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Abstract—In this paper, we tackle a challenging problem inherent in a series of applications: tracking the influential nodes in dynamic

networks. Specifically, we model a dynamic network as a stream of edge weight updates. This general model embraces many practical

scenarios as special cases, such as edge and node insertions, deletions as well as evolving weighted graphs. Under the popularly

adopted linear threshold model and independent cascade model, we consider two essential versions of the problem: finding the nodes

whose influences passing a user specified threshold and finding the top-kmost influential nodes. Our key idea is to use the

polling-based methods and maintain a sample of random RR sets so that we can approximate the influence of nodes with provable

quality guarantees. We develop an efficient algorithm that incrementally updates the sample random RR sets against network changes.

We also design methods to determine the proper sample sizes for the two versions of the problem so that we can provide strong quality

guarantees and, at the same time, be efficient in both space and time. In addition to the thorough theoretical results, our experimental

results on five real network data sets clearly demonstrate the effectiveness and efficiency of our algorithms.

Index Terms—Social influence, dynamic networks

Ç

1 INTRODUCTION

MORE and more applications are built on dynamic net-
works and need to track influential nodes. For exam-

ple, consider cold-start recommendation in a dynamic
social network—we want to recommend to a new comer
some existing users in a social network. A new user may
want to subscribe to the posts from some users in order to
obtain hot posts (posts that are widely spread in the social
network) at the earliest time. Clearly for such a new user we
should recommend her some influential users in the current
network. Traditional Influence Maximization cannot find
those influential users we want here because it is for mar-
keting in which all seed users have to be synchronized to
spread the same content, while in reality online influential
individuals often produce and spread their own contents in
an asynchronized manner. The influential users we want
are those who have high individual influence.

More often than not, the underlying network is highly
dynamic, where each node is a user and an edge captures the
interaction from a user to another. User interactions evolve
continuously over time. In an active social network, such as
Twitter, Facebook, LinkedIn, Tencent WeChat, and Sina
Weibo, the evolving dynamics, such as rich user interactions
over time, is the most important value. It is critical to capture
the most influential users in an online manner. To address

the needs, we have to tackle two challenges at the same time,
influence computation and dynamics in networks.

Influence computation is very costly, technically #P-hard
under most influence models. Most existing studies have to
compromise and consider the influence maximization prob-
lem only on a static network. Here, influence maximization
in a network is to find a set of vertices S such that the com-
bined influence of the nodes in the set is maximized and S
satisfies some constraints such as the size of S is within a
budget. The incapability of handling dynamics in large
evolving networks seriously deprives many opportunities
and potentials in applications. Also note that influence max-
imization is very different from finding influential individu-
als, for the reason that the best k-vertices set S does not
consist of the k most influential individual nodes because
influence spreads of different individuals may overlap.

Although influence maximization and finding influential
nodes are highly related since they both need to compute
influence in one way or another, these two problems serve
very different application scenarios and face different tech-
nical challenges. For example, influence maximization is a
core technique in viral marketing [1]. At the same time,
influence maximization is not useful in the cold-start recom-
mendation scenario discussed above, since a user is inter-
ested in being connected with individual users of great
potential influence and may follow them in interaction.

To the best of our knowledge, our study is the first to
tackle the problem of tracking influential nodes in dynamic
networks. Please note that finding influential nodes is dif-
ferent from influence maximization. Specifically, we model
a dynamic network as a stream of edge weight updates.
Our model is general and embraces many practical scenar-
ios as special cases. Under the popularly adopted linear
threshold model and independent cascade model, we con-
sider two essential versions of the problem: (1) finding the
nodes whose influences passing a user specified threshold;
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and (2) finding the top-k most influential nodes. Our key
idea is to use the polling-based methods and maintain a
sample of random RR sets so that we can approximate the
influence of nodes with provable quality guarantees.

Recently, there is encouraging progress in influencemaxi-
mization on dynamic networks [2], [3], [4]. Due to the differ-
ence between influencemaximization and finding influential
nodes, the methods in those studies [2], [3], [4] cannot be
applied directly to find influential nodes. Moreover, in terms
of specific techniques, our study is also very different
from [2], [3]. Most importantly, the methods in [2], [3] are
heuristic, and do not provide any provable quality guaran-
tee. Although authors of [4] claim that the algorithm in [4]
has theoretical guarantees, in experiments reported, a key
parameter is empirically set and makes the error rate � even
greater than 1. The reason that the algorithm in [4] cannot be
implemented with small error rate is that the constant factor
in its complexity is too large to be practical in use. In addi-
tion, the influencemodel considered in [2], [4] is the Indepen-
dent Cascade model. The one in [3] is a non-linear system.
We address both the Linear Threshold model and the Inde-
pendent Cascade model in this study. To the best of our
knowledge, we are the first to tackle influence computation
with provable quality guarantee and report experiment
results where algorithms are implemented strictly to fulfill
the theoretical guarantee under the two most widely
adopted influencemodels on dynamic networks.

