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Abstract—It is well recognized that air quality inference is
of great importance for environmental protection. However, due
to the limited monitoring stations and various impact factors,
e.g., meteorology, traffic volume and human mobility, inference
of air quality index (AQI) could be a difficult task. Recently,
with the development of new ways for collecting and integrating
urban, mobile, and public service data, there is a potential
to leverage spatial relatedness and temporal dependencies for
better AQI estimation. To that end, in this paper, we exploit a
novel spatio-temporal multi-task learning strategy and develop
an enhanced framework for AQI inference. Specifically, both
time dependence within a single monitoring station, and spatial
relatedness across all the stations will be captured, and then
well trained with effective optimization to support AQI inference
tasks. As air-quality related features from cross-domain data have
been extracted and quantified, comprehensive experiments based
on real-world datasets validate the effectiveness of our proposed
framework with significant margin compared with several state-
of-the-art baselines, which support the hypothesis that our spatio-
temporal multi-task learning framework could better predict and
interpret AQI fluctuation.

I. INTRODUCTION

Urban air quality is closely related to the health and lives of

residents, which raises an urgent need for air quality control.

However, though a large amount of efforts have been made,

it is still challenging for meteorological departments to infer

fine-grained and high-accuracy Air Quality Index (AQI). On

the one hand, high cost of building and maintaining leads

to insufficient monitoring station and imbalanced distribution,

e.g., in Figure 1, only dozens of stations exist in a huge city

like Shanghai, which results in extremely sparse monitoring

records. On the other hand, complicated impact factors, e.g.,

historical air quality, meteorology, traffic volume, and human

mobility, may cause significant challenges in summarizing

AQI fluctuation rules.

Generally, prior arts may help to estimate the air quality

index via statistical inference, but the performances are usually

limited due to the small-scale course-grained data sources.

Meanwhile, traditional spatial interpolation methods mainly

exploit the spatial autocorrelation of AQI in terms of geograph-

ical distance, but they may fail with only considering the static

factors, but completely ignoring their dynamics. Indeed, AQI

is influenced by sophisticated and dynamic factors, which not

just vary spatially, but also temporally. Therefore, it highly ne-

cessitatesa new inference framework with fine-grained spatio-

Fig. 1. Examples of air quality monitoring stations in Shanghai city.

temporal resolution, to overcome the challenge of dynamic

spatio-temporal coupling.

Recently, with the development of new techniques for

collecting and integrating AQI-related data, such as air quality

data, meteorology data, taxi trajectories data, and human

mobility data near monitoring stations during a period, there

is a potential to not only describe the AQI fluctuation rules,

but also reveal their latent correlations, to be specific, the

temporal dependencies and spatial relatedness between

monitoring stations. Along these lines, in this paper, we at-

tempt to infer AQI values with high spatio-temporal resolution

through a data-driven perspective. Specially, we design our

framework based on the assumptions as follows. First, current

AQI values usually depend upon the previous status, which

could be summarized as “intra-station temporal dependen-
cies”. Second, two stations who are spatially close, or similar

in profiles, usually hold correlated AQI value, which could be

summarized as “inter-station spatial relatedness”. By jointly

measuring and modeling these two basic assumptions, we

design several constraints in regularization term, in which,

particular, a new metric is incorporated to summarize the inter-

station correlations by considering both geographic distance

and profile similarities. Then, the comprehensive lost functions

will be well optimized to support AQI inference tasks.

Finally, as air-quality related features from cross-domain

data have been extracted and quantified, we conduct com-

prehensive experiments on real-world datasets to validate the

effectiveness of our proposed framework, which outperforms

several state-of-the-art baselines with significant margin. These
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results not only prove the potential of our spatio-temporal

multi-task learning framework to better interpret and predict

AQI fluctuation, but also reveal some rules for measuring inter-

station correlation, which could benefit the public service for

station locating and building.

