
Systematically Testing Background Services of
Mobile Apps

Li Lyna Zhang?‡, Chieh-Jan Mike Liang‡, Yunxin Liu‡, Enhong Chen?
?University of Science and Technology of China, China ‡Microsoft Research, China

Abstract—Contrary to popular belief, mobile apps can spend a
large fraction of time running “hidden” as background services.
And, bugs in services can translate into crashes, energy depletion,
device slow-down, etc. Unfortunately, without necessary testing
tools, developers can only resort to telemetries from user devices
in the wild. To this end, Snowdrop is a testing framework that
systematically identifies and automates background services in
Android apps. Snowdrop realizes a service-oriented approach
that does not assume all inter-component communication mes-
sages are explicitly coded in the app bytecode. Furthermore, to
improve the completeness of test inputs generated, Snowdrop
infers field values by exploiting the similarity in how devel-
opers name variables. We evaluate Snowdrop by testing 848
commercially available mobile apps. Empirical results show that
Snowdrop can achieve 20.91% more code path coverage than
pathwise test input generators, and 64.11% more coverage than
random test input generators.

Index Terms—App background services, test input generation,
Android Intents

I. INTRODUCTION

While significant efforts have been invested in profiling the
mobile app foreground activities [1], [2], [3], [4], we argue
that proactively gaining visibility into app background services
is equally important. Surprisingly, mobile apps can spend a
significant fraction of time running hidden as background
services [5]. Services can continue to run even after the
associated app exits, e.g., pressing the home button on the
mobile device or turning off the screen.

Services typically handle three types of operations on behalf
of the app: (i) periodic app state refresh, (ii) server notifi-
cations, and (iii) long-running tasks that do not need user
interactions (e.g., music playing and geo-location tracking).
Surprisingly, Chen et al. [6] reported that apps can consume
a significant amount of energy in the background – 45.9%
of device battery drain are during the screen-off time, and
28.9% are due to apps with frequent background services.
Rosen et al. [7] showed that ∼30.0% of network traffic are due
to background services. Furthermore, background services can
exhibit sensitive behaviors such as collecting location data [8].

In this work, we argue that proactively testing background
services can benefit from systematically automating through
the service life cycle. And, such testing can complement the
foreground UI testing that many app developers are already
doing. This is different from passive measures against misbe-
having services – many user-centric tools focus on limiting
background services at run-time [9], [10], [6], [11], and other
approaches wait and collect telemetries from user devices

in the wild [5]. These tools are passive measures against
misbehaving services, and should not replace app testing.

Current app testing tools are mostly for UI testing, and
they do not consider background service’s unique execution
model. First, services are “hidden” and not user-interactive,
so there is no guarantee that they are reachable through
any means of UI automation. Instead, developers typically
rely on passing system-level inter-component communication
(ICC) messages, or Intents, to start services. While our testing
scenario seems applicable to related efforts in inferring Intent
payloads [12], they strongly assume all Intents are explicitly
coded by the developer. Furthermore, many efforts cannot
reasonably infer valid values for arbitrary developer-specified
fields in Intents [13], [14], [15], [16], [17].

To this end, we present Snowdrop – a developer-facing
fuzzing framework that systematically discovers an app’s
hidden services and automates their lifecycle to cover all code
paths. Conceptually, Snowdrop generates a more complete
set of test inputs, by considering both trigger inputs and
execution inputs. Taking advantage that most app packages
are in bytecode that can be decompiled into intermediate
representations, Snowdrop can perform static analysis without
any developer overhead. Snowdrop addresses the following
challenges in achieving the testing coverage.

First, to test all services of an app, Snowdrop realizes the
service-oriented approach that generates test inputs by first
localizing all services. This is different from the ICC-oriented
approach [12] that simply identifies Intents coded in the app
bytecode. In fact, if developers opt implicit Intents in their
apps, the ICC-oriented approach can have a lower testing
coverage as the target service of an implicit Intent is decided
by the OS at run time. Furthermore, empirical results show
that UI monkey testing has limitations in that ∼50.32% of
services cannot be triggered by UI invocations.

Second, for the completeness of test inputs generated, we
aim to infer developer-specified fields in Intents, e.g., extras
key-value pairs. Since these fields can syntactically take arbi-
trary values, challenges arise from selecting a value that has
the appropriate semantics from the vast solution space. While
related efforts generate random test inputs or assume that
all relevant value assignments are in the bytecode, Snowdrop
exploits the similarity in how developers name variables. Our
heuristic extends text classification with feature vector [18]
from the natural language processing (NLP) community.

Third, to exercise all code paths of each identified service,
Snowdrop generates execution inputs that include return values

978-1-5386-2684-9/17 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Technical Research

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

4

of system APIs. We argue that the low complexity of typical
app services suggests that the proven pathwise test data
generation [19] is feasible. Furthermore, since each hardware
and system component can have a set of corresponding APIs,
Snowdrop maintains finite-state models to ensure consistency
across generated execution inputs.

We summarize our contributions as follows. This paper
motivates the need to proactively test app background ser-
vices, and lays the necessary foundation – a whitebox testing
framework for background services. We address challenges in
building a such framework, and implement an up-and-running
system. Empirical results and case studies from 848 popular
Android apps support Snowdrop’s potential and practicality.
Without human inputs, Snowdrop can achieve 20.91% more
service code path coverage than existing IC3-based pathwise
test input generators, and 64.11% more coverage than random
test input generators. Finally, Snowdrop reported crashes on
12.05% of background services in our app pool, and we share
our investigation findings in case studies.

II. BACKGROUND

This section highlights hidden impacts of services on user
experience, and describes unique properties of services that
testing needs to consider.

A. Hidden Impacts of Services

Several measurement studies have tried to quantify previ-
ously unaware impacts of services on user experience.

Chen et al. [5] studied the telemetry of energy consumption
of 800 Android apps on 1,520 Galaxy S3 and S4 devices.
They found that 45.90% of device battery drain are during
the screen-off time (i.e., only background services are run-
ning). For 22.5% of apps, the background energy expenditure
accounts for more than 50% of the total energy.

Lee et al. [20] reported app processes can spend 16×
more time in the background than being in the foreground.
In fact, many apps periodically generate network usage in
the background, regardless of user activities. For example,
Facebook was observed to initiate network traffic every 20
minutes. Furthermore, Rosen et al. [7] looked at 342 apps,
and noticed that up to 84% of the total network-related energy
consumption happen in the background.

B. Android Background Services

Services are suitable for operations that do not need user
interactions. Depending on the scenario, developers can choose
one of the three interfaces – BroadcastReceiver handles short-
running tasks (less than 10 seconds), Alarm implements time-
based triggers for short operations, and Service is suitable for
long-running non-interactive tasks. Since Service has a larger
impact on the app performance and resource consumption, this
paper mainly focuses on this type of background services.

Lifecycle. Since it is not easy to visually observe the life-
cycle of services, their behavior might not be as expected.
In Android, service can be further categorized into being
unbounded and bounded. While both can be started at any

TABLE I
MANY TYPES OF SERVICE-TRIGGERING SYSTEM EVENTS CANNOT BE

ACCOMPLISHED WITH ONLY UI AUTOMATION. THESE CASES ACCOUNT
FOR 50.32% OF INSTANCES IN OUR POOL OF 848 APPS.