To tackle the novel and challenging problem of finding
influential nodes in dynamic networks, we make several
technical contributions. We develop an efficient algorithm
that incrementally updates the sample random RR sets
against network changes. We also design methods to deter-
mine the proper sample sizes for the two versions of the
problem so that we can provide strong quality guarantees
and at the same time be efficient in both space and time. In
addition to the thorough theoretical results, our experimen-
tal results on 5 real data sets clearly demonstrate the effec-
tiveness and efficiency of our algorithms. The largest data
set used contains over 41 million nodes, 1.5 billion edges
and 0.3 billion edge updates.

The rest of the paper is organized as follows.We review the
related work in Section 2. In Section 3, we recall the Linear
Thresholdmodel and the Independent cascademodel, review
the polling-based method for computing influence spread,
and formulate influence in dynamic networks. In Section 4,
we present methods updating random RR sets over a stream
of edge weight updates. In Section 5, we tackle the problem of
tracking nodes whose influence spreads pass a user-defined
threshold. In Section 6, the problem of finding the top-k influ-
ential nodes is settled. We report the experimental results in
Section 7.We conclude the paper in Section 8.

2 RELATED WORK

Domingos et al. [1] proposed to take advantage of peer
influence between users in social networks for marketing.
Kempe et al. [5] formulated the problem using two discrete
influence models, namely Independent Cascade model and
Linear Threshold model. Since then, influence computation,
especially influence maximization, has drawn much atten-
tion from both academia and industry [6], [7], [8], [9], [10],
[11], [12], [13], [14]. Some heuristic methods were designed
for computing influence spread under the Linear Threshold
model [10], [11]. For the Independent Cascade Model, [12],

[15] proposed approximations of influence spread estima-
tions. Note that there are still gaps between estimations of
influence spread and real influence spreads, which were not
clearly quantified in [12], [15]. Consequently, both [15]
and [12] cannot compute influence spread with provable
quality guarantees. Recently, a polling-based method [8],
[9], [16] was proposed for influence maximization under
general triggering models. The key idea is to use some
“Reversely Reachable” (RR) sets [9], [16] to approximate the
real influence spread of nodes. The error of approximation
can be bounded with a high probability if the number of RR
sets is large enough.

Extracting influential nodes in social networks is also an
important problem in social network analysis and has been
extensively investigated [17], [18], [19], [20]. In addition to
the marketing value, influential individuals are also useful
in recommender systems in online web service [18], [19].
Due to the computational hardness of influence spread [10],
[21], most methods did not use influence models to measure
a user’s influence, but adopted measures like PageRank
which can be efficiently computed.

In a few applications, the underlying networks are evolving
all the time [22], [23]. Rather than re-computing from scratch,
incremental algorithms are more desirable in graph analysis
tasks on dynamic networks. Maintaining PageRank values of
nodes on an evolving graph was studied in [24], [25].
Hayashi et al. [26] proposed to utilize a sketch of all shortest
paths to dynamically maintain the edge betweenness value.
The dynamics considered by the above work is a stream of
edge insertions/deletions, which is not suitable for influence
computation. The dynamics of influence network is more
complicated, because besides edge insertions/deletions, influ-
ence probabilities of edgesmay also evolve over time [27].

Aggarwal et al. [3] explored how to find a set of nodes
that has the highest influence within a time window
½t0; t0 þ h�. They modeled influence propagation as a non-
linear system which is very different from triggering models
like the Linear Threshold model or the Independent Cas-
cade model. The algorithm in [3] is heuristic and the results
produced do not come with any provable quality guarantee.

Chen et al. [2] investigated incrementally updating the
seed set for influence maximization under the Independent
Cascade model. They proposed an algorithm which utilizes
the seed set mined from the former network snapshot to effi-
ciently find the seed set of the current snapshot. An Upper
Bound Interchange heuristic is applied in the algorithm.
However, the algorithm in [2] is costly in processing updates,
since updating theUpper Bound vector for filtering non-influ-
ential nodes takesOðmÞ timewherem is the number of edges.
Moreover, the SP1M heuristic [28], which does not have any
approximation quality guarantee, was adopted in [2] for esti-
mating influence spread of nodes. Thus, the set of influential
nodes, even when the size of the seed set is set to 1, does not
have any provable quality guarantee.