II. AIR QUALITY INFERENCE

In this section, we introduce our Spatio-Temporal real-time

Feature-based Multi-Task Regression (stfMTR) framework for

air quality inference. Our framework can perform 1) tempo-
ral prediction: to capture time dependence within a single

monitoring station and provide forecasts for air quality in the

near future as well as 2) spatial interpolation: to explore the

spatial relatedness across all the stations and provide real-time

inference for air quality in any given location.

A. Data Representations and Symbols

Let S ∈ RN denote the air quality monitoring stations,

where N is the number of stations. Suppose there are totally

K time points, i.e., T ∈ RK . Let X ∈ RN×K×M encode

the feature tensor, where M is the dimension of features, and

X:,k ∈ RN×M is the feature matrix of all stations at time point

tk. Correspondingly, we use W ∈ RN×K×M as the weight

tensor of the model, and W:,k ∈ RN×M is the weight matrix

of all stations at time point tk. For station sn at time point

tk, Xn,k ∈ RM is the feature vector, and Wn,k ∈ RM is the

related weight vector.

Let matrix Ŷ ∈ RN×K encode the ground truth matrix of

AQIs, e.g., Ŷn,k is the AQI of station sn in time point tk. Let

matrix Y ∈ RN×K encode the target matrix. For different

task, Y has different elements. For temporal prediction, if

we want to predict the air quality for h hour later, in the model

training stage, we set Yn,k = Ŷn,k+h. For spatial interpola-
tion, Y is the matrix of real-time AQIs, i.e., Yn,k = Ŷn,k.

Specifically, Y:,k ∈ RN is the target vector for time point tk.

Thus, we can integrate two tasks into one framework.

B. Distance-based Spatial Smoothness for AQIs Inference
For inferring air quality of multiple stations at time point tk,

X:,k �W:,k = {X1,kW
T
1,k, . . . ,XN,kW

T
N,k} ∈ RN should

be a good approximation of Y:,k, i.e., the air quality is the
linear weighted sum of individual feature. We formulate the
loss function as a least-squares loss function. At time point
tk, we minimize the loss function to learn W:,k as:

min
W:,k

Lk = ‖Y:,k −X:,k �W:,k‖22 + γ‖W:,k‖2F , (1)

where we add a penalty term ‖W:,k‖2F to regularize the mag-
nitude of W:,k, and ‖·‖F is the Frobenius norm. As mentioned
in [1] traditional multi-task regression models usually adopt
a graph regularization term to enforce spatial smoothness as
follows:

1

2

N∑
i=1

N∑
j=1

Dij‖Wi,k −Wj,k‖22, (2)

where Dij is the spatial proximity between station si and

station sj . One frequently-used choice of D is a power law

exponential function Dij = d(i, j)−K, where d(i, j) is the

Vincenty distance between station si and station sj . This

spatial penalty automatically encodes Tobler’s first law of

geography and imposes a soft constraint that spatially close

stations tend to have similar air quality.

C. Real-Time Feature-based Smoothness for AQIs Inference
However, this traditional spatial penalty is simply based on

static spatial distance, which cannot reveal the accurate relat-
edness among stations. In fact, the air quality reported by two
stations may be quite different though they are spatially close,
e.g., station 2 and 10 in Figure 1, because of the difference of
function of region, traffic pattern and human mobility pattern.
Therefore we introduce a feature-based penalty term to capture
the real-time proximity across stations as:

1

2

N∑
i=1

N∑
j=1

F k
ij‖Wi,k −Wj,k‖22, (3)

where F k
ij is the real-time feature proximity between station

si and station sj at time point tk. We borrow the classic Cosine
similarity to measure this feature-based similarity F as:

F k
ij = cosine(Xi,k,Xj,k) =

Xi,k ·Xj,k

‖Xi,k‖‖Xj,k‖ , (4)

where Xn,k ∈ RM is the feature vector for station sn at
time point tk. This feature-based penalty softly constrain that
stations having similar real-time features tend to have similar
air quality. Thus, the objective loss function at time point tk
can be restated as:

min
W:,k

Lk = ‖Y:,k −X:,k �W:,k‖22 + γ‖W:,k‖2F

+
1

2

N∑
i=1

N∑
j=1

(
αDij + βF k

ij

)
‖Wi,k −Wj,k‖22,

(5)

where γ, α and β are regularization parameters. Thus, the loss

function Equation (5) captures both static spatial proximity

and real-time feature proximity among air quality monitoring

stations.