(a) Reachable through UI

Event trigger %
Event callbacks 19.18
App launch 12.74
UI invocation 8.84
App pause 8.91

(b) Unreachable through UI

Event trigger %
Broadcasts 25.69
ICC from services 13.43
App resume 7.57
Timer 3.63

time, unbounded service can actually continue running beyond
the app’s visually-perceivable lifecycle (rather than until the
app exits). We elaborate on the lifecycle of unbounded services
next.

While the code to start services depends on the category
of service used, the general idea is similar – inter-component
communication (ICC), or Intents. For unbounded services, the
Intent is sent through the startService method. As we
describe in the next subsection, Intents can have arbitrary
payloads as defined by the developer. Therefore, determining
the proper payload for fuzzing is crucial. In addition to running
to completion (e.g., stopService or stopSelf method),
service can also be forced to terminate by the operating
system’s Low Memory Killer (LMK). The developer needs to
properly handle the premature termination to avoid any state
loss (e.g., onDestroy method).

ICC Messages (Intent). The Intent contains six fields specify-
ing the delivery of an inter-component communication (ICC)
message – (1) component: the target component name,
which can be explicitly specified by a string of full-qualified
class name, or can be an abstract action whose target compo-
nent is implicitly decided by the OS at run time. Therefore,
Intents can be explicit and implicit by distinguishing whether
specifying the component. (2) action: a string to implic-
itly indicate the action to perform, (3) uriData: a Uri object
expresses the data to operates on for the target component ,
(4) datatype: a string indicates the type of the uriData,
(5) category: a string represents the additional information
about the action to execute, (6) extras: consists of pairs of
extras.key and extras.value, i.e., key-value pairs for
storing any additional information. extras.key is of string
type, and extras.value can take arbitrary type.

III. GAPS OF EXISTING TESTING TOOLS

A. Limitations of UI Monkeys

UI monkeys automate an app by invoking one UI element
at each step. While UI event handlers can send Intents to start
services, not all services are programmed to be triggered in this
way. Fig. 1 shows an example of this case where Service1
is indirectly triggered by a timer. To quantify this limitation of
UI monkeys, we looked at our pool of 848 popular apps, and
we counted the number of services whose startService
methods are detected in UI handlers. Table I suggests that
∼50.32% of services are not reachable through UI invocation.

5

Fig. 1. Not all Intents are explicitly coded. UI starts Service1 with
an alarm, and Service2 is started by an implicit Intent. Being service-
oriented, Snowdrop ensures the testing coverage without worrying any implicit
redirection by the OS.

B. Limitations of Intent Inference Tools

As the ICC message is the direct way to start Android
background services, ICC-oriented approaches try to localize
all Intents explicitly coded in the app bytecode, and infer field
values for these identified Intents based on some heuristics. As
this subsection discusses, with respect to automating services,
the testing coverage of these ICC-oriented approaches depends
on two factors: (1) the number of Intents identified, and (2) the
correctness of field values inferred, especially for developer-
specified Intent fields (e.g., extras).

First, localizing all Intents explicitly coded in the app
bytecode can have low testing coverage. As Fig. 1 illustrates,
Android services can be triggered by implicit Intents [21].
And, implicit Intents introduce the uncertainty of which ser-
vices are actually called by the OS at runtime. We quantify
this coverage of automating services with IC3 [12]. Since all
runnable background services need to be declared in the app
manifest file, we use the manifest file as the ground truth
(and remove dummy declarations not implemented). Empirical
results show that Intents IC3 can find correspond to only
83.22% of services in our app pool of 848 popular apps.

Second, many Intent field inference heuristics do not con-
sider the field semantics (e.g., URL, city name, geo-location
coordinates). Since developer-specified fields such as extras
can syntactically take arbitrary values, challenges arise from
selecting the appropriate value from the vast candidate space.
Some tools simply rely on developers to provide most test
inputs [14]. To reduce the manual effort, random test input
generators generate random Intent field values [13], [15], [16],
[17]. While random generators have a low complexity, it does
not guarantee test input quality.

Fig. 2. Architectural overview of Snowdrop: (1) analyzing decompiled app
bytecode to generate test inputs with CodeMiner, and (2) automating services
with ServiceFuzzer.

IV. SYSTEM OVERVIEW AND ARCHITECTURE

Snowdrop tackles the challenges of generating test input
data necessary to exercise all code paths of every service in an
app. This section discusses two major aspects in the design of
Snowdrop: what test inputs are necessary, and how these test
inputs can be automatically generated. These two questions
impact the overall testing coverage.

Each test case (c.f. Def IV.1) maps to one code path of a
service, and it contains service trigger inputs (c.f. Def IV.2)
and service execution inputs (c.f. Def IV.3). The former is
necessary to properly start a service, and it includes (i) service
name and (ii) control dependencies among services. The latter
dictates the control flow of service execution, and it includes
(i) Intent fields (e.g., extras) and (ii) return values of system
APIs called. Each code path of every service would have one
set of trigger inputs and execution inputs.

Definition IV.1. A test case contains one instance of service
trigger input and service execution input. Each case maps to
one code path of a service.

Definition IV.2. We define a service trigger input as {c,
{cDen1, ..., cDenn}}. c is the name of background service.
cDens are services that can send Intents to start this service.

Definition IV.3. We define a service execution input as
{Intent, API1, API2, ...}. Intent is (p, p.v), where p and
p.v represent a pair of Intent field and value, respectively. Let
API be (a, a.v), where a and a.v represent a pair of system
API and return value, respectively.

Fig. 2 illustrates the system architecture. The developer
submits compiled app packages. Since mobile app packages
are typically in intermediate representations (e.g., Java byte-
code), Snowdrop decompiles app bytecode to get readable
bytecode, manifest and configuration files. Then, as this
section elaborates next, the CodeMiner module uses static
analysis to generate both trigger inputs and execution inputs.
ServiceFuzzer takes the generated inputs to dynamically test
individual background services.

CodeMiner. Unlike the ICC-oriented approach that assumes
all Intents are explicitly coded in app bytecode, Snowdrop
opts a service-oriented approach to generate test inputs –
it localizes the code block of individual services, and then
statically analyzes how these services access Intent fields.

CodeMiner takes three main considerations. First, there can
be control dependencies among services, i.e., one service starts

6

another service and may pass data as Intent values (c.f. §V).
Second, generating execution inputs requires CodeMiner to
look at each code control path in the service, and CodeMiner
grounds on the proven pathwise approach [22] and constraint
solving (c.f. §VI). Although the pathwise approach has been
shown to scale poorly with respect to the code complexity, it
is practical for testing app background services as they have
a much lower complexity – an average of 8.6 code paths
per service. Third, values of Intent fields can be arbitrary
strings (e.g., uriData and extras), which complicates
value inference without knowing the field semantics. For
instance, the developer can store the video URL in extras.
Therefore, CodeMiner adopts a heuristic that leverages the
similarity in how developers name variables (c.f. §VI-A).

ServiceFuzzer. For individual instances of test inputs gener-
ated, ServiceFuzzer injects crafted explicit Intents (with off-
the-shelf tools such as the Android Debugging Bridge), and it
manipulates system API call return values (with off-the-shelf
tools such as Android Xposed [23]). If the service dependency
graph indicates that a service can be started by another service,
then ServiceFuzzer does not try to directly automate it.