Independently and simultaneously1 Ohsaka et al. [4]
studied a related problem, maintaining a number of RR sets
over a stream of network updates under the IC model such
that ð1� 1=e� �Þ-approximation influence maximization
queries can be achieved with probability at least 1� 1

n. Our
work is different from [4] in the following aspects. First, the

1. Early versions of our paper can be found at https://arxiv.org/
abs/1602.04490
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problems are different. The problem tackled in [4] is influ-
ence maximization, while our problem is tracking influen-
tial individuals. Second, [4] only studied the IC model
while in our work we addressed both the IC and the LT
models. Moreover, our algorithm is theoretically sound and
was strictly implemented to fulfill the theoretical guarantee
in experiments, while it is not the case in [4]. To enable theo-
retical guarantees for the algorithm in [4], one has to collect
enough RR sets until the cost of all RR sets (i.e., the number
of edges traversed when generating those RR sets) is

QððmþnÞlogn
�3

Þ, which is a very large number in practice. Thus,
in the experiments reported in [4], the demanded cost is
empirically set to 32ðmþ nÞlogn, which means � is even
greater than 1, because the constant factor hidden in

QððmþnÞlogn
�3

Þ is greater than 32.

3 PRELIMINARIES

In this section, we recall the Linear Threshold influencemodel
and the Independent Cascade Model [5]. We also review the
polling method for computing influence spread [8], [9], [16].
We then formulate influence in dynamic networks. For read-
ers’ convenience, Table 1 lists the frequently used notations.

3.1 Linear Threshold Model
Consider a directed social networkG ¼ hV;E;wiwhere V is a
set of vertices, E � V � V is a set of edges, and each edge
ðu; vÞ 2 E is associatedwith an influenceweight wuv 2 ½0;þ1Þ.
Each node v 2 V also carries a weight wv, which is called the
self-weight of v. Denote by Wv ¼ wv þ

P
u2NinðvÞ wuv the total

weight of v, whereNinðvÞ is the set of v’s in-neighbors.
We define the influence probability puv of an edge ðu; vÞ as

wuv
Wv

. Clearly, for v 2 V ,
P

u2NinðvÞ puv � 1.

In the Linear Threshold (LT) model [5], given a seed set
S � V , the influence propagates in G as follows. First, every
node u randomly selects a threshold �u 2 ½0; 1�, which
reflects our lack of knowledge about users’ true thresholds.
Then, influence propagates iteratively. Denote by Si the set
of nodes that are active in step i ði ¼ 0; 1; . . .Þ and S0 ¼ S. In
each step i � 1, an inactive node v becomes active ifX

u2NinðvÞ\Si�1
puv � �v:

The propagation stops at step t if St ¼ St�1. Let IðSÞ be the
expected number of nodes that are finally active when the
seed set is S. We call IðSÞ the influence spread of S. Let Iu be
the influence spread of a single node u.

Kempe et al. [5] proved that the LT model is equivalent
to a “live-edge” process where each node v picks at most
one incoming edge ðu; vÞ with probability puv. Conse-
quently, v does not pick any incoming edges with probabil-
ity 1�P

u2NinðvÞ puv ¼ wv
Wv
. All edges picked are “live” and

the others are “dead”. Then, the expected number of nodes
reachable from S � V through live edges is IðSÞ, the influ-
ence spread of S.

It is worth noting that our description of the LT model
here is slightly different from the original [5]: we use a func-
tion of edge weights and self-weight of nodes to represent
influence probabilities. Representing influence probabilities
in this way is widely adopted in the existing literature [9],
[10], [11], [16], [29].

3.2 Independent Cascade Model
A social network in the Independent Cascade (IC) model is
also a weighted graph G ¼ hV;E;wi. Let wuv represent the
propagation probability of the edge ðu; vÞ, which is the proba-
bility that v is activated by u through the edge in the next step
after u is activated. Clearly for the ICmodel, allwuv 2 ½0; 1�.

In the IC model [5], given a seed set S � V , the influence
propagates inG iteratively as follows. Denote by Si the set of
nodes that are active in step i ði ¼ 0; 1; . . .Þ and S0 ¼ S. At
step iþ 1, each node u in Si has a single chance to activate
each inactive neighbor v with an independent probability
wuv. The propagation stops at step t if St ¼ ;. Similar to the
LT model, the influence spread IðSÞ denotes the expected
number of nodes that are finally activewhen the seed set is S.