D. Temporal Smoothness for AQIs Inference

In reality, aside from inter-station spatial relatedness, the

air quality in the near future have dependency on the present

air quality. Thus, we introduce temporal smoothness into the

air quality inference framework from multi-task perspective.

Specifically, we divide the entire time domain into K discrete

points ordered by time. For a single station sn, the feature

matrix Xn,: ∈ RK×M is divided into K separate feature vec-

tors {Xn,1,Xn,2, . . . ,Xn,K}. Correspondingly, we separate

weight matrix Wn,: ∈ RK×M into K separate weight vectors,

i.e., Wn,: = {Wn,1,Wn,2, . . . ,Wn,K}.
We now propose a temporal regularization to reveal inherent

temporal smoothness of AQIs within each single station.
Intuitively, considering the smooth evolution of AQIs, the
weight on each feature should also change smoothly. We use
a discrete weight sequence over time to capture the temporal
dynamics of our framework, and we add the following tempo-
ral regularization term to the loss function, which is a variant
of the fused lasso:

N∑
n=1

(
K∑

k=2

‖Wn,k −Wn,k−1‖22
)
, (6)
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where Wn,k = {W 1
n,k,W

2
n,k, . . . ,W

M
n,k} ∈ RM is the weight

vector for station sn at time point tk. Scalar Wm
n,k is the mth

element of Wn,k. We leverage l2 -norm because l2 -norm treats

each feature equally and shrinks all the quantities with the

same magnitude, but not l1 -norm which defeats our purpose

of tracking temporal dynamics of weights.

E. Optimization Task
To capture both spatial smoothness and temporal smooth-

ness into our air quality inference framework, we integrate
Equation (5) and Equation (6), then the overall objective
function can be restated as:

min
W

L =
K∑

k=1

Lk + λ
N∑

n=1

(
K∑

k=2

‖Wn,k −Wn,k−1‖22
)

=
K∑

k=1

(
‖Y:,k −X:,k �W:,k‖22 + γ‖W:,k‖2F

+
1

2

N∑
i=1

N∑
j=1

(
αDij + βF k

ij

)
‖Wi,k −Wj,k‖22

)

+ λ

N∑
n=1

(
K∑

k=2

‖Wn,k −Wn,k−1‖22
)
,

(7)

where γ, α, β and λ are regularization parameters.
Then, we solve the optimization problem of the loss func-

tion in Equation (7). Considering the differentiability of our
formulation, we approach weight tensor W by deriving the
gradient of L with respect to vector Wm

n,:. Specifically, in each
iteration, we update one vector of W, say Wm

n,:, while keep
other vectors fixed at current values to solve subproblem:

min
Wm

n,:

K∑
k=1

[ ∣∣∣Yn,k −X
(−m)
n,k �W

(−m)
n,k −Xm

n,kW
m
n,k

∣∣∣2

−
⎛
⎝2α

∑
n′ �=n

Dnn′Wm
n′,k + 2β

∑
n′ �=n

F k
nn′Wm

n′,k

⎞
⎠Wm

n,k

+

⎛
⎝α

∑
n′ �=n

Dnn′ + β
∑
n′ �=n

F k
nn′ + γ

⎞
⎠Wm

n,k
2

]

+ λ

K∑
k=2

∣∣Wm
n,k −Wm

n,k−1

∣∣2,

(8)

where X
(−m)
n,k is Xn,k with the mth element removed, and

W
(−m)
n,k is Wn,k with the mth element removed correspond-

ingly. We divide and rearrange Equation (8) according to each
time point tk as follows:

