one KVS operation per element, or
retrieve the vector back to the client and perform the opera-
tion. Supporting vector data type and operations in KVS can
greatly reduce network communication and CPU computation
overhead.

2.2 Achilles’ Heel of High-Performance KVS
Systems

Building a high performance KVS is a non-trivial exercise of
optimizing various software and hardware components in a
computer system. Characterized by where the KV processing

takes place, state-of-the-art high-performance KVS systems
basically falls into three categories: on the CPU of KVS server
(Figure 1a), on KVS clients (Figure 1b) or on a hardware
accelerator (Figure 1c).

When pushed to the limit, in high performance KVS sys-
tems the throughput bottleneck can be attributed to the com-
putation in KV operation and the latency in random memory
access. CPU-based KVS needs to spend CPU cycles for key
comparison and hash slot computation. Moreover, KVS hash
table is orders of magnitude larger than the CPU cache, there-
fore the memory access latency is dominated by cache miss
latency for practical access patterns.

By our measurement, a 64-byte random read latency for a
contemporary computer is ∼110 ns. A CPU core can issue
several memory access instructions concurrently when they
fall in the instruction window, limited by the number of load-
store units in a core (measured to be 3∼4 in our CPU) [26, 28,
75]. In our CPU, we measure a max throughput of 29.3 M
random 64B access per second per core. On the other hand,
an operation to access 64-byte KV pair typically requires
∼100 ns computation or ∼500 instructions, which is too large
to fit in the instruction window (measured to be 100∼200).
When interleaved with computation, the performance of a
CPU core degrades to only 5.5 M KV operations per second
(Mops). An optimization is to batch memory accesses in a
KV store by clustering the computation for several operations
together before issuing the memory access all at once [47, 56].
This improves the per-core throughput to 7.9 MOps in our
CPU, which is still far less than the random 64B throughput
of host DRAM.

Observing the limited capacity of CPU in KV processing,
recent work [18, 55, 70] leverage one-sided RDMA to of-
fload KV processing to clients and effectively using the KVS
server as a shared memory pool. Despite the high message
rate (8∼150 Mops [37]) provided by RDMA NICs, it is chal-
lenging to find an efficient match between RDMA primitives
and key-value operations. For a write (PUT or atomic) op-
eration, multiple network round-trips and multiple memory
accesses may be required to query the hash index, handle
hash collisions and allocate variable-size memory. RDMA
does not support transactions. Clients must synchronize with
each other to ensure consistency using RDMA atomics or dis-
tributed atomic broadcast [70], both incurring communication
overhead and synchronization latency [18, 55]. Therefore,
most RDMA-based KVS [18, 36, 55] recommend using one-
sided RDMA for GET operations only. For PUT operations,
they fall back to the server CPU. The throughput of write-
intensive workload is still bottlenecked by CPU cores.

2.3 Programmable NIC with FPGA
Ten years ago, processor frequency scaling slowed down and
people turned to multi-core and concurrency [69]. Nowadays,

139

SOSP ’17, October 28, 2017, Shanghai, China B. Li et al.

Figure 2: Programmable NIC with FPGA.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

32 64 128 256 512 1024 2048

T
hr

ou
gh

pu
t (

M
op

s)

Request Payload Size (B)

Read
Write

(a) Throughput.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 800 900 1000 1100 1200 1300

P
er

ce
nt

ile
 (

%
)

RTT Latency (ns)

(b) DMA Read Latency.

Figure 3: PCIe random DMA performance.

power ceiling implies that multi-core scaling has also met
difficulties [22]. People are now turning to domain-specific
architectures (DSAs) for better performance.

Due to the increasing mismatch of network speed and
CPU network processing capacity, programmable NICs with
FPGA [10, 24, 27, 44] now witness large-scale deployment
in datacenters. As shown in Figure 2, the heart of the pro-
grammable NIC we use is an FPGA, with an embedded NIC
chip to connect to the network. Programmable NICs typically
come with on-board DRAM as packet buffers and runtime
memory for NIC firmware [44], but the DRAM is typically
not large enough to hold the entire key-value store.

2.4 Challenges for Remote Direct Key-Value
Access

KV-Direct moves KV processing from the CPU to the pro-
grammable NIC in the server (Figure 1c). Same as RDMA,
the KV-Direct NIC accesses host memory via PCIe. PCIe is
a packet switched network with ∼500 ns round-trip latency
and 7.87 GB/s theoretical bandwidth per Gen3 x8 endpoint.
On the latency side, for our programmable NIC, the cached
PCIe DMA read latency is 800 ns due to additional processing
delay in FPGA. For random non-cached DMA read, there
is an additional 250 ns average latency (Figure 3b) due to
DRAM access, DRAM refresh and PCIe response reordering
in PCIe DMA engine. On the throughput side, each DMA
read or write operation needs a PCIe transport-layer packet
(TLP) with 26-byte header and padding for 64-bit addressing.
For a PCIe Gen3 x8 NIC to access host memory in 64-byte
granularity, the theoretical throughput is therefore 5.6 GB/s,
or 87 Mops.

To saturate PCIe Gen3 x8 with 64-byte DMA requests,
92 concurrent DMA requests are needed considering our
latency of 1050 ns. In practice, two factors further limit the
concurrency of DMA requests. First, PCIe credit-based flow
control constrains the number of in-flight requests for each
DMA type. The PCIe root complex in our server advertises
88 TLP posted header credits for DMA write and 84 TLP
non-posted header credits for DMA read. Second, DMA
read requires assigning a unique PCIe tag to identify DMA
responses which may come out of order. The DMA engine
in our FPGA only support 64 PCIe tags, further limiting
our DMA read concurrency to 64 requests, which renders
a throughput of 60 Mops as shown in Figure 3a. On the
other hand, with 40 Gbps network and 64-byte KV pairs, the
throughput ceiling is 78 Mops with client-side batching. In
order to saturate the network with GET operations, the KVS
on NIC must make full use of PCIe bandwidth and achieve
close to one average memory access per GET. This boils
down to three challenges:

Minimize DMA requests per KV operation. Hash table
and memory allocation are two major components in KVS
that require random memory access. Previous works pro-
pose hash tables [9, 18] with close to 1 memory access per
GET operation even under high load factors. However, un-
der higher than 50% load factor, these tables need multiple
memory accesses per PUT operation on average with large
variance. This not only consumes PCIe throughput, but also
leads to latency variations for write-intensive workloads.

In addition to hash table lookup, dynamic memory alloca-
tion is required to store variable-length KVs that cannot be
inlined in the hash table. Minimizing hash table lookups per
KV operation and memory accesses per memory allocation
is essential for matching PCIe and network throughput under
write-intensive, small-KV workloads.

Hide PCIe latency while maintaining consistency. An
efficient KVS on NIC must pipeline KV operations and DMA
requests to hide the PCIe latency. However, KV operations
may have dependencies. A GET following PUT on a same
key needs to return the updated value. This requires tracking
KV operations being processed and stall the pipeline on data
hazard, or better, design an out-of-order executor to resolve
data dependency without explicitly stalling the pipeline.

Dispatch load between NIC DRAM and host memory.
An obvious idea is to use the DRAM on NIC as a cache
for host memory, but in our NIC, the DRAM throughput
(12.8 GB/s) is on par with the achievable throughput (13.2 GB/s)
of two PCIe Gen3 x8 endpoints. It is more desirable to dis-
tribute memory access between DRAM and host memory in
order to utilize both of their bandwidths. However, the on-
board DRAM is small (4 GiB) compared to the host memory
(64 GiB), calling for a hybrid caching and load-dispatching
approach.

140

KV-Direct SOSP ’17, October 28, 2017, Shanghai, China

Table 1: KV-Direct operations.

get (k)→ v Get the value of key k.

put (k,v)→ bool Insert or replace a (k,v) pair.

delete (k)→ bool Delete key k.

update scalar2scalar
(k,∆, λ(v,∆) → v)
→ v

Atomically update the value of key k
using function λ on scalar ∆, and return
the original value.

update scalar2vector
(k,∆, λ(v,∆) → v)
→ [v]

Atomically update all elements in vec-
tor k using function λ and scalar ∆, and
return the original vector.

update vector2vector
(k, [∆], λ(v,∆) → v)
→ [v]

Atomically update each element in vec-
tor k using function λ on the correspond-
ing element in vector [∆], and return the
original vector.

reduce
(k, Σ, λ(v, Σ) → Σ)
→ Σ

Reduce vector k to a scalar using func-
tion λ on initial value, and return the
reduction result Σ.

filter (k, λ(v) → bool)
→ [v]

Filter elements in a vector k by func-
tion λ, and return the filtered vector.

In the following, we will present KV-Direct, a novel FPGA-
based key-value store that satisfies all aforementioned goals
and describe how we address the challenges.

3 DESIGN
3.1 System Architecture
KV-Direct enables remote direct key-value access. Clients
send KV-Direct operations (§3.2) to KVS server while the
programmable NIC processes the requests and sending back
results, bypassing the CPU. The programmable NIC on KVS
server is an FPGA reconfigured as a KV processor (§3.3).
Figure 2 shows the architecture of KV-Direct.

