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and Social Links in Social Networking Services
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Abstract—Sociologists have long converged that the evolution of a Social Networking Service(SNS) is driven by the interplay between
users’ preferences (reflected in user-item interaction behavior) and the social network structure (reflected in user-user interaction
behavior). Nevertheless, traditional approaches either modeled these two kinds of behaviors in isolation or relied on a static
assumption of a SNS. Thus, it is still unclear how do the roles of the dynamic social network structure and users’ historical preferences
affect the evolution of SNSs. Furthermore, can transforming the underlying social theories in the platform evolution modeling process
benefit both behavior prediction tasks? In this paper, we incorporate the underlying social theories to explain and model the evolution of

users’ two kinds of behaviors in SNSs. Specifically, we present two kinds of representations for users’ behaviors: a direct (latent)
representation that presumes users’ behaviors are represented directly (latently) by their historical behaviors. Under each
representation, we associate each user’s two kinds of behaviors with two vectors at each time. Then, for each representation, we
propose the corresponding learning model to fuse the interplay between users’ two kinds of behaviors. Finally, extensive experimental
results demonstrate the effectiveness of our proposed models for both user preference prediction and social link suggestion.

Index Terms—User modeling, social networking services, user interest modeling, link prediction

1 INTRODUCTION

ITH the popularity of online social media, many SNSs
have emerged in recent years. These SNSs provide an
online platform for facilitating the building of social rela-
tions among people who share similar consumption inter-
ests, activities, or real-life connections. Thus people can stay
connected with others and be informed of social friends’
consumption preferences. For instance, in the online prod-
uct review platform Epinions.com, the system immediately
pushes the product ratings and reviews to a user that she
trusts. In a location based social network service website
such as Gowalla, people share location-embedded informa-
tion with friends by adding a check-in at that place.
Generally, a SNS platform is built upon two kinds of
users’ behaviors: consuming items (reflected in the user-item
interaction such as rating, buying and check-in) and building
social links among users (reflected in the user-user interaction
such as the directed trust and the undirected friendship).
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While users face a dazzling array of potential consumption
items and unlinked social entities, discovering users’ con-
sumption preferences and suggesting new links become
two core behavior prediction tasks for these systems.
Computational tools have been developed to solve these
two tasks respectively. On one hand, Collaborative
Filtering (CF) forms the basis of user preference discovery,
which assumes that users are likely to consume items that
are locally popular among the like-minded users with simi-
lar consumption history in the past [3], [24], [30]. On the
other hand, Node Proximity (INP) based models play a cen-
tral role in social link suggestions, where two users are pos-
sibly to form links in the near future if they are structural
close in the social graph [28], [32]. In summary, these two
kinds of models utilized a particular kind of users” historical
behaviors to predict the same kind of behaviors in the
future, and usually are well researched in parallel.

Nevertheless, social scientists have long converged that
these two kinds of users’ behaviors are not isolated. Instead,
the interplay between them drives the evolution of SNSs,
leading to the dynamic changes of users’ preferences and
the social network structure over time. There are two social
theories that explain this evolution: the social influence effect
states that users’ future preferences are affected by the
social network around them, and the homophily effect sug-
gests that people tend to associate and bond with others
that have similar preferences in the past [4]. Based on these
theories, some research works have leveraged one type of
users’ behavior to help predict another type of behavior [15],
[20], [40]. Recently, Yang et al. proposed to jointly model
the correlation of these two kinds of users’ behaviors in a
unified static model, thus achieved better performance than
modeling them in an isolated way [45]. However, their static
view could not capture the evolution of SNSs.
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In this paper, we incorporate the underlying social theo-
ries for explaining and predicting the evolution of SNSs from
an individual perspective, i.e., we try to explain how do the
roles of the time-evolving social network structure and users’
historical preferences affect each users’ future behavior, and
predict each user’s new consumption preference and social
links in the near future. Understanding these questions can
not only help the SNS system providers gain more insights
into users, but also benefit customers by enjoying more accu-
rate predictive services, including consumption preference
recommendation and social link suggestion. However, prop-
erly addressing these questions is not an easy task. First,
both users’ consumption behavior and link behavior mix
together to form the evolution of SNSs. As we can only
observe the final decisions made by users, how to quantify
the contribution of each kind of users’ behavior is non-trivial.
Furthermore, it is still unclear how to embed the social theo-
ries to build connections among users’ two kinds of behav-
iors in the modeling process.

To tackle these challenges, in our previous work [42], we
proposed a preliminary latent approach named Evolving
Joint Prediction (EJP) for modeling the evolution of users’
consumption behavior and social link behavior in SNS plat-
forms. Specifically, we associate each user with a latent con-
sumption preference vector at each time. Then we propose
a probabilistic approach to fuse the interplay between users’
consumption and social behaviors over time, where the user
latent consumption preference vector bridges the connec-
tion between users’ two kinds of behaviors.

This paper further extends our previous work [42]. Specifi-
cally, we introduce two kinds of representations to depict
users’ behaviors in SNSs. The first one is a direct representation
that presumes each kind of a user’s behavior can be directly
reflected from her historical behavior, i.e., each user’s con-
sumption behavior is depicted in the item space and the social
link behavior is represented in the user space. Then each user
has a direct consumption vector and a social link vector at
each time under the direct representation. This direct repre-
sentation is simple and intuitive, however, as each user usu-
ally has very few consumption (social) records in the huge
item (user) space, the extreme data sparsity issue may lead to
unsatisfactory performance [3]. Thus, instead of the direct
representation, we argue that each user’s two kinds of behav-
iors at each time can be determined by the latent representation:
a latent consumption vector that shows her consumption pref-
erence and a latent social vector that depicts her social link
behavior. Then for each representation, we propose a corre-
sponding learning model to fuse the interplay between users’
two kinds of behaviors by leveraging the underlying social
theories. Finally, extensive experimental results demonstrate
the effectiveness of our proposed model for both user prefer-
ence prediction and social link suggestion. In summary, com-
pared with our preliminary model of EJP [42], the main
contributions of this paper are:

e We propose a novel direct model to represent users’
two kinds of behaviors in SNS platforms, which has
not been explored in our preliminary work. The
direct model is intuitive and shows high efficiency.

e In the preliminary EJP model, we represent each
user’s consumption behavior with latent consump-
tion vector without any latent social link representa-
tion [42]. We further advance the previous work by
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representing users’ two kinds of behaviors with both
latent vectors, i.e., each user has a latent consump-
tion vector and a latent social link vector at each
time. Then we design a more sophisticated model to
capture the interplay between users’ latent consump-
tion vectors and latent social link vectors, while EJP
purely shares the latent consumption vector among
users’ two kinds of behaviors. Experimental results
show the latent model proposed in this paper produ-
ces better performance than EJP.

2 RELATED WORK

We summarize the related work into the following three
categories.

Collaborative Filtering. Collaborative filtering is a technique
to provide personalized item suggestions by discovering
users’ consumption preferences [3]. Usually, we are given a
user-item consumption preference matrix with a few known
preference values, and the goal is to predict the unknown val-
ues as accurate as possible. Models in this area can be classi-
fied into two categories: the neighborhood-based methods
and the matrix factorization models. The neighborhood based
methods predicted the unknown preference of a target user
based on similar neighbor users’ ratings for this item [6], [12],
[38]. In contrast, matrix factorization models tried to capture
both users and items in a low latent space by learning user-
item past interactions. After that, a user's unknown prefer-
ence for an item could be predicted by comparing the correla-
tion of the learned latent vectors between them [24], [34].