L(Wm
n,k) = Am

n,kW
m
n,k

2 + 2Bm
n,kW

m
n,k + Cm

n,k + Em
n,k (9)

where we define Am
n,k, Bm

n,k and Cm
n,k as follows:

Am
n,k = Xm

n,k
2 + α

∑
n′ �=n

Dnn′ + β
∑
n′ �=n

F k
nn′ + γ, (10)

Bm
n,k = α

∑
n′ �=n

Dnn′Wm
n′,k + β

∑
n′ �=n

F k
nn′Wm

n′,k

+
(
Yn,k −X

(−m)
n,k �W

(−m)
n,k

)
Xm

n,k,

(11)

Cm
n,k =

(
Yn,k −X

(−m)
n,k �W

(−m)
n,k

)2
. (12)

Em
n,k varies along with time point, i.e., no prior status

of temporal relatedness works when k = 1, so we have
Em

n,k = λ(Wm
n,k+1 −Wm

n,k)
2. When k ∈ {2, 3, . . . ,K − 1},

Em
n,k = λ(Wm

n,k − Wm
n,k−1)

2 + λ(Wm
n,k+1 − Wm

n,k)
2. When

k = K, Em
n,k = λ(Wm

n,k −Wm
n,k−1)

2. Thus, we can calculate
the gradient of L(Wm

n,k) as follows:

∂L(Wm
n,k)

∂Wm
n,k

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
(
Am

n,k + λ
)
Wm

n,k − 2
(
Bm

n,k + λWm
n,k+1

)
,

if k = 1

2
(
Am

n,k + 2λ
)
Wm

n,k

−2 (Bm
n,k + λWm

n,k−1 + λWm
n,k+1

)
,

if 1 < k < K

2
(
Am

n,k + λ
)
Wm

n,k − 2
(
Bm

n,k + λWm
n,k−1

)
.

if k = K
(13)

Thus in each iteration solving subproblem Equation (8),

we use gradient-based methods with the gradient calculat-

ed in Equation (13) to update the current Wm
n,k, while all

Wm′
n′,k′(n′ �= n, k′ �= k,m′ �= m) are fixed at the current

values. The time complexity of each optimization iteration is

#iter ∗O(N +M2), where #iter is the number of iterations

for the gradient descent procedure.

F. Inference Task

Based on the above preliminaries, now we can formally

present the inference task of our spatio-temporal multi-task

learning framework.

For temporal prediction, as mentioned in Section II-A, if

we want to predict the air quality for h hour later, in the

model training stage, we set Yn,k = Ŷn,k+h, then we get

corresponding weight vector Wn,k at time point tk. Because

features have temporal dependency within in single station,

i.e., features tends not to change sharply in near future, we use

Wn,k as the weight vector for time tk+1, i.e., at time tk+1,

we have feature vector Xn,k+1, then we can predict the AQI

for h hours later, i.e., tk+1+h, as Yn,k+1+h = Xn,k+1W
T
n,k.

For spatial interpolation, as the test location has no

historical AQIs, we use feature extracted from other four data

sets to train our model, i.e., meteorological, traffic, POIs and

human mobility. In test stage, we estimate the weight vector

as Wtest,k =
∑N

i=1

(
αDtest,i+βFk

test,i

)
Wi,k∑N

i=1

(
αDtest,i+βFk

test,i

) , i.e., locations which

are spatially close or have similar real-time features tend to

have similar weight vectors. Then we infer the AQI of test

location as Ytest,k = Xtest,kW
T
test,k.

III. EXPERIMENTS

In this section, we conduct extensive experiments with mul-

tiple cross-domain datasets to evaluate the air quality inferring

performance of our Spatio-Temporal real-time Feature-based

Multi-Task Regression (stfMTR) model.