The “live-edge” process [5] of the IC model is to keep
each edge ðu; vÞ with a probability wuv independently. All
kept edges are “live” and the others are “dead”. Then, the
expected number of nodes reachable from S via live edges
is the influence spread IðSÞ.

3.3 The Polling Method for Influence Computation
Computing influence spread is #P-hard under both the LT
model and the IC model [10], [21]. Recently, a polling-based
method [8], [9], [16] was proposed for approximating influ-
ence spread of triggering models [5] like the LT model and
the IC model. Here we briefly review the polling method
for computing influence spread.

Given a social network G ¼ hV;E;wi, a poll is conducted
as follows: we pick a node v 2 V in random and then try to
find out which nodes are likely to influence v. We run a
Monte Carlo simulation of the equivalent “live-edge” pro-
cess. The nodes that can reach v via live edges are considered
as the potential influencers of v. The set of influencers found
by each poll is called a random RR (Reversely Reachable) set.

TABLE 1
Frequently Used Notations

Notation Description

G ¼ hV;E; wi A social network, where each edge ðu; vÞ 2 E
is associated with an influence weight wuv

wuv weight of the edge ðu; vÞ (LT model); propaga-
tion probability of the edge ðu; vÞ (IC model)

n ¼ jV j The number of nodes in G
m ¼ jEj The number of edges in G
NinðuÞ The set of in-neighbors of u
wu Self-weight of u
Wu Wu ¼ wu þ

P
v2NinðuÞ wvu, the total weight of u

puv puv ¼ wuv
Wu

, the probability that v is influenced by

its neighbor u (LT Model)
Iu The influence spread of node u
�I The average influence spread of individual

nodes
M The number of random RR sets
H The hyper-graph consists ofM random RR

sets
DðuÞ The degree of u 2 V inH
FRðuÞ FRðuÞ ¼ DðuÞM , the fraction of random RR sets

containing u
T Influence threshold set by users
Imax Influence spread of the most influential indi-

vidual node
Ik Influence spread of the k�th most influential

individual node
FR	 The highest FRðuÞ value for u 2 V
FRk The k�th highest FRðuÞ value for u 2 V
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Let R1, R2; . . . ; RM be a sequence of random RR sets gen-
erated by M polls, where M can also be a random variable.
TheM randomRR sets form a random hyper-graphHwhere
the set of nodes is still V and each random RR set is a hyper
edge. Denote by DðSÞ the degree of a set of nodes S in
the hyper-graph, which is the number of hyper-edges con-

taining at least one node in S. LetFRðSÞ ¼ DðSÞM . By the linear-
ity of expectation, it has been shown that nFRðSÞ is an
unbiased estimator of IðSÞ [8], [9]. Tang et al. [9] proved that
the corresponding sequence x1, x2; . . . ; xM is a martin-
gale [30], where xi ¼ 1 if S \RRi 6¼ ; and xi ¼ 0 otherwise.
We have E½PM

i¼1 xi� ¼ E½DðSÞ� ¼ MIðSÞ
n . The following

results [9] show howE½PM
i¼1 xi� is concentrated aroundMIðSÞ

n .

Corollary 1 ([9]). For any � > 0,

Pr
hXM

i¼1
xi �Mp � �Mp

i
� exp

�
� �2

2þ 2
3 �

Mp
�

Pr
hXM

i¼1
xi �Mp � ��Mp

i
� exp

�
� �2

2
Mp

�
;

where p ¼ IðSÞ
n .

Sections 5 and 6 will use the above results to analyze how
many random RR sets are needed for extracting influential
nodes. Note that since the problem we study in this paper is
different from influence maximization, the results (theo-
rems and lemmas) in [9] cannot be applied to our analysis.

3.4 Influence in Dynamic Networks
Real online social networks, such as the Facebook network
and the Twitter network, change very fast and all the time.
Relationships among users keep changing, and influence
strength of relationships also varies over time. Lei et al. [27]
pointed out that influence probabilities may change due to
former inaccurate estimation or evolution of users’ relations
over time. However, the traditional formulation of dynamic
networks only considers the topological updates, that is, edge
insertions and edge deletions [24], [25], [26]. Such a formula-
tion is not suitable for realtime accurate analysis of influence.

According to the LT model reviewed in Section 3.1, the
change of influence probabilities along edges can be
reflected by the change of edge weights. For the IC model,
since the weight of an edge is the propagation probability,
the updates on edge weights are updates on propagation
probabilities. Therefore, we model a dynamic network as a
stream of weight updates on edges.