In the real world, users’ preferences are not static but
change over time. Thus, it is important to take the temporal
dynamics of users’ interests in the recommendation pro-
cess [8], [19], [23], [35], [44]. E.g., TimeSVD++ was proposed
to adapt some of the user latent vectors to evolve over
time [23]. Xiong et al. introduced an additional latent time
dimension in a factor-based model that captures the
population-level preference of products [44]. Jiang et al. pro-
posed a dynamic scheme of tensor factorization for tempo-
ral multi-faceted behavior prediction [19]. These models
captured users’ interest drifts, however, the explanatory
reasons for the interest changes are not clear.

Link Prediction. Link prediction is the general problem of
predicting the potential new link connections among a social
network in a near future. This problem has long been consid-
ered from a static view: the input is a snapshot of a social net-
work at time ¢, and the goal is to predict the possible links that
appear from ¢ to a later time . Generally, this question can be
viewed as computing the node proximity, or similarity given
the network topology [28], [32]. The literature on this static
link prediction can be classified into two categories: unsuper-
vised and supervised. The unsupervised models used direct
neighborhood-based measures (e.g., the percentage of the
number of shared friends) or the path-based methods to infer
the proximity of indirectly connected users [17], [28]. In con-
trast to the unsupervised measures, the supervised models
took the existing links as positive labels and the current
unknown links as possible negative ones, then a learning pro-
cess is involved with the available data labels. The choice of
these supervised models included the feature-based mod-
els [26] and the latent-factor based models [32], [33].

In the real world, the social networks are continuously
evolving, with new nodes and links added over time.
Recent studies considered the temporal link prediction
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problem, where we have the detailed edge creation time or
several snapshots of social networks. An intuitive yet effec-
tive approach is to collapse multiple time-sliced linked data
into a single matrix with weighted averaging, then the static
link prediction models could be applied [1], [11]. Others
proposed tensor factorization or non-parametric time-series
models to capture the temporal information in graph evolu-
tion process [9], [37]. Our work resembles these works in
capturing the temporal evolution of the social structural
data, nevertheless, our model distinguishes these works in
the explanatory ability of the evolution of social networks.

Modeling the Interaction Between Users” Two Kinds of Behav-
iors. Sociologists have long converged that users’ consump-
tion behavior and the social link behavior are not isolated,
instead, they have a mutual reinforcement relationship [4],
[7]. Specifically, the social influence theory states that people
tend to associate and bond with users that have similar prefer-
ences and attributes, and the homophily effect suggests that
the links between users would further influence users to
behave similarly with their friends. Thus, researchers argued
that we can leverage one kind of data source for the remaining
prediction task. Among them, social-based recommendation
system, utilizes the social network structure information to
help mitigate the data sparsity issue in traditional recom-
mender systems [14], [15], [18], [20], [27]. Another parallel
line is to suggest links by incorporating users’ historical con-
sumption preferences. Tang et al. provided an approach to
exploit users’ historical preferences for more accurate link
prediction. They argued that users with similar historical
interests are more likely to build social links in the future [40].
More recently, Gong et al. proposed to argument the social
network into a social-attribute network, such the node attri-
bute and social network information could inform each
other [13]. However, all these models relied on a static
assumption of a SNS platform. Jamali analyzed and modeled
the temporal behaviors of users in a SNS using bidirectional
effects of rating patterns and social relations [16]. This line of
work differs from our problem formulation in that it focused
on the global evolution of a SNS. To the best of our knowl-
edge, Yang et al. made one of the first few attempts that
mutually modeled users’ preferences and the social link pre-
diction in a unified framework [45]. The key idea of their pro-
posed model is to define a shared static user latent vector
over these two kinds of tasks, thus achieved better perfor-
mance. Our proposed models advances their technique in
several aspects: (1) We made a comprehensive study of users’
behaviors with both direct representations and latent repre-
sentations. (2) In the proposed latent representation, their
model assumed a static representation of a SNS while our
work captures the temporal dynamics.

3 PROBLEM DEFINITION

In a SNS platform, there are a set of users U (|U|=N) and a set
of items V' (|V|= M). Users perform two kinds of behaviors in
most SNS platforms: consuming items and building social links
with others. Generally speaking, consuming an item refers to
the interaction between a user and an item, which varies at
different SNS platforms. Specifically, we represent users’ two
kinds of behaviors at each time ¢ as two matrices: a consump-
tion matrix C* e RV*M and a social link matrix S* € RN, If
user a consumes item i at ¢, C!; denotes the rating preference
score. Otherwise it is 0 indicating the user does not show any
preference during that time. Similarly, SZb =1 if user a
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connects to user b at time ¢, otherwise it equals 0. As we con-
sider the temporal evolution of SNSs, we summarize users’
two kinds of behaviors over time as two matrix sequences: a
consumption matrix sequence C' = [C',...C"...,CT] and a
social link matrix sequence S = [S',...S"...,ST]. Without
confusion, we use a, b, ¢ to represent users and ¢, j, k to denote
items. Then the problem can be defined as:

Definition 1 (Problem Definition). Given the user consump-
tion sequence C and the social link sequence S, our goal is two-
fold: (1) quantify the social influence and homophily effect of each
user for the evolution process of SNSs. (2) predict each user’s con-
sumption behavior and the social link behavior at time T + 1.

4 DIRECT MODELING OF THE EVOLUTION OF SNS

In this section, we introduce a simple direct approach to
model the evolution of SNSs. The key idea of this direct
model is that, each kind of a user’s future behavior is influ-
enced directly by others’ historical behaviors. With this
direct representation, uses’ consumption behavior (social
behavior) over time can be described as vectors in the item
space (user space). Then we model the interplay of users’
two kinds of behaviors with the direct representation. In
fact, this direct approach is quite intuitive and has been inte-
grated into many SNSs. E.g., the social influence explana-
tion of “your friends A and B also like this product” for
consumption recommendation process, and the homophily
effect explanation of “ user B also consumed item a and b”
for suggesting social links. Fig. 1 illustrates an example of
users’ behaviors over time in SNS platforms, with the main
reasons for users’ new behaviors listed in the right of this
figure. Formally, we define the direct modeling as:

Definition 2 (Direct Modeling). Given the user consumption
matrix sequence C' and the social sequence S, the direct model-
ing represent each user’s consumption behavior in the item
space VRN and social behavior in the user space U€RM.
The goal of direct modeling is to solve the problem in Defini-
tion 1 based on the direct representation.

In the following, we first introduce how to capture users’
behaviors with the direct representation, then give the cor-
responding learning model.