A. Experimental Settings

1) Data and Features: We evaluate our method with five

datasets collected from April 1 to April 30, 2015 in Shanghai
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City, China. Here we could only collect a short-term data set

due to the limited overlap of multi-source data.

• Air quality data: Air quality has temporal dependency

within in single station, i.e., current AQI is correlated

with historical AQIs. We collect hourly historical AQIs

reported by 10 air quality monitor stations in Shanghai.

• Meteorological data: Meteorology influences the con-

centration of air pollutants. We collect hourly fine-grained

meteorological data, consisting of weather, temperature,

wind speed, wind direction and precipitation.

• Taxi trajectories: It is widely believed that traffic flow

is a major source generating air pollutants. We use a

GPS trajectory dataset generated by taxicabs to calculate

number of taxis appear in the target region, and the

expectation, standard deviation and distribution of speeds.

• Point of interests (POIs): The density of POIs indicates

the land use rate and function of region, which could

contribute to air quality inference. We crawl 12 categories

of POIs, i.e., crossroad, services of auto, restaurant, shop-

ping, hotel, school, sports leisure, scenic spot, housing,

transportation, finance, company.

• Human mobility: Human mobility implies useful infor-

mation, such as land use of a location, traffic flow and

function of a region. We extract pick-up points, drop-

off points, occupancy rate of taxis[2] from the aforemen-

tioned taxi trajectories and swiping data of smart card,

which are frequently-used indices to value the human

mobility.

2) Ground Truth and Metrics: For temporal prediction,

the ground truth is obtained from test station’s later reports,

we evaluate the predictive performance with respect to its

reports in next 1 and 3 hours. For spatial interpolation, we

use leave-one-out validation, i.e., we first remove one station

(testing set) from Shanghai and infer the AQIs of this station

with the remaining 9 stations (training set). The reports of

this station are then employed as a ground truth to evaluate

the interpolation. The performance is evaluated in terms of

the avergae root-mean-square-error (RMSE) of all stations as

RMSE = 1
N

∑N
n=1

√
1
K

∑K
k=1 (yk − ŷk)

2
.

B. Baselines

1) Baselines of Temporal Prediction: To validate the tem-

poral prediction of our stfMTR model, we compare it with the

following five baselines:

• ARIMA: Auto-Regression-Integrated-Moving-Average is

well-known for predicting time series data, which makes

predictions solely based on historical data.

• VAR: Vector Auto-Regressive is a multi variate fore-

casting technique accounting for cross correlation and

temporal correlation.

• LASSO: Lasso tries to minimize the objective function
1
2‖Y:,k − X:,k �W:,k‖22 + γ‖W:,k‖1 and encodes the

sparsity over all weights in W:,k.

• stMTL [1]: Spatio-Temporal Multi-Task Learning en-

hances static spatial smoothness regression framework by

learning the temporal dynamics of features in an non-

parametric manner.

• stMTMV [3]: Spatio-Temporal Multi-Task Multi-View

learning contains: 1) intra-station view, which combines

local spatio-temporal information within each station; 2)

inter-station view, which performs co-predictions through

spatial correlations among stations.

2) Baselines of spatial interpolation: To validate the spatial

interpolation of our stfMTR model, we compare it with the

following five baselines:

• Average: We use the remaining 9 stations’ average air

quality to interpolate the test station’ air quality.

• IDW+: IDW is a Inverse-Distance-Weighting linear inter-

polation algorithm [4] using AQIs of existing monitoring

stations. We enhance it to capture both spatial proximity

and feature similarity, named IDW+.

• CoKrigring [5]: CoKrigring is a multi-variate extension

of kriging to interpolate data in a multi-variate scenario,

which could capture both spatial and feature proximity.

• ANN: Artificial Neural Network treats historical features

from all stations as the training data to build interpolation

model. The ANN contains one hidden layer.