ServiceFuzzer takes two additional considerations (c.f.
§VII). First, a testing session terminates when either the ser-
vice finishes execution, or the developer-specified termination
condition is met. Second, since Android does not provide per-
formance counters at per-thread level, disaggregating counters
is necessary to extract per-service information.

V. SERVICE TRIGGER INPUTS GENERATION

This section discusses techniques that CodeMiner uses to
generate service trigger inputs.

A. Variable Assignment Analysis

Variable assignment analysis is an information flow analysis
to keep track of how a value is passed from variables to
variables. In the case of Snowdrop, it identifies variables in
the code that originate from either Intent fields or system
API return values. Specifically, given a variable in the code,
CodeMiner starts backward analysis on each line of code
from that point. And, it marks variables that have assignments
leading to the target variable.

For Android apps, variable assignments can happen in
four main places: (1) the variable is assigned somewhere at
the caller method, and passed as an method argument, then
CodeMiner would search all the call methods for the value.
(2) the variable is assigned as a return value of a callee method,
then CodeMiner would search the callee method for the
returned value, (3) the variable is a class field variable, which
is assigned somewhere within the class scope. CodeMiner
analyzes the DFG (Data-Flow Graph) to search the field for
the last time assigned, (4) the variable is assigned within the
method scope.

B. Service Dependency Graph Construction

In the service dependency graph, each node represents a ser-
vice, and directed edges indicate the caller-callee relationship

TABLE II
PERCENTAGE OF SERVICE DEPENDENCIES THAT CAN SUCCESSFULLY

START BACKGROUND SERVICES.

Service caller Num services (%) Success rate (%)
App on-launch 15.52 94.88
BroadcastReceiver 31.51 92.72
Service 16.41 90.06

(i.e., the source node can send Intent to start the destination
node). If a service can be started by another, Snowdrop can
save time by not directly automating it. We note that false
negatives in capturing the dependency do not impact the
testing coverage, as Snowdrop will automate any service with
no known dependency.

Discover Background Services (c). The number of back-
ground services that CodeMiner can find for subsequent test
input generation impacts the overall testing coverage. Since
all runnable background services need to be declared in the
app manifest file, CodeMiner parses the Android manifest
file to list all background services of an app. However,
it is possible that the developer declares services that are
never implemented. To filter out such cases, CodeMiner then
searches each declared service in the decompiled intermedi-
ate representations. Specifically, each Android service should
extend the Service class.

Locate Caller Component (cDen). Given a target service
name, we now identify its caller service. By definition, the
caller service would have code to construct the corresponding
Intent. Therefore, for each Intent in the code, we perform
variable assignment analysis to find the target component
name. If the name matches our target service, we look at the
component that sends this Intent. If the component is another
service (e.g. Service or BroadcastReceiver), then we add a
directed edge in the service dependency graph. We also note
Intents that reside in onCreate of the main activity, which
means our target service would be automatically started after
the app launch.

C. Microbenchmarks

This subsection characterizes service dependency graphs
in our pool of 848 apps (c.f. §VIII-A). Table II shows the
distribution of the three components that can send Intents to
start services indirectly: app on-launch, Service, and Broadcas-
tReceiver. Interestingly, there are 16.41% of services that have
a dependency with another service, and 90.06% can be started
successfully. In other words, there is no need for Snowdrop to
start services that can be indirectly started. Table II suggests
that a benefit of leveraging service dependency graph is the
reduction in the number of test cases by 58.72%.

VI. SERVICE EXECUTION INPUTS GENERATION

This section discusses techniques that CodeMiner uses to
generate service execution inputs.

CodeMiner follows the standard practice of representing
a code path by its constraints that need to be solved. For

7

Fig. 3. Pathwise constraints of a code path for Service1. Satisfying
constraints requires fuzzing Intent fields and system API return values.

instance, Fig. 3 shows one set of pathwise constraints for
Service1 in Fig. 1. Constraints on a path are first solved
individually, to obtain a set of possible values. Then, for
constraints that have several sets (e.g., network info in our
example), sets are merged by the operation of union or
intersection, according to the logical operators in the path.

The rest of this section discusses how individual constraints
are solved, and this requires inferring both Intent field values
and system API return values.

A. Intent Field Inference

As mentioned before, an Android Intent object has six
fields: component, action, category, datatype,
extras (<extras.key, extras.value>), uriData.
This component outputs a set of (p, p.v). We note that
extras.key and extras.value make up a key-
value pair. Thus, when p /∈ {action, component,
uriData, category, datatype}, p represents the
extras.key. For example, in the set {(action,
android.intent.action.View), (username,
david)}, username represents the extras.key,
and david is the corresponding extras.value.

Since Android confines what values the first four fields
can take, developers typically hardcode their values, which
makes it easy to run variable assignment analysis (c.f. §V-A).
Both uriData and extras.value are more challenging
to infer than other fields, because they can syntactically take
on arbitrary values. While a naive way is to randomly generate
data for these two fields, CodeMiner improves the semantical
correctness of value inference with NLP-based heuristic. Next,
we elaborate on this process.

Inferring uriData Field. uriData stores URI address.
While some developers hardcode the URI string, uriData
can also be dynamically assigned at runtime – as we discuss
later, table VI suggests only 0.63% uriData can be in-
ferred from searching for hardcoded strings. Since datatype
specifies uriData’s MIME type, we can assign a URI that
matches the MIME type. If the datatype field is not spec-
ified in the Intent, we can use another Intent field, action,
to infer the MIME type. This is because the MIME type can
have a connection with the Intent’s action. For instance, if
action is ACTION_EDIT, uriData most likely contains
the URI of the document to edit.

Then, we classify URI MIME types into the following
commonly used groups: text (plain), image, application, mul-

tipart, video, x-token, audio, message. These are realized by
matching datatype and action. Each group contains a list
of candidate URIs for the address of objects pre-loaded on the
emulator, or for popular webpages.

Inferring extras Field. extras.value can take on ar-
bitrary types and values, which depend on the usage scenario
ranging from storing web URLs to city names. From analyzing
our app pool, we made an observation that developers typically
use similar key names for the same purpose. An example is
”music url” and ”songURL”, which both reference to some
web URLs of audio files. We note that, in this example,
while it is practically infeasible to guess the exact URL
string, providing a compatible string is sufficient to carry on
the service execution. Therefore, inferring the semantics of
extras.value is crucial for inferring the value.

Building on efforts from the natural language community,
CodeMiner combines the Word2Vec [18] tool and the Support
Vector Machine (SVM) [24] classification algorithm. Given a
word, Word2Vec computes the feature vector for it. Snowdrop
uses a popular Word2Vec model [25] already trained to recog-
nize word semantics. So, words that are semantically similar
should have similar feature vectors. We note that feature
vectors are in mathematical representation, and they can be
clustered by data classification algorithms such as SVM.

To train SVM to cluster similar feature vectors, we first
get vectors of 5,724 extras.keys in our app pool. For
key name composing of multiple words, we use the standard
practice of averaging over individual vectors. Then, we label
each extras.key’s vectors with 24 groups: name, id, text,
title, number, action, video, type, folder, user, audio, file,
version, message, error, date, time, alarm, url, image, location,
password, json, widget. These 24 groups are the top groups
after we apply k-means clustering [24] on all extras.keys.