4.1 The Proposed Direct Model

Evolutional Direct Consumption Behavior Modeling. As shown
in Fig. 1, there are two main reasons for users to build a
new consumption record. First, traditional CF models
assume a user likes to consume products that are locally
popular among users that have similar historical consump-
tion preference. E.g., a possible reason for u2 to consume v4
is that u3—a user that has similar consumption preference
with her consumed v4. Second, the social influence theory
suggests that users are also likely to be influenced by
social network neighbors’” preferences to make consumption
preference decisions. E.g., ul is influenced by her social
friend u4 and consumes v2 at time t + 1. In summary, for
each user’s consumption behavior from time window
t=2,3,...,T, we model it as a liner combination of the col-
laborative filtering and the social influence effect

Clo = (1 —an) f(a,i,t) + aaglait) st 0<a, <1. (1)

where C!; denotes the predicted consumption of user a to
item i. Function f and g capture the collaborative filtering and
the social influence for consumption prediction respectively,
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Fig. 1. A showcase of the evolution of a SNS platform. At each time, users perform two behaviors: build a new Social link or show her new Consump-
tion preference. For simplicity, we use “A2B” at each new added behavior to denote the current behavior of “A” leads to the future behavior “B”. For
example, a “S2C” label is added from ¢ to ¢ + 1 as u1 shows Consumption preference to v2 possibly because her social neighbors (u1 has followed

u4 and ub before t 4+ 1) consumed item v2 before.

which are balanced by the non-negative parameter «, for each
user. As users may have their own decisions in balancing
these two aspects, e.g., some users like to follow their own his-
torical preferences to make future consumptions (i.e., small
«,) while others prefer to receive consumption suggestions
from their friends (i.e., large «,), the balance parameters are
personalized and vary from person to person. Specifically,
function f captures the predicted consumption score by utiliz-
ing users’ consumption history, thus any CF models, such as
the item-based collaborative filtering [38], latent factor models
[34] could be applied. As the focus of this paper is not to
devise more sophisticated models to predict the consumption
preference by traditional CF models, we use any available CF
algorithm. Next we introduce how to build social influence
effect function g.

g(a,i,t) is a function that models the social influence effect
for user a’s consumption preference on product i at time ¢.
The social influence effect states the diffusion of information
over social networks that lead people to consume local pop-
ular items among their social friends [10]. This effect has
been viewed as a foundation for many important social
applications, such as the social influence maximization for
viral marketing [21], [43]. With this direct social influence
effect, each user a’s future preference on product 7 is influ-
enced directly by the historical consumption records of her
social neighbors’ decisions of the same item

)IEDY mst*;
glavi t) = St T )
Zt/ 121,th/ bz ab

where N! is the set of users that a connects till ¢. V}} is an indi-
cator value that equals 1 if b consumes i at time ¢, otherwise it
equals 0. In this equation, s!, denotes the social influence
strength between this pair of users, i.e., the social proximity
of these two users based on the social network structure. As
the social network is dynamic and changes over time, it is
reasonable to assume the social influence strength also
varies. There are a number of ways to calculate the social
influence strength. For example, we can adapt the traditional
static node proximity based models to a dynamic version or
any dynamic link proximity based model. Here, we simply
adopt a widely used node proximity measure—Adamic/
Adar metric [28], and adapt it to a time varying version as

1
St = | "
" Yeentangt log (1N

Evolutional Direct Link Behavior Modeling. Similar as the
direct consumption preference prediction in Eq. (1), a user’s

decision on whether to build a social link is also mainly deter-
mined by two factors. First, two users are likely to form links
in the future if they are topologically close to each other from
the social network structure. This node-proximity phenome-
non forms the basis of traditional link prediction algorithms.
E.g., ul bonds with u5 at time ¢ in Fig. 1 can be mainly attrib-
uted to this reason. Second, the preference similarity between
users also brings connections, i.e., user 2 finds u5 has many
common consumption preferences with her (they both con-
sumed v4 and v5), then u2 is likely to associate with 5 in the
near future as shown in Fig. 1. This is termed as the homo-
phily effect and it is widely accepted by social scientists in
explaining the social network construction process [31]. Based
on these two effects, each user a’s predicted link score to user
b, denoted as Séb attimet (t = 2,...,T),ismodeled as

Sty = (1= BYh(a,b,t) + B,l(i,j,t)  sit.

where function h and ! calculates the node proximity and
the homophily effect for link prediction. 8, is a personalized
parameter that balances these two effects. Since we do not
focus on modeling node proximity in this paper, any tradi-
tional node proximity models could be used for calculating
h. In the following, we introduce how to model the homo-
phily effect function [ under the direct assumption.
Basically, {(a,b,t) is a function that explains the homophily
effect for social link connection among user pair a and b at time
t, sometimes which is also termed as the social selection pro-
cess. This effect states that the tendency of users to form social
connections with similar characteristics and preferences, e.g.,
we like to form friendships with others that have similar back-
grounds, education level and lots of interests in common. This
pervasive phenomenon has a long history of study in sociol-
ogy and happens in our everyday life [25], [31]. Given the
direct representation of users’ behaviors, the homophily effect
between two users can be directly obtained by comparing the
consumption records between them. Here, we simply adapt
the cosine similarity measure to calculate the homophily effect
between any pair of users. Let L!(a) € R**! denote the vector
of user a’s consumption records over the item space before
time ¢, i.e., the j's element in this vector equals 0 if user a did
not consume item j before ¢, otherwise it equals C’ if 3t" < t,
Yt- =1. Then the homophily effect between a and battimet is

0<B, <1 &

< LY (a), L'(b) >

Il(a,b,t) = cos(L(a), L'(a)) = Lt (@) * I D)1

(5)

where <, > denotes the inner product of two vectors and
[|L!(a)|| is the Frobenius form of this vector.
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4.2 Model Learning

After defining the direct social influence effect function g and
the homophily effect function /, in order to predict users’
future behaviors as shown in Eqs. (1) and (4), we need
to determine the balance parameters o = [w,]) , and
B = [B.], for all users. Specifically, with the availability of
users’ historical consumption behavior in SNSs, we define
the loss function as

t

The above loss function is convex with bound con-
straints, thus a global minimum could be achieved. In prac-
tice, we could resort to Projected Gradient Descent (PGD)
method [29]. Specifically, for each «, (0 < &, < 1), the PGD
method updates the current solution o in kth iteration to
o1 according to the following rule

(e if 0 S o2 S 1>
ot = Plaf —1V,,], Plag) =0 if a, <0, @
1 if o, > 1,

where V,, has the following form

T M

Vo, = Z Z }/afl(é};? - C:u)

t=2 i=1

x (g(a,i,t) — f(a,i,t)).

We summarize the framework of the proposed direct
consumption behavior modeling process in Algorithm 1.

Algorithm 1. The Direct Approach for Consumption
Behavior Prediction

Input: A traditional CF function f;
Output: The predicted consumption preference at 7'+ 1;
Initialize o with small positive values;
for all (a,,t) in consumption training dataset do
calculate f(a,,t) based on the given CF algorithm;
calculate g(a,4,t) (Eq.(2));
predict consumption preference (Eq.( 1);
end for
while the loss function of Eq. (6) does not converge do
forusera=1, a<N; a+ + do
update «, using PGD (Eq. (8));
end for
end while
forall (a,i,T + 1) records in consumption test dataset do
calculate f(a,4,T + 1) based on the given CF algorithm;
calculate g(a,i, T + 1) (Eq. (2));
predict consumption preference based on Eq. (1);
end for

Similarly, for the balance vector g in the social link pre-
diction task, we can also formulate a loss function as

T N N o
Z Z[tzb(SZb - Sab)z
1 b=1 )
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Then we could also resort to PGD method to update ,.