3.2 KV-Direct Operations
KV-Direct extends one-sided RDMA operations to key-value
operations, as summarized in Table 1. In addition to stan-
dard KVS operations as shown in the top part of Table 1,
KV-Direct supports two types of vector operations: Sending a
scalar to the NIC on the server and the NIC applies the update
to each element in the vector; or send a vector to the server
and the NIC updates the original vector element-by-element.
Furthermore, KV-Direct supports user-defined update func-
tions as a generalization to atomic operations. The update
function needs to be pre-registered and compiled to hardware
logic before executing. KV operations with user-defined up-
date functions are similar to active messages [19], saving
communication and synchronization cost.

Figure 4: KV processor architecture.

When a vector operation update, reduce or filter is operated
on a key, its value is treated as an array of fixed-bit-width ele-
ments. Each function λ operates on one element in the vector,
a client-specified parameter ∆, and/or an initial value Σ for
reduction. The KV-Direct development toolchain duplicates
the λ several times to leverage parallelism in FPGA and match
computation throughput with PCIe throughput, then compiles
it into reconfigurable hardware logic using an high-level syn-
thesis (HLS) tool [2]. The HLS tool automatically extracts
data dependencies in the duplicated function and generates a
fully pipelined programmable logic.

Update operations with user-defined functions are capable
of general stream processing on a vector value. For example,
a network processing application may interpret the vector as
a stream of packets for network functions [44] or a bunch
of states for packet transactions [68]. Single-object trans-
action processing completely in the programmable NIC is
also possible, e.g., wrapping around S QUANTITY in TPC-C
benchmark [16]. Vector reduce operation supports neighbor
weight accumulation in PageRank [61]. Non-zero values in a
sparse vector can be fetched with vector filter operation.

3.3 KV Processor
As shown in Figure 4, the KV processor in FPGA receives
packets from the network, decodes vector operations and
buffers KV operations in the reservation station (§3.3.3).
Next, the out-of-order engine (§3.3.3) issues independent
KV operations from reservation station into the operation
decoder. Depending on the operation type, the KV processor
looks up the hash table (§3.3.1) and executes the correspond-
ing operations. To minimize the number of memory accesses,
small KV pairs are stored inline in the hash table, others
are stored in dynamically allocated memory from the slab
memory allocator (§3.3.2). Both the hash index and the slab-
allocated memory are managed by a unified memory access
engine (§3.3.4), which accesses the host memory via PCIe
DMA and caches a portion of host memory in NIC DRAM.
After the KV operation completes, the result is sent back to
the out-of-order execution engine (§3.3.3) to find and execute
matching KV operations in reservation station.

141

SOSP ’17, October 28, 2017, Shanghai, China B. Li et al.

Figure 5: Hash index structure. Each line is a hash
bucket containing 10 hash slots, 3 bits of slab memory
type per hash slot, one bitmap marking the beginning
and end of inline KV pairs and a pointer to the next
chained bucket on hash collision.

As discussed in §2.4, the scarcity of PCIe operation through-
put requires the KV processor to be frugal on DMA accesses.
For GET operation, at least one memory read is required. For
PUT or DELETE operation, one read and one write are min-
imal for hash tables. Log-based data structures can achieve
one write per PUT, but it sacrifices GET performance. KV-
Direct carefully designs the hash table to achieve close to
ideal DMA accesses per lookup and insertion, as well as the
memory allocator to achieve < 0.1 amortized DMA opera-
tions per dynamic memory allocation.

3.3.1 Hash Table. To store variable-sized KVs, the KV
storage is partitioned into two parts. The first part is a hash
index (Figure 5), which consists a fixed number of hash buck-
ets. Each hash bucket contains several hash slots and some
metadata. The rest of the memory is dynamically allocated,
and managed by a slab allocator (§3.3.2). A hash index ratio
configured at initialization time determines the percentage
of the memory allocated for hash index. The choice of hash
index ratio will be discussed in §5.1.1.

Each hash slot includes a pointer to the KV data in dynam-
ically allocated memory and a secondary hash. Secondary
hash is an optimization that enables parallel inline checking.
The key is always checked to ensure correctness, at the cost
of one additional memory access. Assuming a 64 GiB KV
storage in host memory and 32-byte allocation granularity (a
trade-off between internal fragmentation and allocation meta-
data overhead), the pointer requires 31 bits. A secondary hash
of 9 bits gives a 1/512 false positive probability. Cumulatively,
the hash slot size is 5 bytes. To determine the hash bucket
size, we need to trade-off between the number of hash slots
per bucket and the DMA throughput. Figure 3a shows that
the DMA read throughput below 64B granularity is bound by
PCIe latency and parallelism in the DMA engine. A bucket
size less than 64B is suboptimal due to increased possibility
of hash collision. On the other hand, increasing the bucket
size above 64B would decrease hash lookup throughput. So
we choose the bucket size to be 64 bytes.

KV size is the combined size of key and value. KVs smaller
than a threshold are stored inline in the hash index to save the
additional memory access to fetch KV data. An inline KV
may span multiple hash slots, whose pointer and secondary

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

5 10 15 20 25 30 35 40 45 50 55

M
em

or
y

A
cc

es
s

T
im

es

Memory Utilization (%)

10B 15B 20B 25B

Figure 6: Average memory access count under varying
inline thresholds (10B, 15B, 20B, 25B) and memory uti-
lizations.

hash fields are re-purposed for storing KV data. It might not
be optimal to inline all KVs that can fit in a bucket. To mini-
mize average access time, assuming that smaller and larger
keys are equally likely to be accessed, it is more desirable
to inline KVs smaller than an inline threshold. To quantify
the portion of used buckets in all buckets, we use memory
utilization instead of load factor, because it relates more to the
number of KVs that can fit in a fixed amount of memory. As
shown in Figure 6, for a certain inline threshold, the average
memory access count increases with memory utilization, due
to more hash collisions. Higher inline threshold shows a more
steep growth curve of memory access count, so an optimal
inline threshold can be found to minimize memory accesses
under a given memory utilization. As with hash index ratio,
the inline threshold can also be configured at initialization
time.

When all slots in a bucket are filled up, there are several
solutions to resolve hash collisions. Cuckoo hashing [62] and
hopscotch hashing [29] guarantee constant-time lookup by
moving occupied slots during insertion. However, in write-
intensive workload, the memory access time under high load
factor would experience large fluctuations. Linear probing
may suffer from primary clustering, therefore its performance
is sensitive to the uniformity of hash function. We choose
chaining to resolve hash conflicts, which balances lookup and
insertion, while being more robust to hash clustering.

3.3.2 Slab Memory Allocator. Chained hash slots and
non-inline KVs need dynamic memory allocation. We choose
slab memory allocator [7] to achieve O(1) average memory
access per allocation and deallocation. The main slab allo-
cator logic runs on host CPU and communicates with the
KV-processor through PCIe. Slab allocator rounds up allo-
cation size to the nearest power of two, called slab size. It
maintains a free slab pool for each possible slab size (32,
64, . . . , 512 bytes), and a global allocation bitmap to help to
merge small free slabs back to larger slabs. Each free slab
pool is an array of slab entries consisting of an address field
and a slab type field indicating the size of the slab entry. The
free slab pool can be cached on the NIC. The cache syncs

142

KV-Direct SOSP ’17, October 28, 2017, Shanghai, China

with the host memory in batches of slab entries. Amortized
by batching, less than 0.07 DMA operation is needed per
allocation or deallocation. When a small slab pool is almost
empty, larger slabs need to be split. Because the slab type is
already included in a slab entry, in slab splitting, slab entries
are simply copied from the larger pool to the smaller pool,
without the need for computation. Including slab type in the
slab entry also saves communication cost because one slab
entry may contain multiple slots.

On deallocation, the slab allocator needs to check whether
the freed slab can be merged with its neighbor, requiring at
least one read and write to the allocation bitmap. Inspired by
garbage collection, we propose lazy slab merging to merge
free slabs in batch when a slab pool is almost empty and no
larger slab pools have enough slabs to split.

3.3.3 Out-of-Order Execution Engine. Dependency
between two KV operations with the same key in the KV
processor will lead to data hazard and pipeline stall. This
problem is magnified in single-key atomics where all opera-
tions are dependent, thus limiting the atomics throughput. We
borrow the concept of dynamic scheduling from computer
architecture and implement a reservation station to track all
in-flight KV operations and their execution context. To sat-
urate PCIe, DRAM and the processing pipeline, up to 256
in-flight KV operations are needed. However, comparing 256
16-byte keys in parallel would take 40% logic resource of
our FPGA. Instead, we store the KV operations in a small
hash table in on-chip BRAM, indexed by the hash of the key.
To simplify hash collision resolution, we regard KV opera-
tions with the same hash as dependent, so there may be false
positives, but it will never miss a dependency. Operations
with the same hash are organized in a chain and examined
sequentially. Hash collision would degrade the efficiency of
chain examination, so the reservation station contains 1024
hash slots to make hash collision probability below 25%.