Each group has a set of candidate values, such as a string
that represents the current city name. Candidate sets are mainly
from four sources: (1) app-based data include widget ID,
package name, local storage path, etc, (2) environment-based
data include current date time with different format strings,
(3) file-based data cover specifications and formats, e.g., the
format and size of pictures, and (4) URL-based data include
URL addresses for web pages, images, audio, videos, etc.

With the trained Word2Vec model and the SVM model,
CodeMiner first classifies each new extras.key and
then assigns a candidate value to the corresponding
extras.value field.

B. System API Return Value Inference

System APIs belong to the Android namespace, and their
usage has an ”android.” or ”java.” prefix. This observation
simplifies the task of determining which variables hold values
derived from some system API return values. Resource-related
system APIs considered are listed in Table III.

However, since a group of system APIs can change one
mobile device component (e.g., GPS), the challenge lies in
generating test data that are consistent to the hardware state.
To this end, CodeMiner maintains a finite state machine (FSM)

8

TABLE III
POPULAR ANDROID SYSTEM APIS CALLED BY BACKGROUND SERVICES.

System API %
log 83.46
network info 31.05
wakelock 17.38
calendar info 16.00
database info 15.53
file 14.04
network 13.22
location info 11.65
unique identifier 7.67

System API %
file info 3.23
account info 2.03
audio 1.94
bluetooth info 1.29
system settings 0.65
sms mms 0.37
account settings 0.09
synchronization data 0.09
contact info 0.09

for typical hardware components on mobile devices. Fortu-
nately, most mobile devices exhibit a similar set of hardware
capabilities: geo-localization, data I/O, motion-related sensors,
etc. In addition, Android provides standard abstractions to
hide individual hardware components’ intrinsic properties. For
example, sensors basically have three reachable states: on,
off, sampling. For each system API that CodeMiner needs
to generate test data, CodeMiner keeps track of the cur-
rent state of hardware components. In the sensor example
above, if the sensor has been activated by registering with
SensorManager, then its status should be on.

C. Microbenchmarks

We evaluate the use of the SVM-based classification algo-
rithm, by comparing with the human baseline. Specifically,
with 5,724 extras.key strings from our app pool, we
manually label them into 24 groups (c.f. §VI-A). Then, we
randomly allocate 60%, 20% and 20% of these strings as the
training set, validation set, and testing set, respectively. We use
cross-validation to choose the parameter c=10 which trades
off misclassification against simplicity of the decision surface
from the set: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 50, 100.
The accuracy measured by the testing set is 79.55% over the
24 groups (as compared to the random guess of an accuracy of
∼4.2%), with a recall of 78.41%, and a precision of 80.81%.

VII. ADDITIONAL PRACTICAL CONSIDERATIONS

This section discusses practical considerations for Service-
Fuzzer to test individual background services, with test inputs
generated by CodeMiner.

A. Automating Background Services

Before injecting Intents to start services, ServiceFuzzer
launches the app to allow the opportunity to properly initialize.
For example, many apps check for environment dependencies,
e.g., the database tables. Then, ServiceFuzzer pauses the app
foreground activity, by simulating the user pressing the device
HOME button.

ServiceFuzzer then selects nodes without any incoming
edges in the service dependency graph, as these nodes rep-
resent services (c) without any dependency (cDens). For
each of these services, ServiceFuzzer turns corresponding
sets of test data into individual explicit Intents. Specifically,
c (in the service trigger inputs) becomes the Intent’s target

component, and pairs of p and p.v (in service execution
inputs) become Intent fields.

The execution of service code paths is guided by both
Intent fields and any system API return values. The for-
mer is in the Intent crafted in the previous step. The lat-
ter requires ServiceFuzzer to intercept system API calls by
the service, and this can be done with off-the-shelf tools
such as Xposed. For each system API call intercepted, Ser-
viceFuzzer searches in the execution inputs for a pair of
a and a.v that matches the system API. The return value
is then manipulated to be a.v. For example, we can in-
tercept the return value of activeNetwork.getType()
with an integer ConnectivityManager.TYPE_WIFI or
ConnectivityManager.TYPE_MOBILE in Fig. 1.

B. Terminating a Testing Session

To simulate different termination conditions, Snowdrop al-
lows developers to select from the following two termination
strategies for each testing session.

Graceful Termination. This termination strategy allows the
service to run to completion. ServiceFuzzer passively infers
the lifecycle by intercepting onStartCommand, onBind,
and onDestroy callback events.

Forced Termination. This termination strategy kills the ser-
vice when the developer-specified timer fires. In addition,
the developer can instrument calls to our debugging API,
SNOWDROP_KILL(), in the app bytecode. Upon intercepting
this API call at run time, ServiceFuzzer would kill the app
main process and spawned processes, to simulate the termina-
tion forced by the OS.

C. Disaggregating Logs

Snowdrop provides resource utilization logs including CPU
and memory. Providing per-service logs can be challenging, as
the Android platform provides performance counters at app-
level, not component-level. Snowdrop exercises log disaggre-
gation as below.

We record the service’s start and end time, and attribute
counters in this lifetime period to it accordingly. The service
lifetime typically can be identified with the three callbacks:
onStartCommand, onBind, onDestroy. We note that
there are cases of concurrent threads: a service is created as a
thread within the app main process, or even multiple services.
To handle these cases, we attribute the resource utilization
equally, and this is a standard technique used by app data
analysis tools [26].

VIII. EVALUATION

This section is organized by the following major results: (1)
Without human inputs, Snowdrop can achieve 20.91% more
service code path coverage than existing pathwise test input
generators, and 64.11% more coverage than random test input
generators. (2) 92.17% of Intents generated by CodeMiner
are not malformed or invalid – more than 21.19% higher
than comparison baselines. (3) Test input generation takes an

9

average of 20.06 sec for one Android service. This makes
Snowdrop feasible for testing background services in practice.

A. Methodology and Implementation

We implemented Snowdrop in Python and Java – CodeM-
iner has 17,916 lines of code (LOC), ServiceFuzzer has 7,814
LOC, and logging modules have 4,463 LOC. CodeMiner dis-
assembles and decompiles Android app bytecode with Andro-
guard [27]. ServiceFuzzer runs inside Genymotion [28], one
of the fastest emulators available. ServiceFuzzer exercises the
standard practice of injecting Intents and killing services, with
Android Debugging Bridge (ADB). And, it uses Xposed [23]
to manipulate system API return values. To calculate code
path coverage, we modify BBoxTester [29] with the popular
tool JaCoCo [30] to first list all code paths in services. Then,
we cross-reference this full list with our own list of executed
branches, to calculate the number of exercised paths.

Evaluation Metrics and Comparison Baselines. To evaluate
the effectiveness, we adopt the metric of path coverage, or the
number of branched control paths in a service that a testing
tool executes. We also use the test input generation time as
another evaluation metric.

With these metrics, evaluations are based on the following
comparison baselines. First, for representing random test input
generators, one baseline is Intent Fuzzer [15], an ICC-based
fuzzing for Android apps. It relies on static analysis to identify
all Intents and their mandatory fields, and then randomly gen-
erates field values. Another baseline is NullIntentFuzzer [14],
a fuzzing tool that focuses on crafting Intents with only
the service component name. Second, as there is no off-
the-shelf pathwise test input generators for app services, we
implemented one with IC3 [31]. IC3 is the current state-of-
the-art solution for Intent fields inference.