Dealing with Data Imbalance. Note that in social link con-
struction process, S!, =0 denotes a missing link between
user a and b. If we consider all missing link records in the
optimization function of Eq. (8), the problem turns to a
highly imbalanced learning problem with much more labels
of 0 than 1. Here, we borrow an effective undersampling
technique. Particularly, for each newly added positive link,
we randomly select m missing links as observed pseudo
negative links with a weight of L at each iteration in param-
eter learning process. Since the sampling process is random
and each time the negative samples change, each missing
link gives very weak negative signal [16], [32].

4.3 Time Complexity

The direct approach is simple and intuitive. In fact, as most
SNS platforms have already implemented the traditional
collaborative filtering and node proximity models (i.e., func-
tion f and h), the time complexity for this model mainly lies
in two parts as shown in Algorithm 1: first calculating the
predicted direct social influence score g and homophily
score [, and then learning the balance parameters. Suppose
there are ¢ non-empty consumption records in consumption
matrix sequence C and s social links in social matrix
sequence S (¢ < M x N,s < N x N), then the average con-
sumption records and social connections of each user are
t. =« and t, = &, which are usually very small in practice.
Specifically, the time complexity is O(cxts) for calculating
function g and O(s xt,) for function /. In parameter learning
process, since we only have two parameters for each user
(i.e., o, and B,), the time complexity is O(N x (t. +t,)) =
O(c + s) for each iteration. Thus the total time complexity of
the direct approach is O(e¢xts+s X t.).

5 LATENT MODELING OF THE EVOLUTION OF SNS

We have already introduced how to model and predict users’
behaviors under the direct representation, where each user’s
two kinds of behaviors are directly represented in the item
space and user space. In the real world SNSs, the user space
and item space are very huge, with hundreds of thousands of
users and items. Given limited social links and consumption
records of each user, the direct approach may suffer from the
cold-start problem: it could hardly calculate reliable direct
social influence strength (Eq. (3)) and homphily effect (Eq. (2))
score if a pair of users share very few common
consumption (social link) records [3]. For example, Alice liked
romantic movies such as Roman Holiday and Titanic, and Bob
evaluated highly for movies Sleepless in Seattle and Notting
Hill. Since they have common latent consumption preferences
for romantic movies, based on the homophily theory, they are
probably like to build social connections in the near future.
Nevertheless, the above direct approach can hardly capture
the homophily effect between them as they did not consume a
common item. Thus, we argue that the interplay between
users’ behaviors may be latent, i.e., each user’s consumption
preference and her social link structure could be depicted by a
small number of latent dimensions. In this section, we pro-
pose a latent approach to model the evolution of users’ behav-
iors. We define the latent modeling approach as follows:

Definition 3 (Latent Modeling). Given the user consumption
matrix sequence C and the social sequence S, the latent model-
ing approach aims to learn a function to map users’” consump-
tion and social behavior into a low-dimensional latent space
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R, D<M, N. Each user u’s consumption behavior and social
behavior at each time t can be represented as a latent consump-
tion vector U' € RP and a latent social vector P'€RP in the
latent space. The goal of latent modeling is to design a model to
learn the latent consumption vectors and the latent social vec-
tors of users, and the solve the problem in Definition 1 based on
the latent representation.

5.1 The Proposed Latent Model

Here,we introduce how to model the evolution of each kind

of a user’s behaviors with the latent representation.
Evolutional Latent Consumption Behavior Modeling. With

the latent representation, for each user a and each item 4,

the predicted consumption preference between them at

time ¢ could be expressed as

N M o
NI(C Up, Vi >,00)]'@, (9)

a=1i=1

=

p(ClU, V) =
t

II
—

where NV (i, 6?) is a normal distribution with mean p and var-
iance o?. Y, is an indicator variable that equals 1 if user a con-
sumes item 7 at time ¢, otherwise it equals 0. U’ € RP*! is the
latent consumption vector of a at time ¢ in user latent matrix
U' and V; € RP*! is the item latent vector in item latent matrix
V € RM*P To model users’ preference changes, we assume
users’ latent matrix vary among time in the above equation.
Thus we can summarize users’ latent preferences into a latent
consumption preference matrix sequence U = [U!,...,
U',...,UT]. Given the limited observed preference data, a typ-
ical approach to avoid overfitting is to add priors to the latent
variables. As traditional matrix factorization models [34], we
add zero-mean Gaussian priors on the item latent matrix

(Vlod) = HN V|0, 2 1). (10)

Now our goal turns to model the evolution of users’ latent
consumption matrix sequence U. As illustrated before, for
each user, both her previous latent consumption preference
and the social influence effect influence a user’s future latent
interest. Since we use the latent representation of users’ con-
sumption interests, we explicitly model the two effects of

each user’s latent interests at time window ¢t = 2,3,...T as
p(U;) = N (U|UL, o3 )
-1
= _ . t—1
where Ul = (1 —aa)UJ™V +au D ﬁzb U an
be\(t b
s.t. VaeU, 0<a,<1,
where s';1 denotes the influence of user b to a at time ¢ — 1.
Fl=% pen (D) st is a normalization constant over all of

a’s friends at time ¢ — 1. This normalization ensures that

ZbeN( )—F,’l = 1. The social influence score s.;' depicts
how similar these two users are in the social space. Since we
also characterize each user with a latent structure factor
P!71, it is nature to enforce users that have similar latent
structure factor with a get larger influence strength scores.

Therefore, we define the influence strength score as

1
< PrL BT >

Spl=e(< PL AT >) = (12)

1+ exp(—
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where e(x) = H#p() is a logistic function that bounds the
influence score in range (0, 1).

At the initial time t=1, the social network has not been
set up yet, thus each user’s latent consumption preferences
are only determined by her own consumption preferences
without any social influence. We assume a zero-mean
Gaussian distribution of users’ latent vectors at that time.
Then we summarize the prior over user latent consumption
matrix sequece as

T
p(Ulot;, 0f) HN (U10, 0%, )H (U0, 0p0).  (13)
=2

Evolutional Latent User Social Behavior Modeling. Each user
a’s link behavior at time ¢ (¢ = 2,3,...7) is also mainly influ-
enced by two factors: the node proximity in the social graph
and the homophily effect between users. For each user a, as
we have her latent social link vector P! and the latent con-
sumption vector U!, we model the link score at time
t=2,3,....,Tas

Sty=0-B)< PP > +8, < UV, U0 >,
st. YaeU, 0<pB,<1,

(14)

where ¢, is the predicted link score between a and b at time
t. In this equation, the link based similarity is computed as
the closeness of their latent structure vectors: P! and P.
Similarly, the homophily effect between them is measured
by the closeness of their latent consumption vectors.

At time slice t=1, no historical user latent consumption
preference is available. We assume the social structure prox-
imity is the only effect that determines the social relationships

S, =< PP > (15)
Given the predicted link score in Eq. (14), the likelihood
of the predicted link value could be modeled as

p(S|U, P,og) = (16)

HN

1

N
ba US)]
t=2 a=1 b=

where Z!, denotes whether a builds a link to b at time ¢.
For each user a, a reasonable assumption is that her latent
structure vector P! varies smoothly over time

p(Py) = N(P|P" ov).