The reservation station not only holds pending operations,
but also caches their latest values for data forwarding. When
a KV operation is completed by the main processing pipeline,
its result is returned to the client, and the latest value is for-
warded to the reservation station. Pending operations in the
same hash slot are checked one by one, and operations with
matching key are executed immediately and removed from
the reservation station. For atomic operations, the computa-
tion is performed in a dedicated execution engine. For write
operations, the cached value is updated. The execution result
is returned to the client directly. After scanning through the
chain of dependent operations, if the cached value is updated,
a PUT operation is issued to the main processing pipeline for
cache write back. This data forwarding and fast execution
path enable single-key atomics to be processed one operation
per clock cycle (180 Mops), eliminate head-of-line blocking

Figure 7: DRAM load dispatcher.
under workload with popular keys, and ensure consistency
because no two operations on the same key can be in the main
processing pipeline simultaneously.

3.3.4 DRAM Load Dispatcher. To further save the bur-
den on PCIe, we dispatch memory accesses between PCIe and
the NIC on-board DRAM. Our NIC DRAM has 4 GiB size
and 12.8 GB/s throughput, which is an order of magnitude
smaller than the KVS storage on host DRAM (64 GiB) and
slightly slower than the PCIe link (14 GB/s). One approach
is to put a fixed portion of the KVS in NIC DRAM. However,
the NIC DRAM is too small to carry a significant portion
of memory accesses. The other approach is to use the NIC
DRAM as a cache for host memory, the throughput would
degrade due to the limited throughput of our NIC DRAM.

We adopt a hybrid solution to use the DRAM as a cache
for a fixed portion of the KVS in host memory, as shown in
Figure 7. The cache-able part is determined by the hash of
memory address, in granularity of 64 bytes. The hash function
is selected so that a bucket in hash index and a dynamically
allocated slab have an equal probability of being cache-able.
The portion of cache-able part in entire host memory is called
load dispatch ratio (l). Assume the cache hit probability is
h(l). To balance load on PCIe and NIC DRAM, the load
dispatch ratio l should be optimized so that:

l

tputDRAM
=
(1 − l) + l · (1 − h(l))

tputPCIe

let k be the ratio of NIC memory size and host mem-
ory size. Under uniform workload, cache hit probability
h(l) = NIC memory size

cache-able corpus size =
k
l when k ≤ l . Caching under

uniform workload is not efficient. Under long-tail workload
with Zipf distribution, assume n is the total number of KVs,
approximately h(l) = log(NIC memory size)

log(cache-able corpus size) =
log(kn)
log(ln) when

k ≤ l . Under long-tail workload, the cache hit probability is
as high as 0.7 with 1M cache in 1G corpus. An optimal l can
be solved numerically, as discussed in §6.3.1.

4 IMPLEMENTATION
Our hardware platform is built on an Intel Stratix V FPGA
based programmable NIC (§2.3). The programmable NIC
is attached to the server through two PCIe Gen3 x8 links in

143

SOSP ’17, October 28, 2017, Shanghai, China B. Li et al.

Hashtable

32B stack

512B stack Sync

NIC side Host side

merger

Splitter

Host Daemon32B stack

512B stack

Figure 8: Slab memory allocator.

a bifurcated x16 physical connector, and contains 4 GiB of
on-board DRAM with a single DDR3-1600 channel.

For development efficiency, we use Intel FPGA SDK for
OpenCL [2] to synthesize hardware logic from OpenCL. Our
KV processor is implemented in 11K lines of OpenCL code
and all kernels are fully pipelined, i.e., the throughput is one
operation per clock cycle. With 180 MHz clock frequency,
our design can process KV operations at 180 M op/s if not
bottlenecked by network, DRAM or PCIe.

Below highlights several implementation details.
Slab Memory Allocator. As shown in Figure 8, for each

slab size, the slab cache on the NIC is synchronized with
host DRAM using two double-ended stacks. For the NIC-
side double-ended stack (left side in Figure 8), the left end is
popped and pushed by the allocator and deallocator, and the
right end is synchronized with the left end of the correspond-
ing host-side stack via DMA. The NIC monitors the size of
NIC stack and synchronizes to or from the host stack accord-
ing to high and low watermarks. Host daemon periodically
checks the size of host-side double-ended stack. If it grows
above a high watermark, slab merging is triggered; when
it drops below a low watermark, slab splitting is triggered.
Because each end of a stack is either accessed by the NIC or
the host, and the data is accessed prior to moving pointers,
race conditions would not occur.

DRAM Load Dispatcher. One technical challenge is the
storage of metadata in DRAM cache, which requires addi-
tional 4 address bits and one dirty flag per 64-byte cache
line. Cache valid bit is not needed because all KVS storage is
accessed exclusively by the NIC. To store the 5 metadata bits
per cache line, extending the cache line to 65 bytes would re-
duce DRAM performance due to unaligned access; saving the
metadata elsewhere will double memory accesses. Instead,
we leverage spare bits in ECC DRAM for metadata storage.
ECC DRAM typically has 8 ECC bits per 64 bits of data. For
Hamming code to correct one bit of error in 64 bits of data,
only 7 additional bits are required. The 8th ECC bit is a parity
bit for detecting double-bit errors. As we access DRAM in
64-byte granularity and alignment, there are 8 parity bits per
64B data. We increase the parity checking granularity from
64 data bits to 256 data bits, so double-bit errors can still be
detected. This allows us to have 6 extra bits which can save
our address bits and dirty flag.

 1
 2
 3
 4
 5
 6
 7
 8

10 15 20 25 30 35 40 45 50

M
em

or
y

A
cc

es
s

T
im

es

Hash Index Ratio (%)

inline offline

(a) Fix memory utilization 0.5.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

25 30 35 40 45 50 55 60 65

M
em

or
y

A
cc

es
s

T
im

es

Memory Utilization (%)

inline offline

(b) Fix hash index ratio 0.5.

Figure 9: Memory access count under different memory uti-
lizations or hash index ratio.

Vector Operation Decoder. Compared with PCIe, net-
work is a more scarce resource with lower bandwidth (5 GB/s)
and higher latency (2 µs). An RDMA write packet over Eth-
ernet has 88 bytes of header and padding overhead, while a
PCIe TLP packet has only 26 bytes of overhead. This is why
previous FPGA-based key-value stores [5, 6] have not satu-
rated the PCIe bandwidth, although their hash table designs
are less efficient than KV-Direct. This calls for client-side
batching in two aspects: batching multiple KV operations
in one packet and supporting vector operations for a more
compact representation. Towards this end, we implement a
decoder in the KV-engine to unpack multiple KV operations
from a single RDMA packet. Observing that many KVs have
a same size or repetitive values, the KV format includes two
flag bits to allow copying key and value size, or the value of
the previous KV in the packet. Fortunately, many significant
workloads (e.g. graph traversal, parameter server) can issue
KV operations in batches. Looking forward, batching would
be unnecessary if higher-bandwidth network is available.

5 EVALUATION
In this section, we first take a reductionist perspective to
support our design choices with microbenchmarks of key
components, then switch to a holistic approach to demonstrate
the overall performance of KV-Direct in system benchmark.

We evaluate KV-Direct in a testbed of eight servers and
one Arista DCS-7060CX-32S switch. Each server equips
two 8 core Xeon E5-2650 v2 CPUs with hyper-threading
disabled, forming two NUMA nodes connected through QPI
Link. Each NUMA node is populated with 8 DIMMs of
8 GiB Samsung DDR3-1333 ECC RAM, resulting a total of
128 GiB of host memory on each server. A programmable
NIC [10] is connected to the PCIe root complex of CPU
0, and its 40 Gbps Ethernet port is connected to the switch.
The programmable NIC has two PCIe Gen3 x8 links in a
bifurcated Gen3 x16 physical connector. The tested server
equips SuperMicro X9DRG-QF motherboard and one 120 GB
SATA SSD running Archlinux (kernel 4.11.9-1).

For system benchmark, we use YCSB workload [15]. For
skewed Zipf workload, we choose skewness 0.99 and refer it
as long-tail workload.

144

KV-Direct SOSP ’17, October 28, 2017, Shanghai, China

Figure 10: Determine the optimal hash index ratio for a
required memory utilization and KV size.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

30 35 40 45 50 55 60 65

M
em

or
y

A
cc

es
s

T
im

es

Memory Utilization (%)

KV-D MemC3 Farm

(a) 10B GET.

 0
 5

 10
 15
 20
 25
 30
 35
 40

30 35 40 45 50 55 60 65

M
em

or
y

A
cc

es
s

T
im

es

Memory Utilization (%)

KV-D MemC3 Farm

(b) 10B PUT.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

50 55 60 65 70 75 80 85

M
em

or
y

A
cc

es
s

T
im

es

Memory Utilization (%)

KV-D MemC3 Farm

(c) 254B GET.