A weight update on an edge is a 5-tuple ðu; v;þ=�;D; tÞ,
where ðu; vÞ is the edge updated, þ=� is a flag indicating
whether the weight of ðu; vÞ is increased or decreased, D > 0
is the amount of change to theweight and t is the time stamp.
The update is applied to the self-weight wu if u ¼ v. Clearly,
edge insertions/deletions considered in the existing litera-
ture [2], [24], [25], [26] can be easily written as weight
increase/decrease updates. Moreover, node insertions/dele-
tions can bewritten as edge insertions/deletions, too.

Example 1. A retweet network is a weighted graph
G ¼ hV;E;wi, where V is a set of users. An edge ðu; vÞ 2 E
captures that user v retweeted from user u. We can set wuv

according to the propagationmodel adopted as follows.
LT Model: The edge weight wuv is the number of tweets

that v retweeted from u. The self-weight wv is the number
of original tweets posted by v. The weights reflect the

influence in the social network. By intuition, if v
retweeted many tweets from u, v is likely to be influenced
by u. In contrast, if most of v’s tweets are original, v is not
likely to be influenced by others.

IC Model: The edge weight wuv is the probability that v
retweets from u, which can be calculated according to v’s
retweeting record in the past [29], [31].

An essential task in online social influence analysis is to
capture how the influence changes over time. For example,
onemaywant to consider only the retweetswithin the past
Dt time. Clearly, the set of edges E may change and the
weights wuv and wv may increase or decrease over time.
The dynamics of the retweet network can be depicted by a
stream of edgeweight updates fðu; v;þ=�;D; tÞg.
Given a dynamic network like the retweet network in

Example 1, how canwe keep track of influential users dynami-
cally? In order to know the influential nodes, the critical point
is to monitor influence of users. To solve this problem, we
adopt the polling-based method for computing influence
spread, and extend it to tackle dynamic networks. The major
challenge is how tomaintain a number of RR sets over a stream
of weight updates, such that nFRðSÞ is always an unbiased
estimator of IðSÞ. We propose a framework for updating RR
sets that addresses various tasks of tracking influential nodes.

The framework is shown in Algorithm 1. In Section 4, we
discuss how to efficiently update the existing RR sets. How
to decide if our current RR sets are insufficient, redundant
or in proper amount depends on the specific task of tracking
influential nodes. In Sections 5 and 6, respectively, we dis-
cuss this issue for two common tasks of tracking influential
nodes, namely tracking nodes with influence greater than a
threshold and tracking top-k influential nodes.

4 UPDATING RR SETS

In this section, we propose an incremental algorithm for
updating existing RR sets over a stream of edge weight
updates under both the LT model and the IC model. We
prove that, by updating RR sets using our algorithm,
nFRðSÞ is always an unbiased estimation of IðSÞ. We also
analyze the cost of an update based on the assumption that
we are maintaining in total M RR sets. Note that the value
of M should be decided for specific tasks. In Sections 5
and 6 we discuss the value of M for two common tasks of
tracking influential nodes.

Algorithm 1. Framework of Updating RR Sets

1: retrieve RR Sets affected by the updates of the graph
2: update retrieved RR sets
3: if the current RR sets are insufficient then
4: add new RR sets
5: else
6: if the current RR sets are redundant then
7: delete the redundant RR sets
8: end if
9: end if

4.1 Updating Under the LT Model
First, we have a key observation about random RR sets for
the LT model.

Fact 1. A random RR set of the LT model is a simple path.
RATIONALE. In the equivalent “live-edge” selection pro-

cess of the LT model, each node selects at most one
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incoming edge as a live edge. In the polling process, a ran-
dom RR set is the set of nodes that can be reversely reach-
able from a randomly picked node v via live edges. Thus,
the nodes in a randomRR set together form a simple path.

Fig. 1 illustrates a random RR set. The end point v1 is
picked in random at the beginning of the polling process.
Then the path is generated by reversely propagating from
v1. The reverse propagation ends at vl because vl picks one
of the nodes already in the path as its previous node. Note
that the situation that vl does not pick any previous nodes
can be regarded as vl picks itself as the previous node.

For a randomRR set, suppose the starting node is vl, we also
store the previous node picked by vl, which is useful in our
algorithm for updating random RR sets maintained. Clearly
the space complexity of a RR set isOðLÞwhereL is the number
of nodes in the RR set. We maintain an inverted index on all
random RR sets so that we can access all the random RR sets
passing a node. Moreover, we assume that the whole graph is
stored and maintained in a way allowing random access to
every node and its in-neighbors. It is not difficult to verify that
the expected number of nodes of a RR set is �I, the average indi-
vidual influence in the network. Thus, the expected space cost
ofM RR sets and the inverted index isOðM �I þ nÞ.