At the initial time slice, no previous users’ consumption
is available and we assume

p(P,)

By combining Eqgs. (17) and (18), the latent social matrix
sequence P has a prior

17

10, 001). (18)

—N(P

N T
=[NP, 02, D) [N (PP o3T). (19)
a=1

=2

p(Plot;, of)

5.2 Model Learning
Given the users’ behavior sequences C' and S, our goal is to
learn the - parameter set & = [U, P, V, a, ], where a = [a,]_,,
p= [,Ba]a 1 Specifically, we have the posterior distribution
over the parameters ® as
p(U, PV, a, B|C, S) o< p(C|U, P, V,)p(S|U, P, B)p(U)p(P)p(V).
(20)
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Fig. 2. The graphical representation of the proposed latent model.

We summarize the graphical representation of the pro-
posed latent model in Fig. 2, where the shaded and
unshaded variables indicate the observed and latent varia-
bles respectively. Given this graphical model, maximizing
the log posterior of the Eq. (20) is equivalent to minimizing
the following objective

T N
min £(®P) —%Z;{ny [t —ct) +/\SZZ }

t=1

1, & _
+390 Y3 % - Uil + 17 = P )
t=2 a=
N

1 M ,
A1 )\mz (UL + PR +5 v D IVl
=1 i=1

s.t. Vaec U 0<a,<1,0<8,<1,
(21)

2
where A\g= 2, )\U:

o2 02

\, )\Ul IU—C and )\V_—g

The Couphng between U, P V' and the balance parame-
ters makes the above loss function not-convex. In practice, a

local minimum could be achieved by performing gradient

descent on each parameter iteratively. Specifically, for each

user a and each item ¢, the derivative of each parameter is

|Q
SIS oY)

T
Vi =Y YL(CL — COUL + A

ar

t—1
Z Sab_ pr(t=1) (t—1)

F[;fl Ub - (]u,
peND ¢

T
—Abzz b Sflb Sib

=2 b=

(22)

(< P;‘*”,Pb("l) > — < Ul Uiy ),
The gradient of user latent consumption vector U! and

user latent structure vector P! are

Vit = ny (R, — ROV + It = WA UM + Z[t > 2\ (UL — UY)
+ (1= @) (U Uy 4y 3 aL U gy
aeN’

N .
+I[t < TIsB, D 25 (S5 — sE ot

b=1
+I[t <T)\§2Zt+1 Svt+1 i+1 )(ﬁ( )

c=1
(23)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.29, NO.6, JUNE 2017

N
Vi =ZI[t=1]Ag Z Z (S,
=1

N
Sttlb)Plf + Z Z(t?a(gia - Sf:a)sz
c=1

N
+As Y ZuN (S = S (- B)P;
b=1

+ s Z Zi M8 = 8= B F
as!
Fzﬁ d;? X U// ab(ZleNf dpt) U”

Trt+1 _ U;Jrl)

+ Ay Z

beN),

O[(;{(Fé - ) 8P1 /t}
+ A Z )

aeN!
+ A P+ AP = PO} + Tt =T — 1A (P
+I[1<t < T—1)\y(2P! — P — pi=h),

(F2)°

UH»l)

(U —

-

(24)

where Z[z] is an indicator function that equals 1 if z is true

and 0 otherwise. The derivative of the “” is
dst
315? = sy (1= )Pt (25)

For the updating step, as there are no constraints on U, P
and V, we can update them directly using Stochastic Gradi-
ent Descent (SGD) method [5]. With the bound constraints
of @, and B, a local minimum can be found by the Projected
Gradient Descent method.

5.3 Prediction

After learning the related parameters ® = [U,V,«, f], the
two goals in the problem definition process can be
answered: (1) the relative contribution of the social influ-
ence and the homophiy effect for the evolution process of
each user’s future consumption and link behaviors can be
directly obtained from parameters « and g. (2) The pre-
dicted behaviors of each user at 7" + 1 are

U(T+1>z(lfaa)*U +aaZs Ul
beNT
T
CIV=U Vim (1 - )+ UL +og Y %Ug v, (26)
beNl
So =08 < PLB > 18U - U

5.4 Time Complexity

We summarize the latent approach model in Algorithm 2.
The time complexity of the latent approach mainly lies in
computing the user latent consumption sequence U, the
user social link sequence P, the item latent matrix V and the
balance parameters. Specifically, in each iteration, the time
complexity is O(NXT xD x(%+%+t, x D)=0(D x (c+
T x D x s)), for both U and P, O(Dx¢) for V, and O(c + s)
for the balance parameters. Thus the total complexity is
O(Dx (c+T x D xs)), which is linear with the records and
the time windows.

6 EXPERIMENTS

In this section, we conduct experiments on two real-world
datasets. Specifically, we demonstrate: (1) the effectiveness
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of our proposed models (Sections 6.2 and 6.3); (2) the effi-
ciency comparison (Section 6.4); (3) understanding on the
balance parameters (Section 6.5); (4) the setting of several
parameters in our proposed models (Section 6.6).

Algorithm 2. The Latent Approach for Behavior Prediction

Input: The consumption sequence C and social link sequence S
Output: The predicted consumption and link preference at
time T'+ 1
Initialize U, V, P, @ and B
while the loss function of Eq. (21) does not converge do
forusera=1, a < N; a++ do
fortimet =1, t<7T, t+=do
Fix P, V,a, B, update U! using SGD ;
Fix U, V, o, B, update P! using SGD;
end for
Fix U, P,V, update o, and g, using PGD;
end for
for producti =1, i < M; i+ +do
Fix U, P, a, B, update V; using SGD;
end for
end while
forall (a,i,T + 1) records in consumption test dataset do
predict consumption preference based on Eq. (26);
end for
forall (a,b, T + 1) records in link test dataset do
predict potential social link score based on Eq. (26);
end for

6.1 Data Description and Experimental Setup

The datasets we used are: the who-trust-whom online prod-
uct sharing dataset Epinions [36] and the location based social
networking dataset Gowalla [39]. In both datasets, we treated
each month as a time window. We filtered out users that have
less than 2 consumption records and 2 social links. After that,
each user’s preference rating is normalized into 0 to 1. Table 1
shows the basic statistics of the two datasets after pruning.
Specifically, in data splitting process, we use the data till time
T for model training, i.e., T=11 (T=3) in Epinion (Gowalla).
Among them, we randomly extract 10 percent of the records
as validation data for parameter tuning. The newly added
behaviors in T+1 are treated as the test data.