 0

 5

 10

 15

 20

 25

 30

50 55 60 65 70 75 80 85

M
em

or
y

A
cc

es
s

T
im

es

Memory Utilization (%)

KV-D MemC3 Farm

(d) 254B PUT.

Figure 11: Memory accesses per KV operation.

5.1 Microbenchmarks
5.1.1 Hash Table. There are two free parameters in our

hash table design: (1) inline threshold, (2) the ratio of hash
index in the entire memory space. As shown in Figure 9a,
when hash index ratio grows, more KV pairs can be stored in-
line, yielding a lower average memory access time. Figure 9b
shows the increase of memory accesses as more memory is
utilized. As shown in Figure 10, the maximal achievable
memory utilization drops under higher hash index ratio, be-
cause less memory is available for dynamic allocation. Conse-
quently, aiming to accommodate the entire corpus in a given
memory size, the hash index ratio has an upper bound. We
choose this upper bound and get a minimal average memory
access times, shown as the dashed line in Figure 10.

In Figure 11, we plot the number of memory accesses per
GET and PUT operation for three possible hash table designs:
chaining in KV-Direct, bucket cuckoo hashing in MemC3 [23]
and chain-associative hopscotch hashing in FaRM [18]. For
KV-Direct, we make the optimal choice of inline threshold
and hash index ratio for the given KV size and memory uti-
lization requirement. For cuckoo and hopscotch hashing, we
assume that keys are inlined and can be compared in parallel,
while the values are stored in dynamically allocated slabs.

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 10 12 14 16 18 20 24 28 32

T
im

e
(s

)

Core Number

bitmap
radix sort

Figure 12: Execution time of merging 4 billion slab slots.

Since the hash table of MemC3 and FaRM cannot support
more than 55% memory utilization for 10B KV size, the three
rightmost bars in Figure 11a and Figure 11b only show the
performance of KV-Direct.

For inline KVs, KV-Direct has close to 1 memory access
per GET and close to 2 memory accesses per PUT under
non-extreme memory utilizations. GET and PUT for non-
inline KVs have one additional memory access. Comparing
KV-Direct and chained hopscotch hashing under high mem-
ory utilization, hopscotch hashing performs better in GET,
but significantly worse in PUT. Although KV-Direct cannot
guarantee worst case DMA accesses, we strike for a balance
between GET and PUT. Cuckoo hashing needs to access up to
two hash slots on GET, therefore has more memory accesses
than KV-Direct under most memory utilizations. Under high
memory utilization, cuckoo hashing incurs large fluctuations
in memory access times per PUT.

5.1.2 Slab Memory Allocator. The communication over-
head of slab memory allocator comes from the NIC accessing
available slab queues in host memory. To sustain the maximal
throughput of 180M operations per second, in the worst case,
180M slab slots need to be transferred, consuming 720 MB/s
PCIe throughput, i.e., 5% of total PCIe throughput of our
NIC.

The computation overhead of slab memory allocator comes
from slab splitting and merging on host CPU. Fortunately,
they are not frequently invoked. For workloads with stable
KV size distributions, newly freed slab slots are reused by
subsequent allocations, therefore does not trigger splitting
and merging.

Slab splitting requires moving continuous slab entries from
one slab queue to another. When the workload shifts from
large KV to small KV, in the worst case the CPU needs to
move 90M slab entries per second, which only utilizes 10%
of a core because it is simply continuous memory copy.

Merging free slab slots to larger slots is rather a time-
consuming task, because it involves filling the allocation
bitmap with potentially random offsets and thus requiring
random memory accesses. To sort the addresses of free slabs
and merge continuous ones, radix sort [66] scales better to
multiple cores than simple bitmap. As shown in Figure 12,

145

SOSP ’17, October 28, 2017, Shanghai, China B. Li et al.

10-1

100

101

102

1 2 3 4 5

T
hr

ou
gh

pu
t (

M
op

s)

Number of Keys

with OoO
without OoO

two-sided RDMA
one-sided RDMA

(a) Atomics.

10-1

100

101

102

0 1 10 50 100

T
hr

ou
gh

pu
t (

M
op

s)

Put Ratio (%)

with OoO without OoO

(b) Long-tail workload.

Figure 13: Effectiveness of out-of-order execution engine.

merging all 4 billion free slab slots in a 16 GiB vector requires
30 seconds on a single core, or only 1.8 seconds on 32 cores
using radix sort [66]. Although garbage collecting free slab
slots takes seconds, it runs in background without stalling
the slab allocator, and practically only triggered when the
workload shifts from small KV to large KV.

5.1.3 Out-of-Order Execution Engine. We evaluate
the effectiveness of out-of-order execution by comparing the
throughput with the simple approach that stalls the pipeline
on key conflict, under atomics and long-tail workload. One-
sided RDMA and two-sided RDMA [37] throughputs are also
shown as baselines.

Without this engine, an atomic operation needs to wait
for PCIe latency and processing delay in the NIC, during
which subsequent atomic operations on the same key cannot
be executed. This renders a single-key atomics throughput of
0.94 Mops in Figure 13a, consistent with 2.24 Mops measured
from an RDMA NIC [37]. The higher throughput of RDMA
NIC can be attributed to its higher clock frequency and lower
processing delay. With out-of-order execution, single-key
atomic operations in KV-Direct can be processed at peak
throughput, i.e., one operation per clock cycle. In MICA [51],
single-key atomics throughput cannot scale beyond a single
core. Atomic fetch-and-add can be spread to multiple cores
in [37], but it relies on the commutativity among the atomics
and therefore does not apply to non-commutative atomics
such as compare-and-swap.

With out-of-order execution, single-key atomics through-
put improves by 191x and reaches the clock frequency bound
of 180 Mops. When the atomic operations spread uniformly
among multiple keys, the throughput of one-sided RDMA,
two-sided RDMA and KV-Direct without out-of-order execu-
tion grow linearly with the number of keys, but still far from
the optimal throughput of KV-Direct.

Figure 13b shows the throughput under the long-tail work-
load. Recall that the pipeline is stalled when a PUT operation
finds any in-flight operation with the same key. The long-tail
workload has multiple extremely popular keys, so it is likely
that two operations with the same popular key arrive closely
in time. With higher PUT ratio, it is more likely that at least
one of the two operations is a PUT, therefore triggering a
pipeline stall.

 0

 50

 100

 150

 200

50% 95% 100%

T
hr

ou
gh

tp
ut

(M
op

s)

Read Percentage(%)

baseline uniform long-tail

Figure 14: DMA throughput with load dispatch (load dis-
patch ratio = 0.5).

Vector Size (B) 64 128 256 512 1024
Vector update with return 11.52 11.52 11.52 11.52 11.52
Vector update without return 4.37 4.53 4.62 4.66 4.68
One key per element 2.09 2.09 2.09 2.09 2.09
Fetch to client 0.03 0.06 0.12 0.24 0.46

Table 2: Throughput (GB/s) of vector operations with
vector update or alternatives.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

8 16 32 64 128 256

T
hr

ou
gh

pu
t (

M
O

ps
)

Batched KV Size (B)

No Batching
Batching

(a) Throughput.

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

8 16 32 64 128 256

La
te

nc
y

(u
s)

Batched KV Size (B)

No Batching
Batching

(b) Latency.

Figure 15: Efficiency of network batching.

5.1.4 DRAM Load Dispatcher. Figure 14 shows the
throughput improvement of DRAM load dispatch over the
baseline of using PCIe only. Under uniform workload, the
caching effect of DRAM is negligible because its size is only
6% of host KVS memory. Under long-tail workload, ∼30% of
memory accesses are served by the DRAM cache. Overall, the
memory access throughput for 95% and 100% GET achieves
the 180 Mops clock frequency bound. However, if DRAM is
simply used as a cache, the throughput would be adversely
impacted because the DRAM throughput is lower than PCIe
throughput.

5.1.5 Vector Operation Decoder. To evaluate the effi-
ciency of vector operations in KV-Direct, Table 2 compares
the throughput of atomic vector increment with two alterna-
tive approaches: (1) If each element is stored as a unique
key, the bottleneck is the network to transfer the KV oper-
ations. (2) If the vector is stored as a large opaque value,
retrieving the vector to the client also overwhelms the net-
work. Additionally, the two alternatives in Table 2 do not
ensure consistency within the vector. Adding synchronization
would incur further overhead.

KV-Direct client packs KV operations in network packets
to mitigate packet header overhead. Figure 15 shows that
network batching increases network throughput by up to 4x,
while keeping networking latency below 3.5 µs.

146

KV-Direct SOSP ’17, October 28, 2017, Shanghai, China

 0

 20

 40

 60

 80

 100

 120

 140

5 10 15 62 126 254

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

KV size (B)

100% GET
5% PUT

50% PUT
100% PUT

(a) Uniform.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

5 10 15 62 126 254

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

KV size (B)

100% GET
5% PUT

50% PUT
100% PUT

(b) Long-tail.