Methodology. Our app pool consists of 848 popular apps on
the Google Play store. To minimize any test bias towards
certain app categories, we take top 53 apps from each of
the 16 popular app categories (i.e., News, Music, and Social).
Collectively, these 848 apps have a total of 1,968 Services.

To run experiments, we generate test inputs for all apps,
with Snowdrop and comparison baselines. For Snowdrop and
IC3, each code path in identified services has a test case, and
we let a test run for five minutes after injecting the Intent via
ADB. Since it is difficult to force random test input generators
to target a particular code path, we let Intent Fuzzer and
NullIntentFuzzer run as many rounds as possible within the
same time window, for fairness.

Verifiability. Factors that might influence the reproducibility
of results include (1) the version of apps in our pool, (2) the
version of open-sourced tools that Snowdrop uses, and (3) the
hardware spec of our testing environment. For the first two
factors, we have archived the downloaded packages. For the
last factor, we are running Windows 10 on Intel i7-3770 CPU
and 16 GB of RAM.

Fig. 4. Service code path coverage for different test input generators. Each
tool tries to generate test inputs to execute as many code paths in services of
our app pool as possible. By inferring all Intent fields and system API return
values, Snowdrop can achieve better coverage than IC3 and Intent Fuzzer.

B. What is the Service Code Path Coverage Achieved?

We start by empirically measuring and comparing Snow-
drop’s service code path coverage. As mentioned above,
the ground truth is computed by BBoxTester [29] and Ja-
CoCo [30]. We generate the test input for each code path,
with Snowdrop and two other baselines, Intent Fuzzer and IC3.
These two baselines provide visibility into existing random and
pathwise test input generators. A test case represents one code
path, and it successfully completes if all branches on the code
path are executed. As Fig. 4 shows, excluding services in third-
party libraries, Snowdrop successfully executes 79.24% of all
16,925 service code paths in our app pool. This is 20.91%
more coverage than IC3 and 64.11% more coverage than Intent
Fuzzer.

There are two cases where a test case can not completely
execute a code path: (1) a branch cannot be satisfied, and (2)
execution exceptions due to malformed or invalid Intents. The
following two subsections delve into these two cases.

C. How Well Do Test Inputs Satisfy Branch Conditions?

One factor affecting the service code path coverage is
whether the test input can satisfy all branches on its intended
code path. There are two main reasons behind unsatisfiable
branching conditions: (1) branching conditions are hard-coded
to be false, or (2) branching arguments cannot be externally
fuzzed. To quantify these reasons, we classify branching
arguments by their types: Constant, Non Sys API (e.g., devel-
opers’ own functions), Sys API, and Intent Field. The last two
classes can be externally fuzzed. While ServiceFuzzer fuzzes
Sys API return values through interception (c.f. §VIII-A), we
do not intercept Non Sys APIs as they also contain developer
code that needs to be tested.

Table IV shows the distribution of possible variations of
branching conditions. Each variation has one of the two tags:
Fuzzable (i.e, the branching condition arguments can be fuzzed
to satisfy) and Unfuzzable (i.e, otherwise). Given that only
Sys API, and Intent Field can be external fuzzed, there are
some branching statements out of scope for Snowdrop.

Table V shows that Snowdrop can successfully fuzz 89.41%
of branching conditions. We note that cases involving Sys API
tend to have a relatively lower percentage. And, this is a known
problem in the community [32], as certain data types of return

10

TABLE IV
DISTRIBUTION OF DIFFERENT BRANCHING CONDITIONS BY THE TYPE OF

THEIR ARGUMENTS. GIVEN THAT ONLY Sys API, AND Intent Field CAN BE
EXTERNALLY FUZZED, THERE ARE SOME BRANCHING STATEMENTS OUT

OF SCOPE FOR SNOWDROP.

Tag Argument 1 Argument 2 %
Unfuzzable Constant Constant 8.83
Fuzzable Sys API Constant 10.71
Fuzzable Sys API Sys API 0.29
Fuzzable Sys API Intent Field 1.55
Fuzzable Intent Field Intent Field 0.03
Fuzzable Intent Field Constant 52.83
Unfuzzable Sys API Non Sys API 0.38
Unfuzzable Non Sys API Intent Field 2.56
Unfuzzable Non Sys API Constant 22.06
Unfuzzable Non Sys API Non Sys API 0.78

TABLE V
NUMBER OF FUZZABLE BRANCHING CONDITIONS THAT SNOWDROP CAN

SATISFY.

Argument 1 Argument 2 Satisfiable (%)
Sys API Constant 84.35
Sys API Sys API 72.71
Sys API Intent Field 92.71
Intent Field Intent Field 100.0
Intent Field Constant 97.28

values are difficult to fuzz, which include arrays, iterators, the
pair in a map, a set, I/O operations, content providers, or even
some complex data objects (e.g., bitmap).

Finally, we note the use of Non Sys APIs varies among
app categories. Fig. 5 organizes Snowdrop’s code coverage
by the app category. Interestingly, it suggests that Music and
Photography apps generally achieve lower coverage. Photog-
raphy apps tend to use specialized library functions such as
calculating the rescaling size for bitmap files. Similarly, Music
apps contain many developer-defined objects such as a singer
profile object that is generally difficult to solve for test input
generators.

D. What is the Correctness of Intent Inference Heuristics?

Another factor affecting the service code path coverage
is the correctness of Intents generated. Specifically, mal-
formed and invalid Intents can cause run-time exceptions,
and these exceptions force tests to terminate unexpectedly.
For instance, a tool can assign arbitrary string values to
extras key-value pairs that expect well-formed strings
such as web URLs or media file paths. In other cases,
numeric values can have a meaning such as GPS longitude
and latitude. Fig. 6 shows that 92.17% of Intents generated
by Snowdrop can successfully run to the test completion.
Interestingly, this is 21.19% and 48.35% more successful
cases than IC3 and Intent Fuzzer, respectively. Since IC3
and Intent Fuzzer do not consider the field semantics, most
exceptions caught (e.g., NumberFormatException and
and NullPointerException) are due to malformed and
invalid test inputs.

Next, we discuss malformed Intents generated by CodeM-
iner. First, 51.33% of these cases belong to services in

Fig. 5. Depending on the type of branching conditions and data structures in
the code, some app categories are more difficult to generate test inputs for.

Fig. 6. Malformed or invalid Intents can cause run-time exceptions, and
force a test to terminate unexpectedly. Of all Intents generated, Snow-
drop generates the highest percentage of correct Intents. For compari-
son baselines, many exceptions include NumberFormatException and
NullPointerException.

third-party libraries, e.g., advertisement and app analytics
tracking. One observation is that these third-party libraries
have Intent fields with uncommon naming convention, e.g.,
EXTRA SITUATION and FRONTIA USER AIPKEY. Sec-
ond, 12.67% of unsuccessful cases are due to widget update
services, which require the right widget ID. Third, 4.67%
of unsuccessful cases are services for licensing or signing
information, which require the right licensing information.
While being out of scope for this paper, it is possible to
implement a human feedback loop to address these limitations.