In the following, we report the results of our proposed
two models. Particularly, we call the direct approach
introduced in Section 4 as Evolving Direct Consumption
Prediction (EDCP) and Evolving Direct Link Prediction
(EDLP) for users’ two kinds of behaviors respectively, and
the model proposed in Section 5 with latent representation of
users’ behaviors as Evolutional Latent Joint Prediction
(ELJP) that jointly models users’ two kinds of behaviors. To
further validate the effectiveness of jointly modeling users’
two kinds of behaviors with ELJP, we have also devised two
simplified models of ELJP: Evolving Latent Consumption
Prediction (ELCP) and Evolving Latent Link Prediction
(ELLP). Specifically, ELCP leverages the dynamic social net-
work for consumption prediction (i.e.,Ag=0 in Eq. (21)) and
ELLP utilizes users’ temporal consumption preferences for
link prediction (i.e., we do not optimize the first term in
Eq. (21)). There are several parameters for these models. The
latent dimension is set as D =10 in ELJP. We set the regulari-
zation parameters as Ag = 0.3, A\yy = Ay = 0.1. The user reg-
ularization parameter )y is set to be 5 in Epinions and 1 in
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TABLE 1
The Statistics of the Two Datasets
Dataset Epinions Gowalla
Users 4,630 21,755
Items 26,991 71,139
Time Windows 12 4
Training Consumptions 62,872 278,154
Training Links 75,099 251,296
Test Consumptions 2,811 52,448
Test Links 3,257 6,254
Consumption Density 0.050% 0.018%
Link Density 0.35% 0.053%

Gowalla. Also, we call the model proposed in our previous
work [42] as Evolving Joint Prediction for consistency. Users
could refer to our previous work for more details of EJP [42].

6.2 User Consumption Preference Prediction
We compare consumption prediction results with:

e PMF: PMF tried to project users and items into the
same low latent space by mining the sparse con-
sumption matrix [34].

e TMF: This model extended static collaborative filter-
ing models by capturing the evolving nature of
users’ preferences over time [44].

e SocialMF: This model belongs to social-based recom-
mender system. Specifically, the authors incorpo-
rated the social influence effect for users’ preference
modeling [15].

e ContextMF: ContextMF utilized the social contextual
information and summarized the knowledge as the
individual preference and interpersonal influence
for recommendation [20].

e SAN: This method augmented the social network
structure and node attributes into a social-attribute
network to perform both link prediction and attri-
bute inference. Particularly, we treat the items that
each user consumes as the attributes of this user [13].

e FIP: This method jointly modeled users’ preference
and social link prediction in a unified frame-
work [45]. Specifically, FIP defined a shared static
latent factor that showed both a user’s consumption
preference and the link behavior [45].

For better illustration, we summarize the details of these
models in Table 2. We adopt the widely used Root Mean
Squared Error (RMSE) as the evaluation metric for rating
prediction precision comparison [34], [44]. There are several
parameters in these baselines, for fair comparison, we care-
fully tuned these parameters in the validation set to ensure
the best performance. In our proposed direct consumption
prediction model EDCP, we need to determine the f func-
tion that adopts traditional collaborative filtering technique
to predict users’ future consumption behavior. As both the
baseline of PMF and TMF are valid for the f function, we
choose the best result among these two baselines.

Fig. 3 shows the experimental results of various models on
the test data with the varying parameter of the latent dimen-
sion size D on both datasets. There are several observations.
First, TMF, SocialMF and ContextMF perform better than
PMF, indicating the effectiveness of incorporating the
time and social network information for user preference
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TABLE 2
Characteristics of the Baselines, with C and S Denote
the Consumption and Social Link, Respectively

Data Source Prediction?

S Time

Model Evolution

S Explanation?

PMF [34]

TMEF [44]
SocialMF [15]
ContextMF [20]

X X <X

X X X X

AA [2]
CMF [9]
hTrust [40]

X X

XXX L <[ O

X < X

SAN [13]
FIP [45]

EJP [42]
EDCP
EDLP
ELCP
ELLP
ELJP

L[ [ X X[ [ O
L[ x X
LX< [ X X x X

X LU X X

L[ x X
L[ x X

prediction. However, SAN does not perform well on this task.
We guess a possible reason is that the consumption data is
extremely sparse for both datasets, thus directly transforming
the items users consume into the attributes would not pro-
duce good results. Second, among our proposed models,
ELCP generates better result than EDCP, showing it is more
effective to use latent representations to model user behavior.
Also, ELJP always performs the best. This shows it is effective
to jointly model users’ two kinds of behaviors from an evolu-
tional perspective. Furthermore, as EJP only modeled user
latent consumption vector without any latent social represen-
tation, the results between EJP and ELJP demonstrates that it
is more effective to jointly model user latent consumption vec-
tor and latent social vector. Last but not least, as the latent
dimension increases, the performance improvement for all
latent-based models is significant from D=5 to 10, and this
improvement changes slowly after the latent dimension fur-
ther increases. Given this observation, we set D =10 in the fol-
lowing experiments.

6.3 Social Link Prediction
We report link prediction results with:

e AA: The Adamic/Adar metric is a ¢ neighborhood-
based unsupervised measure for link prediction [2].

e CMEF: This temporal link prediction model collapsed
multiple time series data into a single matrix, and
then considered using matrix factorization based
methods for predicting future links [9].

e hTrust: This proposed link prediction model
exploited the homophily effect in link prediction via
homophily regularization [40].

e SAN: This method augmented the social network
into a social-attribute network to integrate network
structure and node attributes to perform both link
prediction and attribute inference [13].

e FIP: This method jointly modeled users’ preference
and social link prediction in a unified framework [45]

In link prediction task, our goal is to rank the potential

linked users. As the user size is huge, it is impractical to
take all users as candidate friends. Thus we adopt a similar
approach that has been accepted by many works [22], [45]:
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for each test user a, we randomly sample 100 negatively
linked users that are not connected to her till the test time
window. Then we mix those positively linked users and the
sampled negatively linked users together to select the top
potential linked users of each test user. This process is
repeated 10 times and we report the average results of all
metrics. Particularly, we adopt three widely used top-n
ranking metrics: precision, recall, and F1 measure, where n
denotes the size of the link prediction list [40], [45]. We set
n =5 as it is useless to recommend too many friends, also,
most online social networks adopt a similar number of
potential friends for recommendation. In our direct link pre-
diction model EDLP, we need to determine function A that
predicts users’ future link behavior based on the social net-
work. Here, we choose the best outputs from AA and CMF
since these two baselines only utilize the social link struc-
ture for link prediction.

Figs. 4 and 5 show the comparison metrics of these link
prediction models on the two datasets. The latent dimen-
sions are set to be D = [5,10, 15, 20]. Based on the results of
the two datasets, AA performs better than CMF on Epinions
data while CMF has better performance on Gowalla data.
We guess a possible reason is that the Epinions data is much
denser than the Gowalla data (i.e., 0.35 percent compared to
0.053 percent as shown in Table 1), thus the AA baseline can
find more reliable potential social neighbors based on the
denser social link structure. The hTrust baseline performs
better than all purely link-based models and our proposed
direct model EDLP has comparable results to hTrust, show-
ing it is effective to leverage the homophily effect for link pre-
diction. The comparison between our proposed models have
similar trends as the results of consumption prediction. Par-
ticularly, the performance improvement of ELJP is signifi-
cant over all other models. On average, the F'1 measure
improvement of ELJP over the best baseline is about 30 per-
cent on Epinions and 20 percent on Gowalla. Note that
besides n = 5, we have also measured the link prediction
performance with other values of n (from n =1 to n = 20)
and we found the overall trend is the same. Therefore, we do
not report the detailed results at other settings of n. These
results empirically validate it is reasonable and effective to
jointly model users’ consumption and link behaviors with
latent representations from an evolving perspective.