When there is an edge weight update ðu; v;þ=�;D; tÞ at
time t, our incremental algorithm works as follows. Denote
by wt

uv the edge weight of ðu; vÞ and Wt
v the total weight of v

at time t. We first update the edge weight of ðu; vÞ and the
total weight of v in the graph. Then, we consider the follow-
ing two cases.

1) If the update is a weight increase ðu; v;þ;D; tÞ, we
retrieve all RR sets passing v using the inverted
index. For each RR set retrieved, with probability D

Wt
v

it is rerouted from v. If a RR set is rerouted, the previ-
ous node of v is set to u and we keep reversely propa-
gating until no new nodes can be reversely reached.

2) If the update is a weight decrease ðu; v;�;D; tÞ, we
retrieve all RR sets passing v where the previous node
of v is u. Each retrieved RR set is rerouted from v with
probability D

wt�1
uv

. If a RR set is rerouted, we choose u0

among the in-neighbors of v at time t as the previous

node of vwith probability
wt
u0v
Wt

v
.We keep reversely prop-

agating until no newnodes can be reversely reached.
When rerouting random RR sets, we use random access

to obtain the nodes and the in-neighbors of them in the
graph. We also update the inverted index.

The update operations are similar to Reservoir Sam-
pling [32]. It is easy to prove that, at any time t, after the
incremental maintenance, for any ðu; vÞ where u is an in-
neighbor of v, u is picked as the previous node of v with

probability
wt
uv

Wt
v
. Thus, nFRðSÞ is always an unbiased estima-

tor of IðSÞ for any S.

Theorem 1. At any time t, after our incremental maintenance of
the random RR sets under the LT model as described in this sec-
tion, nFRðSÞ is an unbiased estimator of IðSÞ for any seed set S.
Limited by space, we skip the proof which can be found

at an early version of this work.2

The expected number of RR sets needed to be retrieved is
MIt�1v

n 
M for an update ðu; v;þ=�;D; tÞ. Only a small frac-
tion of the retrieved RR sets need to be updated. Specifi-

cally, the expected number of RR sets updated is
MIt�1v D

nWt
v



M for a weight increase update ðu; v;þ;D; tÞ, and
MIt�1v D

nWt�1
v

M for a weight decrease update ðu; v;�;D; tÞ.

Clearly the cost of incremental maintenance is much less
than re-generatingM RR sets from scratch.

4.2 Updating Under the IC Model
The idea of updating RR sets under the IC model is similar
to [4]. We briefly introduce the idea in this section.

Rather than a simple path, a random RR set in the IC
model is a random connected component. Fig. 2 illustrates
an example. Suppose the start point (the randomly picked
node at the beginning of a poll) of a RR set is v1, then each
node in this RR set can be reversely reachable from v1 via
live edges.

For a random RR set, we not only record the nodes in it
but also all live edges among those nodes. We categorize
live edges into two classes, namely BFS edges and cross
edges. When a RR set is being generated by reversely propa-
gating from the start point in a breadth-first search manner,
if a live edge ðvi; vjÞ makes vi propagated for the first time,
ðvi; vjÞ is labeled as a BFS edge; otherwise it is labeled as a
cross edge. For each node in a RR set, we use an adjacent
list to store all live edges pointing to it. We also treat every
node as a string and keep all nodes in a RR set in a prefix
tree for fast retrieving a node and the address of its adjacent
list of live edges. The major difference of our data structure
for storing a RR set to the one in [4] is we do not store the
propagation probabilities on live edges in a RR set, while [4]
does. We only store propagation probabilities in the graph
data structure. This is obviously an improvement in space
because the propagation probability of an edge is only
stored once in our method.

Like the LT model, for the IC model, we also maintain an
inverted index on all random RR sets so that we can access
all RR sets containing a node. Since in the “live-edge” process
of the IC model, every edge is picked independently, when
there is an update ðu; v;þ=�;D; tÞ at time t, status (“live” or
“dead”) of edges other than ðu; vÞ in RR sets stay the same.
Thus, we have the following incremental maintenance,

Fig. 1. A random path. vi is the previous node of vi�1.
Fig. 2. A random RR set of the IC model is a random connected
component.