Finally, we benchmark the two inference heuristics of
CodeMiner to understand how they contribute to the cor-
rectness of Intents. As we mentioned before, CodeMiner
first tries variable assignment analysis (VAA), to find field
value assignments in app binaries. Since developer-specified
fields can be difficult to infer, CodeMiner then infers their
values with NLP-based heuristic (NLPH). Table VI shows
the effectiveness of the two strategies: variable assignment
analysis (VAA) and NLP-based heuristic (NLPH). First, we
observe that variable assignment analysis can handle most
cases of component, action, datatype, extras.key,
and category. The reason is that these fields have a pre-
defined set of values, and most apps explicitly assign their
values. Second, Table VI suggests that the situation is different
for uriData and extras.value, where the developer can
assign arbitrary values. In these cases, the inference relies

11

TABLE VI
PERCENTAGE OF INTENT FIELDS WHOSE VALUES CAN BE INFERRED BY
VARIABLE ASSIGNMENT ANALYSIS (VAA) AND NLP-BASED HEURISTIC

(NLPH). RESULTS ARE GROUPED BY THE INTENT FIELD TYPE.

Intent Inferred Inferred Unresolved (%)
field by VAA (%) by NLPH (%)
component 90.75 N/A 9.25
action 90.77 N/A 9.23
uriData 0.63 99.37 N/A
datatype 79.35 N/A 20.65
extras.key 96.63 N/A 3.37
extras.value 1.85 98.15 N/A
category 97.08 N/A 2.82

Fig. 7. Time taken to generate test inputs for each of our 848 apps. The
computation cost of Snowdrop is practical for real-world usage.

on applying classification techniques to the variable name.
Empirical results show that 99.37% of uriData and 98.15%
of extras.value can be inferred this way.

Table VI also suggests that there are instances CodeMiner
fails to infer. One reason is that CodeMiner ignores data types
that cannot be analyzed by static analysis or sent over ADB:
Parcelable, Serializable, and Bundle. In our app pool, while
most extras.values are String and Integer, 12.16% of
them are of these unsupported types.

E. Is the Computation Cost Feasible in Practice?

Measurements show that Snowdrop has a reasonable cost for
real-world usage. Fig. 7 shows the average time to generate test
cases for an app is 65.80 sec, which translates to 20.06 sec per
Android app service. While being out of scope for this paper,
optimizations on constraint solving will reduce this cost. For
reference, we note that IC3 takes an average of 23.41 sec to
generate the ICC message per service.

IX. CASE STUDIES

With Snowdrop, we tested our pool of 848 apps and found
that 12.05% of background services have bugs. For example,
8.88% of apps have problems of poor exception handling. For
analysis, we logged ADB runtime exceptions and various per-
formance counters including CPU utilization, network tx/rx,
power consumption, etc. We confirmed Snowdrop’s findings
by manually examining decompiled the bytecode of reported
apps. This section highlights real-world bugs that Snowdrop
reported on apps released in the wild.

A. Crashes and Poor Exception Handling
TED. Snowdrop detected java.lang.NullPointerException:
PowerManager$WakeLock.release() on a null
object reference. By manually examining the
decompiled app bytecode, we found that the
com.pushio.manager.PushIOEngagementService
service does not initialize a WakeLock object before acquiring
and releasing the lock in some code paths.

Huffington Post. Snowdrop detected a crash due to
java.lang.RuntimeException: WakeLock under-locked
com.commonsware.cwac.wakeful.WakefulIntentService in
downloadall.AutoOfflineService. This error
suggests that the WakeLock was released more times
than it was acquired. We confirmed by decompiling
the Huffington Post app. And, we found that the app
does not check whether the WakeLock is acquired in
wakeful.WakefulIntentService, which is called by
downloadall.AutoOfflineService.

Sophos Mobile Control. Snowdrop de-
tected java.lang.NoClassDefFoundError:
com.sonymobile.enterprise.Configuration in
InstallCertificateService. We manu-
ally inspected the decompiled bytecode – the
InstallCertificateService tried to instantiate
the com.sonymobile.enterprise.Configuration class, which
does not exist in the expected third-party library,
sonymobile.enterprise. One possible explanation is that
the developer might have mistaken the library version.

B. Resource Usage Bugs

FOX TV Turkiye. Logs indicate that this app has many
periods of extremely low CPU utilization. This observation
suggests that the app might have prevented the CPU from
being suspended to reduce energy consumption. We manually
examined the decompiled app bytecode, and we found that the
PushAdService was trying to hold pushad.wakelock until
all async jobs completed. However, this WakeLock was not
properly released in two of the code paths.

AirPlay/DLNA Receiver. AirPlay/DLNA Receiver wirelessly
receives videos, pictures and music from nearby devices.
Without any active streaming sessions, we noticed that the
app had an unexpectedly high network traffic (∼1 MB/s)
when WaxPlayService was running. One potential impact
of this behavior is the high energy consumption. We used
WireShark [33] to investigate possible causes with network-
level traffic traces, and we found that the app constantly sent
out 599-byte MDNS/Bonjour requests. In addition, the app
periodically sends a group of 60-byte TCP packets to the
network gateway.

X. RELATED WORK

A. Mobile App Testing Frameworks
Most existing testing frameworks rely on UI automation,

for workloads of touch-screen interactions and gestures. Ap-
pium [34] and UiAutomator [35] are popular frameworks

12

with API to build UI-driven tests. PUMA [36] explores a
flexible programming paradigm to UI-driven app analysis,
and RERAN [37] addresses touch-sensitive record-and-replay.
Testflight [38] is a framework for iOS developers to invite
real-world users to exercise the app. AMC [39] reduces the
amount of work that a human expert must perform to evaluate
the conformance of vehicular apps. SmartDroid [40] identifies
UI-based trigger conditions in Android apps to help privacy
experts to quickly find the sensitive behaviors. RainDrops [41]
envisions a split-execution model for building automated and
contextual testing services to bring real-world contexts into
mobile app testing.

Unfortunately, background services are hidden from users,
and empirical data show ∼50.32% of services are not reach-
able through UI invocations. This observation motivates the
need of Snowdrop.

B. Intent Inference Tools

Many testing scenarios rely on the ICC-oriented approach,
or the ability to extract ICC messages coded in the app
bytecode. For instance, ComDroid [42] and IccTA [43] analyze
ICC messages to detect privacy leaks.

As §III-B discusses, there are also generic tools to facilitate
the ICC-oriented approach. The first category of tools is
simply a fuzzer that assumes most of the Intent structure
would be given by the user [14]. These tools can impose
a significant burden due to manually creating test inputs to
achieve full coverage. To this end, random test input generators
can generate random Intent field values [13], [15]. However,
random data generators do not guarantee test input quality,
nor the time to achieve full testing coverage [44]. Finally,
some tools exploit app code knowledge to make informed
decisions on Intent inference and generation. IntentFuzzer [16]
intercepts API calls to learn keys in extras, and then
randomly generates value for each key. IC3 [12] improves on
Epicc [45], and it analyzes the code to infer constraints given
by a code path on values that each field can take on.

While these ICC-oriented tools try to identify as many
Intents as possible in the app bytecode, implicit Intents can
be challenging for static analysis tools. Furthermore, since
some Intent fields can syntactically take on arbitrary values,
Snowdrop improves the inference correctness with NLP-based
heuristic.