Given the prediction results of the user consumption
behavior and social link behavior, we conclude that the
social network information and the user consumption
behavior are mutually helpful, thus jointly modeling them
from an evolving perspective would benefit both tasks.
Among our proposed models, the ELJP always have the
best performance. Compare ELJP with our proposed direct
models, we conclude that it is more effective to model the
evolution of users’ behaviors with latent representations
than direct representations. As the EJP> model only represent
the user with latent consumption vector while ELJP repre-
sents each user with a latent consumption vector and a
latent social vector, the results empirically demonstrates
that ELJP has better predictive power.

6.4 Computational Performance

Also, we compare the computational performance of all
models. For fair comparison, we run all algorithms on the
same platform. Since most algorithms need to iteratively
calculate the parameters in each iteration, we list both the



WU ETAL.: MODELING THE EVOLUTION OF USERS’ PREFERENCES AND SOCIAL LINKS IN SOCIAL NETWORKING... 1249
0.29
B PVF I PVIF
I T™F 0.33F I TMF
I SocialMF ' I socialMF
w [ ContextMF w [ ContextMF
D 08 Err %] Erp
Z" saN 2 | [EsAN
Eeoce 0-32 [ebce
[eLce [JELcP
CJesr e
[ Jewp [ JEwpP
0.27 0.31
5 10 15 20 5 10 15 20
Latent dimension K. Latent dimension K.
(a) Epinions (b) Gowalla
Fig. 3. The overall comparison results of consumption prediction. The smaller the RMSE value, the better the prediction result.
0.3
0.35
c
ke] =
2025 $ 025 T 02
o 4
o
0.15
0.15 0.1
5 10 15 20 5 10 15 20 5 10 15 20
Latent dimension K Latent dimension K Latent dimension K
[ AA I cvF I hTrost [ FIP I SAN [JepLp CJELLP _JEJP [_JELJP]
Fig. 4. The overall link comparison results on Epinions dataset. For all ranking metrics, the larger the value, the better the performance.
0.28
0.2
c
Re]
2 — 0.24
3017 L
a
0.14 02
5 10 15 20 ' 5 10 15 20 5 10 15 20
Latent dimension K Latent dimension K Latent dimension K
[ A~ I cvF I nTrust I FiP [ saN [CeoLp CJeLLp [_JEsp [_JELSP]
Fig. 5. The overall link comparison results on Gowalla dataset. For all ranking metrics, the larger the value, the better the performance.
TABLE 3
The Runtime of All Models (Min.) (For Each Dataset, the First Horizontal Line Shows the Runtime
of Each Iteration and the Second Line Displays the Total Runtime)
Consumption Models Link Models Joint Models
Dataset Time
PMF TMF SocailMF ContextMF SAN EDCP AA CMF hTrust SAN EDLP FIP EJP  ELJP
Epinions Each 012 0.26 0.16 0.15 / 0.01 / 0.26 0.19 / 0.01 019 079 13
P Total 14 27 17 19 12 32 45 22 27 49 61 20 84 140
Gowalla Each  0.68 1.1 0.8 0.9 / 0.08 / 0.84 0.98 / 0.08 1.5 135 5.02
Total 72 114 84 97 43 119 1750 84 100 1930 146 150 142 510

runtime of each iteration and the total runtime in Table 3.
We set the iterations of all latent based models to be 100 as
most algorithms’ results converge after this number of itera-
tions. As can be seen from this table, for consumption pre-
diction models, in each iteration, the EDCP costs the least
time as it only needs to calculate the balance parameters
(Algorithm 1). PMF ranks the second as it is a base latent
model for user consumption prediction. Compared to PMF,
TMF and SocialMF need more runtime by adding the time
and social network information. ELJP costs the most run-
time in each iteration compared to the remaining models.
With regard to the total runtime, the main time cost of our
proposed EDCP model lies in calculating the direct social

influence function g with limited consumption data. As the
consumption data is usually very sparse, the total runtime
of EDCP is still much less than ELJP. The similar runtime
comparison can be also found in link prediction results,
with CMF has the least time cost. On average, ELJP has as
much as 7" times computational cost as the baselines such as
SocialMF and hTrust. The reason is that ELJP needs to com-
pute each user’s latent consumption vector and latent social
vector at each time slice, thus the time complexity is propor-
tional to the time slices 7" as analyzed in Section 5.4. Given
both the effectiveness and efficiency of the proposed mod-
els, we argue that our proposed direct model (EDCP and
EDLP) has less time cost and comparable performance



1250

0.30 60

—%—PMF
—+—TMF
—#— SocialMF
—%—FIP
—©—-EDCP
EJP
—O—ELCP

40

.
i/

20

Avg. Num. of Consumptions

0 Low Middle High
Social Influence.

Low . Middle High
Social Influence.

(a) Epinions

40
—»—PMF

——TMF
—k— SocialMF
—#—FIP
—©—EDCP

\ EJP
0.32 ¢—ELcp

0.33%

20

RMSE

0.31

Avg. Num. of Consumptions

0 Low Middle High
Social Influence.

Low . Middle High
Social Influence.

(b) Gowalla

Fig. 6. The overall consumption performance over different social
influence.

while the proposed latent based models (EJP and ELJP)
have much better performance than all baselines at a cost of
runtime. But as discussed before, the complexity of ELJP is
still linear with the number of consumption and social link
records. Thus for real-world applications, we could train
ELJP offline, and store the consumption and link predic-
tions based on the output of ELJP in the server. Then in the
online stage, users could get real-time predictions by
retrieving the predictions from the server, which is time-
efficient and can be applied to real-world SNSs.

6.5 Analyzing the Balance Parameters

Our proposed models can capture each user’s unique pref-
erence for balancing the social influence and the homophily
effect for her future decisions, i.e., «, and B, of each user a.
We next study the relationship between the balance param-
eters and the prediction results. Particularly, as our pro-
posed latent model ELJP has better performance than the
proposed direct models, we analyze the balance parameters
learned from ELJP. Specifically, we bin users into three
equally sized groups according to the social influence effect
value «,, i.e., each user is grouped into the low, middle or
high social-influence group. Then we compare the user con-
sumption prediction results of each group in Fig. 6. On both
datasets, nearly all models show the best performance on
users that belong to middle social-influence group. And the
low social-influence group usually has the worst perfor-
mance among these three groups. To further investigate the
reasons why this phenomenon happens, we depict the aver-
age number of consumption records on each group of users
in the right part of the figure. On both datasets, the low
social-influence group has the average largest number of
consumption records, followed by the middle social influ-
ence group. The high social influence group has the least
number of consumption records. On average, each user that
belongs to the high social influence group only has 3.95 and
7.11 consumption records on Epinions and Gowalla respec-
tively. These findings help us to explain a possible reason
for the experimental discovery. If a user has very few con-
sumption records, she is probably inexperienced and likely
to be influenced by her social friends, leading them belong

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,

VOL.29, NO.6, JUNE 2017

0.30f 75
; —— AA n
——CMF <
—#—hTrust -
e A FIP X 5 50
L 020f |-e-EDLP £
ELP 3
——ELCP 555
D >
4 <
0.10,
Low Middle Higl Low Middle High
Homophily Effect. Homophily Effect.
(a) Epinions
0,31\ 60
v AA "
——CMF =
—4—hTrust 3 40
0.25[ |——FIP [ k]
T +\ E
ELP
——ELCP R i 20
0.15 z
¢ 0
Low Middle High Low Middle High
Homophily Effect. Homophily Effect.