Figure 16: Throughput of KV-Direct under YCSB work-
load.

5.2 System Benchmark
5.2.1 Methodology. Before each benchmark, we tune

hash index ratio, inline threshold and load dispatch ratio ac-
cording to the KV size, access pattern and target memory
utilization. Then we generate random KV pairs with a given
size. The key size in a given inline KV size is irrelevant to
the performance of KV-Direct, because the key is padded to
the longest possible inline KV size during processing. To
test inline case, we use KV size that is a multiple of slot size
(when size ≤ 50, i.e. 10 slots). To test non-inline case, we use
KV size that is a power of two minus 2 bytes (for metadata).
As the last step of preparation, we issue PUT operations to
insert the KV pairs into an idle KVS until 50% memory uti-
lization. The performance under other memory utilizations
can be derived from Figure 11.

During benchmark, we use an FPGA-based packet genera-
tor [44] in the same ToR to generate batched KV operations,
send them to the KV server, receive completions and measure
sustainable throughput and latency. The processing delay of
the packet generator is pre-calibrated via direct loop-back and
removed from latency measurements. Error bars represent
the 5th and 95th percentile.

5.2.2 Throughput. Figure 16 shows the throughput of
KV-Direct under YCSB uniform and long-tail (skewed Zipf)
workload. Three factors may be the bottleneck of KV-Direct:
clock frequency, network and PCIe/DRAM. For 5B∼15B
KVs inlined in the hash index, most GETs require one PCIe/-
DRAM access and PUTs require two PCIe/DRAM accesses.
Such tiny KVs are prevalent in many systems. In PageRank,
the KV size for an edge is 8B. In sparse logistic regression,
the KV size is typically 8B-16B. For sequencers and locks in
distributed systems, the KV size is 8B.

Under same memory utilization, larger inline KVs have
lower throughput, due to a higher probability of hash colli-
sion. 62B and larger KVs are not inlined, so they require an
additional memory access. Long-tail workload has higher
throughput than uniform workload and able to reach the clock
frequency bound of 180 Mops under read-intensive workload,
or reach the network throughput bound for ≥62B KV sizes.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

5 15 62 254

B
a
tc

h
e
d
 L

a
te

n
c
y
 (

u
s
)

KV size (B)

GET uniform
GET skewed

PUT uniform
PUT skewed

(a) With batching.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

5 15 62 254N
o
n
−

b
a
tc

h
e
d
 L

a
te

n
c
y
 (

u
s
)

KV size (B)

GET uniform
GET skewed

PUT uniform
PUT skewed

(b) Without batching.

Figure 17: Latency of KV-Direct under peak throughput
of YCSB workload.
Under long-tail workload, the out-of-order execution engine
merges up to ∼15% operations on the most popular keys, and
the NIC DRAM has ∼60% cache hit rate under 60% load
dispatch ratio, which collectively lead to up to 2x throughput
as uniform workload. As shown in Table 3, the throughput of
a KV-Direct NIC is on-par with a state-of-the-art KVS server
with tens of CPU cores.

5.2.3 Power efficiency. When the KV-Direct server is at
peak throughput, the system power is 121.4 watts (measured
on the wall). Compared with state-of-the-art KVS systems in
Table 3, KV-Direct is 3x more power efficient than other sys-
tems, being the first general-purpose KVS system to achieve
1 million KV operations per watt on commodity servers.

When the KV-Direct NIC is unplugged, an idle server
consumes 87.0 watts power, therefore the combined power
consumption of programmable NIC, PCIe, host memory and
the daemon process on CPU is only 34 watts. The measured
power difference is justified since the CPU is almost idle
and the server can run other workloads when KV-Direct is
operating (we use the same criterion for one-sided RDMA,
shown at parentheses of Table 3). In this regard, KV-Direct is
10x more power efficient than CPU-based systems.

5.2.4 Latency. Figure 17 shows the latency of KV-Direct
under the peak throughput of YCSB workload. Without net-
work batching, the tail latency ranges from 3∼9 µs depending
on KV size, operation type and key distribution. PUT has
higher latency than GET due to additional memory access.
Skewed workload has lower latency than uniform due to more
likelihood of being cached in NIC DRAM. Larger KV has
higher latency due to additional network and PCIe transmis-
sion delay. Network batching adds less than 1 µs latency than
non-batched operations, but significantly improves through-
put, which has been evaluated in Figure 15.

5.2.5 Impact on CPU performance. KV-Direct is de-
signed to bypass the server CPU and uses only a portion of
host memory for KV storage. Therefore, the CPU can still
run other applications. Our measurements find a minimal
impact on other workloads on the server when a single NIC
KV-Direct is at peak load. Table 4 quantifies this impact at the

147

SOSP ’17, October 28, 2017, Shanghai, China B. Li et al.

KVS Comment Bottleneck Tput (Mops) Power Efficiency (Kops/W) Avg Delay (µs)
GET PUT GET PUT GET PUT

Memcached [25] Traditional Core synchronization 1.5 1.5 ∼5 ∼5 ∼50 ∼50
MemC3 [23] Traditional OS network stack 4.3 4.3 ∼14 ∼14 ∼50 ∼50
RAMCloud [59] Kernel bypass Dispatch thread 6 1 ∼20 ∼3.3 5 14
MICA [51] Kernel bypass, 24 cores, 12 NIC ports CPU KV processing 137 135 342 337 81 81
FaRM [18] One-sided RDMA for GET RDMA NIC 6 3 ∼30 (261) ∼15 4.5 ∼10
DrTM-KV [72] One-sided RDMA and HTM RDMA NIC 115.2 14.3 ∼500 (3972) ∼60 3.4 6.3
HERD’16 [37] Two-sided RDMA, 12 cores PCIe 98.3 ∼60 ∼490 ∼300 5 5
Xilinx’13 [5] FPGA (with host) Network 13 13 106 106 3.5 4.5
Mega-KV [75] GPU (4 GiB on-board RAM) GPU KV processing 166 80 ∼330 ∼160 280 280

KV-Direct (1 NIC) Programmable NIC, two Gen3 x8 PCIe & DRAM 180 114 1487 (5454) 942 (3454) 4.3 5.4
KV-Direct (10 NICs) Programmable NIC, one Gen3 x8 each PCIe & DRAM 1220 610 3417 (4518) 1708 (2259) 4.3 5.4

Table 3: Comparison of KV-Direct with other KVS systems under long-tail (skewed Zipf) workload of 10B tiny KVs.
For metrics not reported in the papers, we emulate the systems using similar hardware and report our approximate
measurements. For CPU-bypass systems, numbers in parentheses report power difference under peak load and idle.

KV-Direct status→ Idle Busy

Random
Latency

CPU0-0 82.2 ns 83.5 ns
CPU0-1 129.3 ns 129.9 ns
CPU1-0 122.3 ns 122.2 ns
CPU1-1 84.2 ns 84.3 ns

Sequential
Throughput

CPU0-0 60.3 GB/s 55.8 GB/s
CPU0-1 25.7 GB/s 25.6 GB/s
CPU1-0 25.5 GB/s 25.9 GB/s
CPU1-1 60.2 GB/s 60.3 GB/s

Random
Throughput

32B read 10.53 GB/s 10.46 GB/s
64B read 14.41 GB/s 14.42 GB/s
32B write 9.01 GB/s 9.04 GB/s
64B write 12.96 GB/s 12.94 GB/s

Table 4: Impact on CPU memory access performance
when KV-Direct is at peak throughput. Measured with
Intel Memory Latency Checker v3.4.

peak throughput of KV-Direct. Except for sequential through-
put of CPU 0 to access its own NUMA memory (the line
marked in bold), the latency and throughput of CPU memory
accesses are mostly unaffected. This is because 8 channels of
host memory can provide far higher random access through-
put than all CPU cores could consume, while the CPU can
indeed stress the sequential throughput of the DRAM chan-
nels. The impact of the host daemon process is minimal
when the distribution of KV sizes is relatively stable, because
the garbage collector is invoked only when the number of
available slots for different slab sizes are imbalanced.

6 EXTENSIONS
6.1 CPU-based Scatter-Gather DMA
PCIe has 29% TLP header and padding overhead for 64B
DMA operations (§2.4) and the DMA engine may not have
enough parallelism to saturate the PCIe bandwidth-delay prod-
uct with small TLPs (§4). Larger DMA operations with up to
256-byte TLP payload is supported by the PCIe root complex

 0

 20

 40

 60

 80

 100

64 128 256 512T
hr

ou
gh

tp
ut

 (
M

op
s)

Request Payload Size (B)

cpu-bypass
1 core

2 cores
3 cores
4 cores

(a) Read.

 0

 20

 40

 60

 80

 100

64 128 256 512T
hr

ou
gh

tp
ut

 (
M

op
s)

Request Payload Size (B)

cpu-bypass
1 core

2 cores
3 cores

(b) Write.