C. Visibility Into Background Services

The research community has recently started to explore
problems related to background services. Chen et al. [5], [6]
conducts a large-scale study, and telemetries from user devices
reveal services can consume unexpected amount of energy.
Then, they propose HUSH as a way to dynamically suppress
background services on the device. TAMER [11] is an OS
mechanism that monitors events and rate-limits the wake-up
of app services on the device.

There are related efforts on code analysis. Entrack [26] aims
to finely trace energy consumption of system services, and
addresses challenges in accurate per-thread accounting. Pathak

et al. [46] proposes a compile-time solution based on the
classic reaching data-flow analysis problem to automatically
infer the possibility of a no-sleep bug in a given app.

Snowdrop can complement these efforts, and it fills the gap
of enabling developers to systematically test all services before
the app release.

XI. DISCUSSION AND FUTURE WORK

System Limitations. As with any system, Snowdrop has
limitations. First, dynamically loaded code can be challenging
for Snowdrop to analyze, as the code might not be available
until run time. Fortunately, most background services are not
implemented in this fashion. Second, while the NLP-based
heuristic improves the correctness of Intent value inference
for Snowdrop, there are still cases where developers use
meaningless variable names that complicate semantic under-
standing. As a future work, we are exploring additional means
of inferring the semantics of variables.

Overhead of Pathwise Test Input Generation. The commu-
nity has raised the concern that pathwise test input generation
does not scale well with the software complexity. Fortunately,
mobile app services generally have relatively low complexity,
and empirical results suggest an average of 8.60 code paths
per service.

Complementing UI Automation Testing. Many tools are
available for developers to automate UI testing. We believe that
ensuring app experience can benefit from testing both UI and
background services. Since both aspects do not conflict with
each other, Snowdrop can complement existing UI automation
testing.

Applicability to Other Mobile Platforms. Background ser-
vices that consume too much resources are also present in
iOS and Windows apps. While concepts of Snowdrop are
applicable to other mobile platforms, our current investigation
suggests that there does not seem to be an easy way to trigger
background services to run. We are exploring workarounds.

XII. CONCLUSION

Snowdrop fills the gap towards systematically testing app
background services. It automatically generates test inputs to
maximize service code path coverage. Empirical results show
that Snowdrop can achieve higher coverage over existing ran-
dom and pathwise test input generators. Furthermore, Snow-
drop has uncovered service problems ranging from crashes
to energy bugs, and it can well complement the existing UI
automation based testing.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful com-
ments and suggestions. This research was partially supported
by grants from the Nature Science Foundation of China (Grant
No. U1605251), and the National Science Foundation for
Distinguished Young Scholars of China (Grant No. 61325010).

13

REFERENCES

[1] C.-J. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F. Karlsson,
H. Liu, Y. Liu, J. Tang, X. Shan, R. Chandra, and F. Zhao, “Caiipa: Au-
tomated Large-scale Mobile App Testing through Contextual Fuzzing,”
in The 20th Annual International Conference on Mobile Computing and
Networking Paris, MobiCom. ACM, 2014, pp. 519–530.

[2] B. Liu, S. Nath, R. Govindan, and J. Liu, “DECAF: Detecting and
Characterizing Ad Fraud in Mobile Apps,” in 11th USENIX Symposium
on Networked Systems Design and Implementation, NSDI. USENIX,
2014, pp. 57–70.

[3] L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan, “Automatic
and Scalable Fault Detection for Mobile Applications,” in MobiSys.
ACM, 2014, pp. 190–203.

[4] L. L. Zhang, C.-J. M. Liang, Z. L. Li, Y. Liu, F. Zhao, and E. Chen,
“Characterizing privacy risks of mobile apps with sensitivity analysis,”
in IEEE Transactions on Mobile Computing (TMC). IEEE, 2017.

[5] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and R. Vannithamby,
“Smartphone Energy Drain in the Wild: Analysis and Implications,”
in SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems,SIGMETRICS. ACM,
2015, pp. 151–164.

[6] X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta, and R. Vannithamby,
“Smartphone Background Activities in the Wild: Origin, Energy Drain,
and Optimization,” in The 21th Annual International Conference on
Mobile Computing and Networking Paris, MobiCom. ACM, 2015,
pp. 40–52.

[7] S. Rosen, A. Nikravesh, Y. Guo, Z. M. Mao, F. Qian, and S. Sen,
“Revisiting Network Energy Efficiency of Mobile Apps: Performance in
the Wild,” in Proceedings of the 2015 Internet Measurement Conference,
IMC. ACM, 2015, pp. 339–345.

[8] S. Rosen, Z. Qian, and Z. M. Mao, “AppProfiler: A Flexible Method
of Exposing Privacy-Related Behavior in Android Applications to End
Users,” in Third ACM Conference on Data and Application Security and
Privacy, CODASPY. ACM, 2013, pp. 221–232.

[9] Android, “Android Restrict Background Data Usage,” https://support.
google.com/nexus/answer/2819524?hl=en, 2016.

[10] Apple, “iOS Background App Refresh ,” https://support.apple.com/
en-us/HT202070, 2016.

[11] M. Martins, J. Cappos, and R. Fonseca, “Selectively Taming Background
Android Apps to Improve Battery Lifetime,” in USENIX Annual Tech-
nical Conference, USENIX ATC. USENIX, 2015, pp. 563–575.

[12] SIIS Lab at Penn State Unverisity, “IC3: Inter-Component Commu-
nication Analysis for Android,” http://siis.cse.psu.edu/ic3/index.html#
banner, 2015.

[13] A. K. Maji, F. A. Arshad, S. Bagchi, and J. S. Rellermeyer, “An
empirical study of the robustness of inter-component communication
in android,” in 42nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN, 2012, pp. 1–12.

[14] NCC Group, “Intent fuzzer,” https://www.nccgroup.trust/us/about-us/
resources/intent-fuzzer/, 2012.

[15] R. Sasnauskas and J. Regehr, “Intent Fuzzer: Crafting Intents of Death,”
in WODA+PERTEA, 2014, pp. 1–5.

[16] K. Yang, J. Zhuge, Y. Wang, L. Zhou, and H. Duan, “IntentFuzzer:
Detecting Capability Leaks of Android Applications,” in ACM Asia
Conference on Computer and Communications Security, ASIA CCS,
2014, pp. 531–536.

[17] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “DroidFuzzer: Fuzzing the
Android Apps with Intent-Filter Tag,” in Proceedings of International
Conference on Advance in Mobile Computing and Multimedia, MoMM,
2013, pp. 68:68–68:74.

[18] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
Representations of Words and Phrases and their Compositionality,” in
Neural Information Processing Systems, NIPS. NIPS, 2013, pp. 3111–
3119.

[19] R. DeMillo and A. Offutt, “Constraint-based Automatic Test Data Gen-
eration,” in IEEE Transactions on Software Engineering, TSE, vol. 17,
no. 9. IEEE, 1991, pp. 900–910.

[20] J. Lee, K. Lee, E. Jeong, J. Jo, and N. B. Shroff, “Context-aware
Application Scheduling in Mobile Systems: What Will Users Do and
Not Do Next?” in Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, Ubicomp, 2016,
pp. 1235–1246.

[21] Android, “Android Services,” https://developer.android.com/guide/
components/services.html, 2017.