2. https://arxiv.org/abs/1602.04490
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1) If the update is a weight increase ðu; v;þ;D; tÞ, we
retrieve all RR sets passing v using the inverted
index. For each RR set retrieved, if ðu; vÞ is not a live
edge of it, we add ðu; vÞ as a live edge to it with prob-
ability D

1�wt�1
uv

. After adding ðu; vÞ, if u does not belong

to this RR set at time t� 1, we further extend this RR
set by reversely propagating from u in a breadth-first
search manner.

2) If the update is a weight decrease ðu; v;�;D; tÞ, we
retrieve all RR sets passing v. If a retrieved RR set con-
tains a live edge ðu; vÞ, with probability D

wt�1
uv

we remove

ðu; vÞ. If ðu; vÞ is removed, we traverse from the start
point v1 via live edges other than ðu; vÞ of this RR set to
find all nodes reversely reachable from v1 and all live
edges among them. Then, this RR set is updated to one
containing only those nodes and live edgeswe find.

Similar to the LT model, after updating the RR sets, we
also update the inverted index.

Clearly, our incremental maintenance ensures that, for
each edge ðu; vÞ at time t, if v is a node of a RR set, the proba-
bility that ðu; vÞ is a live edge of this RR set iswt

uv. So the same
as the LT model, our incremental maintenance ensures that
from the RR sets we can always have unbiased estimations of
influence spreads.

Theorem 2. At any time t, after our incremental maintenance of
the randomRR sets under the ICmodel as described in this section,
nFRðSÞ is an unbiased estimator of IðSÞ for any seed set S.
In our incremental maintenance, we need to find out if an

edge ðu; vÞ is a live edge in a RR set. Suppose the number of
nodes in a RR set is L. Because normally the length of a node
id is a constant, given an edge ðu; vÞ, using the prefix tree we
can find the address of v’s adjacent list in Oð1Þ time. Then a
linear search is performed to find out if ðu; vÞ is a live edge. In
practice propagation probabilities are often small andP

u2NinðuÞ wuv is often a small constant. Therefore, in practice
the average complexity of the linear search is Oð1Þ and in
total we only need Oð1Þ time to decide if ðu; vÞ is a live edge
in a RR set. Moreover, the space complexity of the RR set is
OðLÞ in practice since every node only has a constant number
of live edges pointing to it. Similar to the LT model, main-
tainingM RR sets and the inverted index under the ICmodel
takesOðM �I þ nÞ space in expectation, where �I is the average
individual influence.

For the second situation when a live edge ðu; vÞ is
deleted, it is not always necessary to traverse from the start
point, which takes OðLÞ time if there are L nodes in the RR
set. It is easy to see that removing cross edges does not
change the connectivity of nodes in a RR set. Thus, if the
removed live edge is labeled as a cross edge, we do not
need to further update the RR set.

Similar to LTmodel, under ICmodel, the expected number

of RR sets needed to be retrieved is
MIt�1v

n 
M for an update
ðu; v;þ=�;D; tÞ and only a small fraction of the retrieved RR
sets need to be updated. The expected number of RR sets con-

taining a live edge ðu; vÞ is MIt�1v wt�1
uv

n and the expected number
of RR sets that do not contain ðu; vÞ as a live edge is
MIt�1v ð1�wt�1

uv Þ
n . Therefore, when there is an update on the edge

ðu; vÞ, no matter it is weight increase or weight decrease, the
expected number of RR sets needed to be updated is
MIt�1v D

n 
M. Clearly the cost of incremental maintenance is
much less than re-generatingM RR sets from scratch.

5 TRACKING THRESHOLD-BASED INFLUENTIAL
NODES

A natural problem setting of finding influential nodes is to
find all nodes whose influence spread is at least T , where T
is a user-specified threshold. In this section, we discuss how
to use random RR sets to approximate the desired result.

Before our discussion, we clarify that our problem is not
HeavyHitters [33] evenwhenwe treat the influence spread of
a node as the “frequency/popularity” of an element. First, the
definitions of “frequency” are different and have dramatically
different properties. In Heavy Hitters, a stream of items is a
multiset of elements and the frequency of an element is its
multiplicity over the total number of items. Thus, the sum of
frequencies of all elements is 1, whichmeans there are at most
1=f elements with frequency passing a threshold f. In our
problem, if we define the “frequency” of a node v as Iv=n, the
value of

P
v2V

Iv
n is not necessarily 1. Actually one can easily

prove that computing
P

v2V Iv is #P-hard because computing
Iv is #P-hard. As a result, normalizing Iv is difficult. Thus,
given any influence threshold T < n, we cannot have an
upper bound on the number of nodes that have influence
greater than T . Also, the input of our problem is a stream of
edge updates but not a stream of insertion/deletion of nodes
(elements). Moreover, the influence of a node is not a simple
aggregation of weights on the associated edges. In terms of
technical solutions, it is hard to use a sublinear space to con-
vert an update of edge weight to a list of insertions/deletions
of nodes. As illustrated in Section 4, we need both the graph
and RR sets to decide which nodes should be increased/
decreased in frequency by an edge update. This is very differ-
ent from the settings of Heavy Hitters where only a sublinear
space is allowed, while the graph itself already takes space
VðnÞ. We also need to access a number of RR sets, while in
Heavy Hitters only counters of elements are allowed to be
kept inmemory.