(b) Gowalla

Fig. 7. The overall link performance over different homophily effect.

to the high social-influence group in our proposed latent
model ELJP. Furthermore, the consumption prediction per-
formance of this high social-influence group is low as ELJP
does not have enough data to learn a user’s consumption
preference. On the contrary, as users have consumed more
items, they are experienced in making consumption deci-
sions with less influence from their social friends. The effec-
tiveness on preference prediction also increases from high
social-influence group to middle social-influence group as
ELJP enjoys more consumption records to learn users’ pref-
erences. Nevertheless, the performance decreases from the
middle social-influence group users to the low group. A
possible reason is that users with more consumption
records usually have consumed some infrequent items, thus
are harder to predict. In fact, this decreasing trend of users
that have too many consumption records has also been dis-
covered by Wang et al. [41].

We also use similar techniques to group users into low,
middle and high homophily groups according to the homo-
phily effect value g, i.e., users in the low homophily groups
have the smallest homophily values learned from ELJP.
Fig. 7 shows the link prediction results of all models and the
average link records under different groups. We choose F'1
for the link prediction performance measure as it balances
the measures of precision and recall. From Fig. 7, the corre-
lation between the homophily values and the number of
links has a similar trend as the social influence groups, with
users of larger homophily effect values usually have less
training records. The overall link prediction results for
nearly all models increase as the homophily values
decrease, as users in the low homophily group usually have
more training records in model learning process.

6.6 Parameter Setting

Parameters in the Direct Model. In the proposed direct models
of EDCP and EDLP, there are two parameters: the tradi-
tional collaborative filtering function f and social link pre-
diction function h. In Tables 4 and 5, we show the
performance of EDCP and EDLP with different base func-
tions of f and h. As can be seen both tables, the direct pre-
diction results perform better than the base functions. This
suggests the advantage of the proposed direct models
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TABLE 4
The RMSE Measure on EDCP over Different
Collaborative Filtering Models

Dataset Base model fe2e EDCP Improvement
Eoini PMF 0.2824 0.2779 1.59%
prnions TMF 02810  0.2765 1.60%
c 1 PMF 0.3270 0.3240 0.93%
owalla TMF 03225 03185 1.24%

TABLE 5

The F'1 Measure on EDLP over Different Link Prediction Models

Dataset Base model h EDCP Improvement
Eoini AA 0.1673 0.1845 10.28%
piions CMF 0.1444  0.1592 10.24%
Gowalla AA 0.2006 0.2169 7.51%
CMF 0.217 0.2362 8.84%

compared with traditional consumption prediction and link
prediction models. Also, the final prediction performance
heavily relied on the choice of the base functions. The better
performance of the base functions, the better final predic-
tion results of the direct models. This finding is quit
intuitive as both functions are integral parts of the final pre-
diction results (as shown in Eqgs. (1) and (4)). Nevertheless,
due to the different characteristics of the two datasets, the
best traditional baseline varies for different datasets. E.g., as
shown in Table 5, the best traditional link baseline is CMF
for Epinions and AA for Gowalla dataset. In summary, in
order to get the best performance of our proposed direct
models, we need to choose the best traditional model that
suits the current data.

Parameters in the Latent Model. There are four parameters
in our proposed latent model ELJP: Aiy, Ay, Ag and Ap.
These parameters are important but not difficult to tune.
Among them, A1 and Ay are the regularization parameters
of users’ latent factors at time 1 and the item latent factor.
Since these two parameters have a similar form as the tradi-
tional PMF model [34], we tune them on PMF and set them
under the setting of the best performance on PMF. Thus we
do not report the detailed setting of these two parameters.
In the following, we report the setting of the remaining two
parameters. Particularly, we choose the RMSE measure and
F1 measure to evaluate the performance of these two tasks.

The setting of Ag is shown in Fig. 8. For each g, we initial-
ize ELJP with random values, and stop model learning when
either prediction task performance begins to decrease. In this
figure, as Ag increases from 0.1 to larger values, the overall
trend is that the consumption performance decreases while
the link performance increases as we put more weight on the
social network information. Please note that both behavior
prediction performance increases as we set Ag from 0 toa 0.1.
We explained it before as there are mutual relationship
between users’ behaviors, thus jointly modeling them would
have better results. Given the results, setting \g in a reason-
able range would balance these two prediction tasks, e.g., Ag
in [0.3, 0.5] in Epinions and [0.10.3] in Gowalla.

Au regularizes users’ latent preference change over time,
Fig. 9 gives the performance with varying parameters of \y.
We observe that the values of Ay impacts both behavior pre-
diction results. As Ay increases, the performance of both
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prediction results increase at first, but when Ay surpasses 5
in Epinions and 1 in Gowalla, the performance of the pre-
diction results of both tasks decrease. Given this observa-
tion, we set A\y = 5 in Epinions and Ay = 1 in Gowalla data.

Parameter of temporal snapshots T. An important character-
istic of our proposed problem is that it captures the tempo-
ral evolution of SNSs to model users” behaviors. To show
the benefits modeling the temporal dynamics, we change
the temporal snapshots size 17" and compare the results. Spe-
cifically, we use the last snapshot as the testing data and treat
the previous 7" snapshots for training. We choose ELJP as a
representative of our proposed models since it achieves the
best performance. Fig. 10 gives the performance with vary-
ing parameters of 7" on the ELJP model. Note that since we
only have 4 snapshots of Gowalla data, the maximum 7'
equals 3 on this dataset. As can be seen from this figure, on
both datasets, as 1" decreases, the consumption prediction
performance and the social link prediction performance
decrease. This observation results empirically shows the
benefits of modeling temporal evolution of SNSs. As we add
more temporal snapshots of SNSs, we could better capture
the evolution of SNSs and make better prediction results.

7 CONCLUSION

We provided a focused study on understanding and model-
ing users’ temporal behaviors in SNS platforms. Particu-
larly, we proposed two representations to depict the
evolution of users’ temporal behaviors in SNS platforms: a
direct representation that presumes users’ behaviors are
represented directly by their historical behaviors and a
latent representation that assumes users’ behaviors are
encoded latently from the observable behaviors. For each
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representation, we associated users’ two kinds of behaviors
with two time-variant vectors. Furthermore, for each repre-
sentation, we provided the corresponding models to incor-
porate the underlying social theories for users’ evolving
behaviors, where the social influence and homophily effect
for users’ behaviors are clearly quantified. Thus our pro-
posed models have both the predictive power and the
explanation ability from an individual perspective. Experi-
mental results validated that the users” preferences and the
social network information are mutually helpful, thus
jointly modeling them would benefit both user consump-
tion prediction and the social link prediction task. In the
future, on one hand, we would like to follow this direction
and explore how to build a more effective SNS platform
based on our findings. On the other hand, as users’ behavior
data comes from time to time, how to incrementally update
our proposed models to apply it in the real world SNSs is
another interesting research direction.
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