[22] L. Clarke, “A system to generate test data and symbolically execute
programs,” in IEEE Transactions on Software Engineering, vol. 2.
IEEE, 1976, pp. 215–222.

[23] rovo89, Tungstwenty, “Xposed,” http://repo.xposed.info/module/de.robv.
android.xposed.installer, 2016.

[24] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An Efficient k-Means Clustering Algorithm: Analysis
and Implementation ,” in Transactions on Pattern Analysis and Machine
Intelligence, vol. 24. IEEE, 2002, pp. 881–892.

[25] “Word2Vec Toolkit,” https://code.google.com/archive/p/word2vec/,
2013.

[26] M. Martins, J. Cappos, and R. Fonseca, “Entrack: A System Facility
for Analyzing Energy Consumption of Android System Services,” in
ACM International Joint Conference On Pervasive And Ubiquitous
Computing, Ubicomp. ACM, 2015, pp. 191–202.

[27] A. Team, “Androguard,” https://github.com/androguard/androguard,
2015.

[28] Genymobile Inc., “Genymotion,” http://www.genymotion.com/, 2016.
[29] Y. Zhauniarovich, A. Philippov, O. Gadyatskaya, B. Crispo, and F. Mas-

sacci, “Towards black box testing of android apps,” in 2015 Tenth In-
ternational Conference on Availability, Reliability and Security (ARES),
2015, pp. 501–510.

[30] JaCoCo Developers, “Jacoco java code coverage library,” http://www.
jacoco.org/jacoco//, 2016.

[31] Damien Octeau and Daniel Luchaup and Matthew Dering and Somesh
Jha and Patrick McDaniel, “IC3,” http://siis.cse.psu.edu/ic3/index.html#
banner, 2015.

[32] J. Edvardsson, “A Survey on Automatic Test Data Generation,” in
Proceedings of the Second Conference on Computer Science and Engi-
neering in Linkoping, 1999, pp. 21–28.

[33] “Wireshark,” www.wireshark.org.
[34] S. Labs, “Appium,” http://appium.io/, 2016.
[35] Android, “UI Automator Viewer,” http://developer.android.com/tools/

testing-support-library/index.html#UIAutomator, 2016.
[36] S. Hao, S. Nath, W. G. Halfond, and R. Govindan, “PUMA: Pro-

grammable UI-Automation for Large-Scale Dynamic Analysis of Mo-
bile Apps,” in The 12th International Conference on Mobile Systems,
Applications, and Services, Mobisys. ACM, 2014.

[37] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “RERAN: Timing-
and Toch-Sensitive Record and Replay for Android,” in The 35th
International Conference on Software Engineering, ICSE. IEEE, 2013,
pp. 72–81.

[38] A. Inc, “Testflight,” https://www.testflightapp.com/, 2016.
[39] K. Lee, J. Flinn, T. Giuli, B. Noble, and C. Peplin, “AMC: Verifying

User Interface Properties for Vechicular Applications,” in The 11th
International Conference on Mobile Systems, Applications, and Services,
Mobisys. ACM, 2013, pp. 1–12.

[40] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou,
“SmartDroid: an Automatic System for Revealing UI-based Trigger
Conditions in Android Applications,” in 2th Annual ACM CCS Workshop
on Security and Privacy in Smartphones and Mobile Devices, SPSM.
ACM, 2012, pp. 93–104.

[41] L. L. Zhang, C.-J. M. Liang, W. Zhang, and E. Chen, “Towards a
contextual and scalable automated-testing service for mobile apps,” in
The 18th International Workshops on Mobile Computing Systems and
Applications (HotMobile). ACM, 2017, pp. 97–102.

[42] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing Inter-
Application Communication in Android,” in The 9th International
Conference on Mobile Systems, Applications, and Services, Mobisys.
ACM, 2011, pp. 239–252.

[43] L. Li, A. Bartel, T. F.Bissyande, J. Klein, Y. L. Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “IccTA: De-
tecting Inter-Component Privacy Leaks in Android Apps,” in The 37th
International Conference on Software Engineering, ICSE. ACM, 2015.

[44] P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung, “Vision: Automated
Security Validation of Mobile Apps at App Markets,” in Proceedings
of the second international workshop on Mobile cloud computing and
services, MCS, 2011, pp. 21–26.

[45] D. Qcteau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. L.
Traon, “Effective Inter-Component Communication Mapping in Android
with Epicc: An Essential Step Towards Holistic Security Analysis,” in
USENIX Security Symposium, Security. USENIX, 2013, pp. 543–558.

14

https://support.google.com/nexus/answer/2819524?hl=en
https://support.google.com/nexus/answer/2819524?hl=en
https://support.apple.com/en-us/HT202070
https://support.apple.com/en-us/HT202070
http://siis.cse.psu.edu/ic3/index.html#banner
http://siis.cse.psu.edu/ic3/index.html#banner
https://www.nccgroup.trust/us/about-us/resources/intent-fuzzer/
https://www.nccgroup.trust/us/about-us/resources/intent-fuzzer/
https://developer.android.com/guide/components/services.html
https://developer.android.com/guide/components/services.html
http://repo.xposed.info/module/de.robv.android.xposed.installer
http://repo.xposed.info/module/de.robv.android.xposed.installer
https://code.google.com/archive/p/word2vec/
https://github.com/androguard/androguard
http://www.genymotion.com/
http://www.jacoco.org/jacoco//
http://www.jacoco.org/jacoco//
http://siis.cse.psu.edu/ic3/index.html#banner
http://siis.cse.psu.edu/ic3/index.html#banner
www.wireshark.org
http://appium.io/
http://developer.android.com/tools/testing-support-library/index.html#UIAutomator
http://developer.android.com/tools/testing-support-library/index.html#UIAutomator
https://www.testflightapp.com/

[46] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, “What is keeping
my phone awake? Characterizing and Detecting No-Sleep Energy Bugs
in Smartphone Apps,” in The 10th International Conference on Mobile

Systems, Applications, and Services, Mobisys. ACM, 2012, pp. 267–
280.

15

	I Introduction
	II Background
	II-A Hidden Impacts of Services
	II-B Android Background Services

	III Gaps of Existing Testing Tools
	III-A Limitations of UI Monkeys
	III-B Limitations of Intent Inference Tools

	IV System Overview and Architecture
	V Service Trigger Inputs Generation
	V-A Variable Assignment Analysis
	V-B Service Dependency Graph Construction
	V-C Microbenchmarks

	VI Service Execution Inputs Generation
	VI-A Intent Field Inference
	VI-B System API Return Value Inference
	VI-C Microbenchmarks

	VII Additional Practical Considerations
	VII-A Automating Background Services
	VII-B Terminating a Testing Session
	VII-C Disaggregating Logs

	VIII Evaluation
	VIII-A Methodology and Implementation
	VIII-B What is the Service Code Path Coverage Achieved?
	VIII-C How Well Do Test Inputs Satisfy Branch Conditions?
	VIII-D What is the Correctness of Intent Inference Heuristics?
	VIII-E Is the Computation Cost Feasible in Practice?

	IX Case Studies
	IX-A Crashes and Poor Exception Handling
	IX-B Resource Usage Bugs

	X Related Work
	X-A Mobile App Testing Frameworks
	X-B Intent Inference Tools
	X-C Visibility Into Background Services

	XI Discussion and Future Work
	XII Conclusion
	References