• SFST [6]: Shape-Function-based Spatio-Temporal

method presents AQI interpolation by accounting for the

existence of a temporal pattern on spatial measures of

time-evolving geophysical fields.

TABLE I
OVERALL PERFORMANCE (RMSE) OF EACH APPROACH.

Temporal 1 hour 3 hour Spatial real-time

ARIMA 30.225 45.787 Average 46.563

VAR 28.756 42.907 IDW+ 39.016

LASSO 25.387 38.653 CoKriging 35.291

stMTL 18.176 30.009 ANN 29.667

stMTMV 13.989 24.239 SFST 25.290

stfMTR 12.595 20.562 stfMTR 22.633

C. Experiment Results

1) Comparison of Overall Performance: First of all, we

show the overall inference performance of our approach com-

paring with different baselines and the results are shown in

Table I. The performance is evaluated in terms of the average

RMSE of 10 stations. It’s worth noting that we select the

best performing hyperparameters (through grid-search), i.e.,

γ, α, β, λ, for stfMTR in Table I. Correspondingly, we do

parameter-tuning for baselines to make comparison fairer.

For the temporal prediction, we have following obser-

vations: 1) All the techniques perform better in short-term

prediction (1 hour v.s. 3 hours), which shows that prediction

of the near time is easier than prediction of distant future.

2) stMTL, stMTMV and stfMTR outperform the other three

single-task learning methods, which demonstrates that the air

monitoring stations are correlated. 3) stMTL performs worse

than stfMTR, since stMTL only uses air quality data, while
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stfMTR can incorporate multi-source heterogeneous infor-

mation. 4) stfMTR performs better than stMTMV, because

stfMTR can capture the time-dependence within each station

and real-time feature relatedness among all the stations.

For the spatial interpolation, we have folwing observation-

s: 1) Our stfMTR model performs better in temporal prediction

than spatial interpolation, because spatial interpolation lacks

historical air quality data. 2) CoKriging outperforms IDW+,

because air quality interpolation is a non-linear system and

Kriging could capture the distribution of the stations. 3) ANN

outperforms the former two methods, as ANN incorporates

multi-source heterogeneous information. 4) stfMTR performs

better than SFST, because stfMTR captures the feature relat-

edness among all the stations, and stfMTR is more adept at

interpolation in fine-grained time scale.

Fig. 2. Inferences of stfMTR against the ground truths. (a)Temporal prediction
over next one hour. (b)Real-time spatial interpolation.

2) Air Quality Curve Fitting: Figure 2 depicts the temporal

prediction results of our method over the next one hour in

Figure (a) and the spatial interpolation in Figure (b) against

the ground truth of two selected stations from April 1 to April

30, 2015, where the black curves are the ground truth and the

red curves are the inferences. In general, our model is more

accurate in temporal prediction, because spatial interpolation

lacks historical air quality data.

3) Evaluation on Model Components: To evaluate each

component of our stfMTR model, we compared it with four

different variants of stfMTR:

• stfMTR−t: This derivation is to evaluate the performance

of temporal smoothness, so we set parameters of spatial

smoothness as 0, i.e., α = 0 and β = 0.

• stfMTR−s: In this derivation, we evaluate the perfor-

mance of spatial smoothness, so we derive it by setting

parameter of temporal smoothness as 0, i.e., λ = 0.

• stfMTR−dis: This derivation is to evaluate the perfor-

mance of spatial distance proximity smoothness, we can

derive it by setting β = 0.

• stfMTR−fea: In this derivation, we evaluate the perfor-

mance of real-time feature similarity smoothness, we can

derive it by setting α = 0.

Fig. 3. Performance comparison on model components.

The experimental results are demonstrated in Figure 3. From

this figure, we have following observations: 1) stfMTR−t out-

performs stfMTR−s in temporal prediction, while stfMTR−s
outperforms stfMTR−t in spatial interpolation, which verifies

that the spatial and temporal smoothness parts have advantages

in their related tasks respectively. 2) stfMTR−fea performs

better than stfMTR−dis because air quality reported by two

spatially close stations are usually quite different, which

motivates us to introduce the real-time feature proximity. 3)

stfMTR outperforming stfMTR−t indicates that the air moni-

toring stations are not independent. Introducing the relatedness

among stations can improve inference performances.