Figure 18: Scatter-gather performance.

in our system. In this case, the TLP head and padding over-
head is only 9%, and the DMA engine has enough parallelism
(64) to saturate the PCIe link with 27 in-flight DMA reads.
To batch the DMA operations on PCIe link, we can leverage
the CPU to perform scatter-gather (Figure 19). First, the NIC
DMAs addresses to a request queue in host memory. The
host CPU polls the request queue, performs random memory
access, put the data in response queue and writes MMIO door-
bell to the NIC. The NIC then fetches the data from response
queue via DMA.

Figure 18 shows that CPU-based scatter-gather DMA has
up to 79% throughput improvement compared to the CPU-
bypassing approach. In addition to the CPU overhead, the
primary drawback of CPU-based scatter-gather is the addi-
tional latency. To save MMIOs from the CPU to the NIC, we
batch 256 DMA operations per doorbell, which requires 10 µs
to complete. The overall latency for the NIC to access host
memory using CPU-based scatter-gather is ∼20 µs, almost
20x higher than direct DMA.

6.2 Multiple NICs per Server
In some cases, it may be desirable to build a dedicated key-
value store with maximal throughput per server. Through
simulation, [47] showed the possibility of achieving a billion
KV op/s in a single server with four (currently unavailable)
60-core CPUs. As shown in Table 3, with 10 KV-Direct NICs

148

KV-Direct SOSP ’17, October 28, 2017, Shanghai, China

Figure 19: Scatter-gather
architecture.

 0
 200
 400
 600
 800

 1000
 1200
 1400

0 2 4 6 8 10T
hr

ou
gh

tp
ut

 (
M

O
ps

)

Number of NICs

GET PUT

Figure 20: Performance of
multiple NICs per server.

1/1024 1/256 1/64 1/16 1/4 1
1/2 0.366 0.358 0.350 0.342 0.335 0.327
1 0.583 0.562 0.543 0.525 0.508 0.492
2 0.830 0.789 0.752 0.718 0.687 0.658
4 1 0.991 0.933 0.881 0.835 0.793
8 1 1 1 0.995 0.937 0.885

Table 5: Optimal load dispatch ratio for long-tail work-
load under different NIC DRAM/PCIe throughput ratio
(vertical) and NIC/host memory size ratio (horizontal).

on a server, the one billion KV op/s performance is readily
achievable with a commodity server. The KV-Direct server
consumes 357 watts power (measured on the wall) to achieve
1.22 Gop/s GET or 0.61 Gop/s PUT.

In order to saturate the 80 PCIe Gen3 lanes of two Xeon E5
CPUs, we replace the motherboard of the benchmarked server
(Sec. 5) with a SuperMicro X9DRX+-F motherboard with
10 PCIe Gen3 x8 slots. We use PCIe x16 to x8 converters
to connect 10 programmable NICs on each of the slots, and
only one PCIe Gen3 x8 link is enabled on each NIC, so the
throughput per NIC is lower than Figure 16. Each NIC owns
an exclusive memory region in host memory and serves a
disjoint partition of keys. Multiple NICs suffer the same
load imbalance problem as a multi-core KVS implementation.
Fortunately, for a small number of partitions (e.g. 10), the
load imbalance is not significant [47, 51]. Under YCSB long-
tail workload, the highest-loaded NIC has 1.5x load of the
average, and the added load from extremely popular keys
is served by the out-of-order execution engine (Sec. 3.3.3).
Figure 20 shows that KV-Direct throughput scales almost
linearly with the number of NICs on a server.

6.3 Discussion
6.3.1 NIC hardware with different capacity. The goal

of KV-Direct is to leverage existing hardware in data centers
to offload an important workload (KV access), instead of
designing a special hardware to achieve maximal KVS perfor-
mance. We use programmable NICs, which usually contain
limited amount of DRAM for buffering and connection-state
tracking. Large DRAMs are expensive in both die size and
power consumption.

Even if future NICs have faster or larger on-board memory,
under long-tail workload, our load dispatch design (Sec. 3.3.4)

1/1024 1/256 1/64 1/16 1/4 1
1/2 1.36 1.39 1.40 1.37 1.19 1.02
1 1.71 1.77 1.81 1.79 1.57 1.01
2 2.40 2.52 2.62 2.62 2.33 1.52
4 3.99 4.02 4.22 4.27 3.83 2.52
8 7.99 7.97 7.87 7.56 6.83 4.52

Table 6: Relative throughput of load dispatch compared
to simple partitioning. Column titles are same as Table 5.

still shows performance gain over the simple design of parti-
tioning the keys uniformly according to NIC and host memory
capacity. Table 5 shows the optimal load dispatch ratio for
long-tail workload with a corpus of 1 billion keys, under
different ratio of NIC DRAM and PCIe throughput and dif-
ferent ratio of NIC and host memory size. If a NIC has faster
DRAM, more load will be dispatched to the NIC. A load
dispatch ratio of 1 means the NIC memory behaves exactly
like a cache of host memory. If a NIC has larger DRAM, a
slightly less portion of load will be dispatched to the NIC. As
shown in Table 6, even when the size of NIC DRAM is a tiny
fraction of host memory, the throughput gain is significant.

The hash table and slab allocator design (Sec. 3.3.1) is
generally applicable to hash-based storage systems that need
to be frugal of random accesses for both lookup and insertion.

The out-of-order execution engine (Sec. 3.3.3) can be ap-
plied to all kinds of applications in need of latency hiding,
and we hope future RDMA NICs to support that for atomics.

In 40 Gbps networks, network bandwidth bounds non-
batched KV throughput, so we use client-side batching (Sec.4).
With higher network bandwidth, batch size can be reduced,
thus reducing latency. In a 200 Gbps network, a KV-Direct
NIC could achieve 180 Mop/s without batching.

KV-Direct leverages widely-deployed programmable NICs
with FPGAs [10, 64]. FlexNIC [40, 41] is another promising
architecture for programmable NICs with Reconfigurable
Match-action Tables (RMT) [8]. NetCache [35] implements
a KV cache in RMT-based programmable switches, showing
potential for building KV-Direct in an RMT-based NIC.

6.3.2 Implications for real-world applications. Back-
of-the-envelope calculations show potential performance gains
when KV-Direct is applied in end-to-end applications. In
PageRank [61], because each edge traversal can be imple-
mented with one KV operation, KV-Direct supports 1.22G
TEPS on a server with 10 programmable NICs. In compari-
son, GRAM [73] supports 250M TEPS per server, bound by
interleaved computation and random memory access.

KV-Direct supports user-defined functions and vector op-
erations (Table 1) that can further optimize PageRank by
offloading client computation to hardware. Similar arguments
hold for parameter server [46]. We expect future work to
leverage hardware-accelerated key-value stores to improve
distributed application performance.

149

SOSP ’17, October 28, 2017, Shanghai, China B. Li et al.

7 RELATED WORK
As an important infrastructure, the research and development
of distributed key-value store systems have been driven by
performance. A large body of distributed KVS are based
on CPU. To reduce the computation cost, Masstree [53],
MemC3 [23] and libcuckoo [48] optimize locking, caching,
hashing and memory allocation algorithms, while KV-Direct
comes with a new hash table and memory management mech-
anism specially designed for FPGA to minimize the PCIe
traffic. MICA [51] partitions the hash table to each core thus
completely avoids synchronization. This approach, however,
introduces core imbalance for skewed workloads.

To get rid of the OS kernel overhead, [31, 65] directly poll
network packets from NIC and [34, 54] process them with
the user space lightweight network stack. Key-value store
systems [39, 47, 51, 58, 59] benefit from such optimizations
for high performance. As a further step towards this direction,
recent works [1, 36, 36, 37, 37] leverage the hardware-based
network stack of RDMA NIC, using two-sided RDMA as an
RPC mechanism between KVS client and server to further
improve per-core throughput and reduce latency. Still, these
systems are CPU bound (§2.2).

Another different approach is to leverage one-sided RDMA.
Pilaf [55] and FaRM [18] adopt one-sided RDMA read for
GET operation and FaRM achieves throughput that saturates
the network. Nessie [70], DrTM [72], DrTM+R [13] and
FaSST [38] leverage distributed transactions to implement
both GET and PUT with one-sided RDMA. However, the
performance of PUT operation suffer from unavoidable syn-
chronization overhead for consistency guarantee, limited by
RDMA primitives [37]. Moreover, client-side CPU is in-
volved in KV processing, limiting per-core throughput to
∼10 Mops on the client side. In contrast, KV-Direct extends
the RDMA primitives to key-value operations while guaran-
tees the consistency in server side, leaving the KVS client
totally transparent while achieving high throughput and low
latency even for PUT operation.