Fig. 4. Parameter sensitiveness. (a) Temporal prediction performance with
different parameters. (b) Spatial interpolation performance with different
parameters.

4) Parametric Sensitivity Analysis: We mainly concern

three parameters in our approach, i.e., α that controls s-

patial proximity smoothness, β that controls real-time fea-

ture smoothness and λ that controls temporal smoothness.

Specifically, we observe the RMSE of the stfMTR model by

adjusting one parameter, while keeping other parameters fixed

at best performance values. Note that the best performing

results in Table I are the average best performances of 10

stations (hyperparameters are selected through grid-search),

while the analysis in Figure 4 is based on the hyperparameters

of two selected stations, since each station has its own best

performing hyperparameters respectively.
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In Figure 4, (a), (b) separately show the parametric sensi-

tivities in temporal prediction/spatial interpolation task. Figure

4(a) shows that performance achieves the peak when α = β =
0.05, or when λ = 0.5. In other words, temporal prediction is

mainly depended on the historical air quality data within single

station. On the contrary, for spatial interpolation in Figure

4(b), performance achieves the peak when α = β = 0.5 or

λ = 0.1, which means that the test station’s air quality is

mainly affected by the other stations’ current features.

IV. RELATED WORK

In this section, we briefly introduce the related works of our

study, which can be mainly grouped into three categories.

The first category is about air quality model. Numerous

efforts have been made on understanding air quality prediction

model. [7] used data-driven models to predict fine-grained

AQI. [8] introduced a nonparametric method for the continu-

ous online prediction. The other topic closely related to this

category is air quality interpolation. [9] inferred the AQI by

a co-training learning approach. [6] investigated interpolation

methods through the temporal pattern on spatial measures.

The second category related to this paper is cross-domain

data mining. For social event analysis, authors in [10], [11]

analyzed how cross-domain knowledge influences users’ deci-

sion making process of social event participation. For complex

network analysis, Zhao et. al [12], [13] attempted to find effec-

tive multiple spreaders in complex networks by generalizing

the idea of the coloring problem in graph theory. For urban

computing, Zhu et. al [14] measured real estate liquidity by

examining multiple factors in a holistic manner. For recom-

mendation, [15] proposed a probabilistic latent factor model

by jointly considering the social correlation, geographical

influence and users preference.

The third category related to this paper is application of

multi-task learning. For water safety, [3] forecast the water

quality of a station over the next few hours. For traffic, [1]

proposed an extension to static trajectory regression frame-

work. However, the model of [1] has three drawbacks in

the following aspects: 1) the model only fed a variety of

feature about a task; 2) only static spatial proximity between

tasks depended on distance was involved in this model; and

3) samples in the same time slot share the same weights.

Unlike prior literature, we jointly take into account the three

drawbacks and propose an enhanced framework.

V. CONCLUSION

In this paper, we propose a novel Spatio-Temporal real-

time Feature-based Multi-Task Regression (stfMTR) learning

framework for better AQI inference, in which the intra-station

time dependences and the inter-station spatial relatedness

could be both captured. Specially, a new metric is incorporated

in our model to summarize the inter-station correlations by

considering both geographic distance and profile similarities.

Then, an integrated framework with well optimization is

designed to support AQI inference tasks in recent future and

in any given place. Extensive experiments have validated

the effectiveness of our framework with significant margin

compared with several state-of-the-art baselines, which prove

the potential of spatio-temporal smoothness in AQI inference.

In the future, we plan to extend our multi-task learning

framework by exploring more complex relatedness, and exploit

more applications of our framework in urban areas instead of

only air quality inference.
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