As a flexible and customizable hardware, FPGA is now
widely deployed in datacenter-scale [10, 64] and greatly im-
proved for programmability [4, 44]. Several early works have
explored building KVS on FPGA. But some of them are not
practical by limiting the data storage in on-chip (about several
MB memory) [50] or on-board DRAM (typically 8GB mem-
ory) [11, 32, 33]. [6] focuses on improving system capacity
rather than throughput, and adopts SSD as the secondary stor-
age out of on-board DRAM. [11, 50] limit their usage in fixed
size key-value pairs, which can only work for the special pur-
pose rather than a general key-value store. [5, 43] uses host
DRAM to store the hash table, and [71] uses NIC DRAM as
a cache of host DRAM, but they did not optimize for network
and PCIe DMA bandwidth, resulting in poor performance.
KV-Direct fully utilizes both NIC DRAM and host DRAM,

making our FPGA-based key-value store system general and
capable of large-scale deployment. Furthermore, our careful
hardware and software co-design, together with optimizations
for PCIe and networking push the performance to the physical
limitation, advancing state-of-art solutions.

Secondary index is an important feature to retrieve data by
keys other than the primary key in data storage system [20,
42]. SLIK [42] supports multiple secondary keys using a
B+ tree algorithm in key-value store system. It would be
interesting to explore how to support secondary index to
help KV-Direct step towards a general data storage system.
SwitchKV [49] leverages content-based routing to route re-
quests to backend nodes based on cached keys, and Net-
Cache [35] takes a further step to cache KV in the switches.
Such load balancing and caching will also benefit our system.
Eris [45] leverages network sequencers to achieve efficient
distributed transactions, which may give a new life to the
one-sided RDMA approach with client synchronization.

8 CONCLUSION
In this paper, we describe the design and evaluation of KV-
Direct, a high performance in-memory key-value store. Fol-
lowing a long history in computer system design, KV-Direct
is another exercise in leveraging reconfigurable hardware to
accelerate an important workload. KV-Direct is able to obtain
superior performance by carefully co-designing hardware and
software in order to remove bottlenecks in the system and
achieve performance that is close to the physical limits of the
underlying hardware.

After years of broken promises, FPGA-based reconfig-
urable hardware finally becomes widely available in main
stream data centers. Many significant workloads will be scru-
tinized to see whether they can benefit from reconfigurable
hardware, and we expect much more fruitful work in this
general direction.

ACKNOWLEDGEMENTS
We would like to thank Kun Tan, Ningyi Xu, Ming Wu, Jian-
song Zhang and Anuj Kalia for all technical discussions and
valuable comments. We’d also like to thank the whole Cata-
pult v-team at Microsoft for support on the FPGA platform.
We thank our shepherd, Simon Peter, and other anonymous
reviewers for their valuable feedback and comments.

REFERENCES
[1] 2000. InfiniBand Architecture Specification: Release 1.0. InfiniBand

Trade Association.
[2] 2017. Altera SDK for OpenCL. (2017). http://www.altera.com/.
[3] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. 2012. Workload analysis of a large-scale key-value store. In
ACM SIGMETRICS Performance Evaluation Review, Vol. 40. ACM,
53–64.

150

KV-Direct SOSP ’17, October 28, 2017, Shanghai, China

[4] David F Bacon, Rodric Rabbah, and Sunil Shukla. 2013. FPGA pro-
gramming for the masses. Commun. ACM 56, 4 (2013), 56–63.

[5] Michaela Blott, Kimon Karras, Ling Liu, Kees Vissers, Jeremia Bär,
and Zsolt István. 2013. Achieving 10Gbps Line-rate Key-value Stores
with FPGAs. In The 5th USENIX Workshop on Hot Topics in Cloud
Computing. USENIX, San Jose, CA.

[6] Michaela Blott, Ling Liu, Kimon Karras, and Kees A Vissers. 2015.
Scaling Out to a Single-Node 80Gbps Memcached Server with 40Ter-
abytes of Memory.. In HotStorage ’15.

[7] Jeff Bonwick and others. 1994. The Slab Allocator: An Object-Caching
Kernel Memory Allocator.. In USENIX summer, Vol. 16. Boston, MA,
USA.

[8] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding metamorphosis: Fast programmable match-action processing
in hardware for SDN. In ACM SIGCOMM Computer Communication
Review, Vol. 43. ACM, 99–110.

[9] Alex D Breslow, Dong Ping Zhang, Joseph L Greathouse, Nuwan
Jayasena, and Dean M Tullsen. 2016. Horton tables: fast hash tables
for in-memory data-intensive computing. In USENIX ATC ’16.

[10] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, and others. 2016. A cloud-scale acceler-
ation architecture. In Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 1–13.

[11] Sai Rahul Chalamalasetti, Kevin Lim, Mitch Wright, Alvin AuYoung,
Parthasarathy Ranganathan, and Martin Margala. 2013. An FPGA
memcached appliance. In Proceedings of the ACM/SIGDA interna-
tional symposium on Field programmable gate arrays (FPGA). ACM,
245–254.

[12] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Debo-
rah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E Gruber. 2008. Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems (TOCS) 26,
2 (2008), 4.

[13] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen.
2016. Fast and general distributed transactions using RDMA and HTM.
In Eurosys ’16. ACM.

[14] Jason Cong, Muhuan Huang, Di Wu, and Cody Hao Yu. 2016. Invited -
Heterogeneous Datacenters: Options and Opportunities. In Proceedings
of the 53rd Annual Design Automation Conference (DAC ’16). ACM,
New York, NY, USA, Article 16, 16:1–16:6 pages.

[15] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 143–154.

[16] TPC Council. 2010. tpc-c benchmark, revision 5.11. (2010).
[17] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: amazon’s
highly available key-value store. ACM SIGOPS Operating Systems
Review 41, 6 (2007), 205–220.

[18] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: fast remote memory. In NSDI ’14.

[19] TV Eicken, David E Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. 1992. Active messages: a mechanism for integrated commu-
nication and computation. In Computer Architecture, 1992. Proceed-
ings., The 19th Annual International Symposium on. IEEE, 256–266.

[20] Robert Escriva, Bernard Wong, and Emin Gün Sirer. 2012. HyperDex:
A distributed, searchable key-value store. ACM SIGCOMM Computer
Communication Review 42, 4 (2012), 25–36.

[21] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankar-
alingam, and Doug Burger. 2011. Dark silicon and the end of multicore

scaling. In Computer Architecture (ISCA), 2011 38th Annual Interna-
tional Symposium on. IEEE, 365–376.

[22] Hadi Esmaeilzadeh, Emily Blem, Renée St Amant, Karthikeyan Sankar-
alingam, and Doug Burger. 2013. Power challenges may end the
multicore era. Commun. ACM 56, 2 (2013), 93–102.

[23] Bin Fan, David G Andersen, and Michael Kaminsky. 2013. MemC3:
Compact and concurrent memcache with dumber caching and smarter
hashing. In NSDI ’13. 371–384.

[24] Daniel Firestone. 2017. VFP: A Virtual Switch Platform for Host SDN
in the Public Cloud. In NSDI ’17. Boston, MA, 315–328.

[25] Brad Fitzpatrick. 2004. Distributed caching with memcached. Linux
journal 2004, 124 (2004), 5.

[26] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. 1992. Hid-
ing memory latency using dynamic scheduling in shared-memory mul-
tiprocessors. Vol. 20. ACM.

[27] Albert Greenberg. 2015. SDN for the Cloud. In Keynote in the 2015
ACM Conference on Special Interest Group on Data Communication.

[28] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010.
PacketShader: a GPU-accelerated software router. In ACM SIGCOMM
Computer Communication Review, Vol. 40. ACM, 195–206.

[29] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. 2008. Hopscotch hash-
ing. In International Symposium on Distributed Computing. Springer,
350–364.

[30] Muhuan Huang, Di Wu, Cody Hao Yu, Zhenman Fang, Matteo In-
terlandi, Tyson Condie, and Jason Cong. 2016. Programming and
Runtime Support to Blaze FPGA Accelerator Deployment at Datacen-
ter Scale. In Proceedings of the Seventh ACM Symposium on Cloud
Computing (SoCC ’16). ACM, New York, NY, USA, 456–469.

[31] DPDK Intel. 2014. Data plane development kit. (2014).
[32] Zsolt István, Gustavo Alonso, Michaela Blott, and Kees Vissers. 2013.

A flexible hash table design for 10gbps key-value stores on fpgas.
In 23rd International Conference on Field programmable Logic and
Applications. IEEE, 1–8.

[33] Zsolt István, Gustavo Alonso, Michaela Blott, and Kees Vissers. 2015.
A hash table for line-rate data processing. ACM Transactions on
Reconfigurable Technology and Systems (TRETS) 8, 2 (2015), 13.

[34] EunYoung Jeong, Shinae Woo, Muhammad Asim Jamshed, Haewon
Jeong, Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. 2014.
mTCP: a Highly Scalable User-level TCP Stack for Multicore Sys-
tems.. In NSDI ’14. 489–502.

[35] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soule, Jeongkeun Lee,
Nate Foster, Changhoon Kim, and Ion Stoica. 2017. NetCache: Bal-
ancing Key-Value Stores with Fast In-Network Caching. In SOSP ’17.

[36] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2014. Us-
ing RDMA efficiently for key-value services. In ACM SIGCOMM
Computer Communication Review, Vol. 44. ACM, 295–306.

[37] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. De-
sign Guidelines for High Performance RDMA Systems. In USENIX
ATC ’16.

[38] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. FaSST:
fast, scalable and simple distributed transactions with two-sided RDMA
datagram RPCs. In OSDI ’16. 185–201.

[39] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M Voelker,
and Amin Vahdat. 2012. Chronos: predictable low latency for data
center applications. In Proceedings of the Third ACM Symposium on
Cloud Computing. ACM, 9.

[40] Antoine Kaufmann, Simon Peter, Thomas E Anderson, and Arvind
Krishnamurthy. 2015. FlexNIC: Rethinking Network DMA.. In Ho-
tOS ’15.

[41] Antoine Kaufmann, Simon Peter, Navven Kumar Sharma, and Thomas
Anderson. 2016. High Performance Packet Processing with FlexNIC.
In Proceedings of the 21th International Conference on Architectural

151

SOSP ’17, October 28, 2017, Shanghai, China B. Li et al.

Support for Programming Languages and Operating Systems.
[42] Ankita Kejriwal, Arjun Gopalan, Ashish Gupta, Zhihao Jia, Stephen

Yang, and John Ousterhout. 2016. SLIK: Scalable low-latency indexes
for a key-value store. In USENIX ATC ’16.

[43] Maysam Lavasani, Hari Angepat, and Derek Chiou. 2014. An FPGA-
based in-line accelerator for Memcached. IEEE Computer Architecture
Letters 13, 2 (2014), 57–60.

[44] Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng, Renqian Luo,
Ningyi Xu, Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016.
ClickNP: Highly flexible and High-performance Network Processing
with Reconfigurable Hardware. In SIGCOMM ’16. ACM, 1–14.

[45] Jialin Li, Ellis Michael, and Dan R. K. Ports. 2017. Eris: Coordination-
Free Consistent Transactions Using In-Network Concurrency Control.
In SOSP ’17.

[46] Mu Li, David G Andersen, and Jun Woo Park. 2014. Scaling Dis-
tributed Machine Learning with the Parameter Server.

[47] Sheng Li, Hyeontaek Lim, Victor W Lee, Jung Ho Ahn, Anuj Kalia,
Michael Kaminsky, David G Andersen, Sukhan Lee, Pradeep Dubey,
and others. 2016. Full-Stack Architecting to Achieve a Billion Requests
Per Second Throughput on a Single Key-Value Store Server Platform.
ACM Transactions on Computer Systems (TOCS) 34, 2 (2016), 5.

[48] Xiaozhou Li, David G Andersen, Michael Kaminsky, and Michael J
Freedman. 2014. Algorithmic improvements for fast concurrent cuckoo
hashing. In Eurosys ’14. ACM, 27.

[49] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G Andersen,
and Michael J Freedman. 2016. Be fast, cheap and in control with
SwitchKV. In NSDI ’16.

[50] Wei Liang, Wenbo Yin, Ping Kang, and Lingli Wang. 2016. Mem-
ory efficient and high performance key-value store on FPGA using
Cuckoo hashing. In 2016 26th International Conference on Field Pro-
grammable Logic and Applications (FPL). 1–4.

[51] Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kamin-
sky. 2014. MICA: a holistic approach to fast in-memory key-value
storage. In NSDI ’14. 429–444.

[52] Xiaoyu Ma, Dan Zhang, and Derek Chiou. 2017. FPGA-Accelerated
Transactional Execution of Graph Workloads. In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA 2017, Monterey, CA, USA, February 22-24, 2017,
Jonathan W. Greene and Jason Helge Anderson (Eds.). ACM, 227–236.

[53] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache
craftiness for fast multicore key-value storage. In Proceedings of the
7th ACM european conference on Computer Systems. ACM, 183–196.

[54] Ilias Marinos, Robert NM Watson, and Mark Handley. 2014. Network
stack specialization for performance. In ACM SIGCOMM Computer
Communication Review, Vol. 44. ACM, 175–186.

[55] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-
Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store.
In USENIX ATC ’13. 103–114.

[56] Neha Narula, Cody Cutler, Eddie Kohler, and Robert Morris. 2014.
Phase Reconciliation for Contended In-Memory Transactions.. In
OSDI ’14, Vol. 14. 511–524.

[57] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, and others. 2013. Scaling memcache at facebook. In NSDI ’13.

[58] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis,
Jacob Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan,
Guru Parulkar, Mendel Rosenblum, and others. 2010. The case for
RAMClouds: scalable high-performance storage entirely in DRAM.
ACM SIGOPS Operating Systems Review 43, 4 (2010), 92–105.

[59] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,
Collin Lee, Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry
Qin, Mendel Rosenblum, and others. 2015. The ramcloud storage sys-
tem. ACM Transactions on Computer Systems (TOCS) 33, 3 (2015).

[60] Jian Ouyang, Shiding Lin, Wei Qi, Yong Wang, Bo Yu, and Song Jiang.
2014. SDA: Software-defined accelerator for large-scale DNN systems.
2014 IEEE Hot Chips 26 Symposium (HCS) 00 (2014), 1–23.

[61] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
1999. The PageRank citation ranking: Bringing order to the web.
Technical Report. Stanford InfoLab.

[62] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing.
Journal of Algorithms 51, 2 (2004), 122–144.

[63] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,
and Hans Fugal. 2014. Fastpass: A centralized zero-queue datacen-
ter network. In ACM SIGCOMM Computer Communication Review,
Vol. 44. ACM, 307–318.

[64] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy
Fowers, Gopi Prashanth Gopal, Jan Gray, and others. 2014. A reconfig-
urable fabric for accelerating large-scale datacenter services. In 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA). IEEE, 13–24.

[65] Luigi Rizzo. 2012. Netmap: a novel framework for fast packet I/O. In
21st USENIX Security Symposium (USENIX Security 12). 101–112.

[66] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D Nguyen,
Victor W Lee, Daehyun Kim, and Pradeep Dubey. 2010. Fast sort
on CPUs and GPUs: a case for bandwidth oblivious SIMD sort. In
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 351–362.

[67] Bin Shao, Haixun Wang, and Yatao Li. 2013. Trinity: A distributed
graph engine on a memory cloud. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data. ACM,
505–516.

[68] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mo-
hammad Alizadeh, Hari Balakrishnan, George Varghese, Nick McKe-
own, and Steve Licking. 2016. Packet transactions: High-level program-
ming for line-rate switches. In Proceedings of the ACM SIGCOMM
2016 Conference. ACM, 15–28.

[69] Herb Sutter. 2005. The free lunch is over: A fundamental turn toward
concurrency in software. Dr. Dobbs journal 30, 3 (2005), 202–210.

[70] Tyler Szepesi, Bernard Wong, Ben Cassell, and Tim Brecht. 2014.
Designing a low-latency cuckoo hash table for write-intensive work-
loads using RDMA. In First International Workshop on Rack-scale
Computing.

[71] Yuta Tokusashi and Hiroki Matsutani. 2016. A multilevel NOSQL
cache design combining In-NIC and In-Kernel caches. In High-
Performance Interconnects (HOTI ’16). IEEE, 60–67.

[72] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen.
2015. Fast in-memory transaction processing using RDMA and HTM.
In SOSP ’15. ACM, 87–104.

[73] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan
Wei, Haoxiang Lin, Yafei Dai, and Lidong Zhou. 2015. GraM: scaling
graph computation to the trillions. In Proceedings of the Sixth ACM
Symposium on Cloud Computing. ACM, 408–421.

[74] Wencong Xiao, Jilong Xue, Youshan Miao, Zhen Li, Cheng Chen,
Ming Wu, Wei Li, and Lidong Zhou. 2017. TuX2: Distributed Graph
Computation for Machine Learning. In NSDI ’17.

[75] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Lee, and Xi-
aodong Zhang. 2015. Mega-KV: a case for GPUs to maximize the
throughput of in-memory key-value stores. Proceedings of the VLDB
Endowment 8, 11 (2015), 1226–1237.

[76] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu,
Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao,
and others. 2015. Packet-level telemetry in large datacenter networks.
In ACM SIGCOMM Computer Communication Review, Vol. 45. ACM,
479–491.

152

	Abstract
	1 Introduction
	2 Background
	2.1 Workload Shift in KVS
	2.2 Achilles' Heel of High-Performance KVS Systems
	2.3 Programmable NIC with FPGA
	2.4 Challenges for Remote Direct Key-Value Access

	3 Design
	3.1 System Architecture
	3.2 KV-Direct Operations
	3.3 KV Processor

	4 Implementation
	5 Evaluation
	5.1 Microbenchmarks
	5.2 System Benchmark

	6 Extensions
	6.1 CPU-based Scatter-Gather DMA
	6.2 Multiple NICs per Server
	6.3 Discussion

	7 Related Work
	8 Conclusion
	References