Due to the #P-hardness of computing influence spread
under the LT model [10], it is not likely that we can find in
polynomial time the exact set of nodes whose influence
spread is at least T . Thus, we turn to algorithms that allow
controllable small errors. Specifically,we ensure that the recall
of the set of nodes found by our algorithm is 100 percent and
we tolerate some false positive nodes.Moreover, the influence
spread of those false positive nodes should take a high proba-
bility to have a lower bound that is not much smaller than T .
We set the lower bound to T � �n, where � controls the error.

According to Corollary 1, the largerM, the more accurate
the unbiased estimator nFRðuÞ. Thus, the intuition of decid-
ing M is to make sure that, for each u, nFRðuÞ is large
enough when Iu � T , and small enough when Iu � T � �n.

We first show that nFRðuÞ is not likely to be too much
smaller than T if Iu � T andM is large enough.

Lemma 1. With M random RR sets, if Iu � T , with probability
at least 1� expð�M�2n

8T Þ, nFRðuÞ � T � �n
2 .

Proof. If Iu � T , we have

Pr
n
nFRðuÞ � T � �n

2

o
¼ Pr

n
nFRðuÞ � Iu �

�
Iu � T þ �n

2

�o

¼ Pr
n
nFRðuÞ �

�
1� Iu � T þ �n

2

Iu

�
Iu

o

� exp
n
�MðIu � T þ �n

2 Þ2
2nIu

o
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ðIu�Tþ�n2 Þ2
Iu

is non-decreasing with respect to Iu when
Iu � T . Thus,

Pr
n
nFRðuÞ � T � �n

2

o
¼ exp

�
�M�2n

8T

�
:

tu
Similarly, if Iu � T � �n, the probability that nFRðuÞ is

abnormally large is pretty small whenM is large.

Lemma 2. With M random RR sets, if Iu � T � �, with proba-
bility at least 1� 2expð�M�2n

12T Þ, nFRðuÞ � T � �n
2 .

Proof. We prove that if Iu � T � �n, PrfnFRðuÞ � Iu � �n
2 g �

2expð�M�2n
12T Þ. Note that nFRðuÞ � Iu � �n

2 is a sufficient con-

dition for nFRðuÞ � T � �n
2 when Iu � T � �n.

First, suppose T � 3�n
2 , which means �n

2 � T � �n. There
are two possible cases.

Case 1. �n2 � Iu � T � �n. Then,

Pr
n
jnFRðuÞ � Iuj � �n

2

o

¼ Pr
n
jMFRðuÞ �MIu

n
j � �M

2

o

� 2exp
n
� 1

3

MIu
n

�2n2

4I2u

o
� 2exp

�
�M�2n

12T

�
:

Case 2. Iu � �n
2 . Then,

Pr
n
nFRðuÞ � Iu � �n

2

o

¼ Pr
n
MFRðuÞ �MIu

n
� �M

2

o

� exp
n
� 1

ð2þ 2
3Þ �n

2Iu

MIu
n

�2n2

4I2u

o

� exp
n
� 3M�

16

o
� 2exp

�
�M�2n

12T

�
:

Second, if T � 3�n
2 , for all Iu � T � �n, Iu � �n

2 . Then,
all Iu � T � �n fall into Case 2 above and the lemma still
holds. tu
Because expð�M�2n

8T Þ � 2expð�M�2n
12T Þ, by applying Boole’s

inequality (that is, the Union Bound), with probability at

least 1� 2n � expð�M�2n
12T Þ, every nFR satisfies the conditions

in Lemmas 1 and 2. Therefore, we have the following theo-
rem on the sample sizeM for finding nodes whose influence
spread is at least T .

Theorem 3. By setting the number of random RR sets

M ¼ 12T
n�2

ln 2n
d
, with probability at least 1� d the following con-

ditions hold for every node u.

1) If Iu � T , then nFRðuÞ � T � �n
2

2) If Iu < T � �n, then nFRðuÞ < T � �n
2

One nice property ofM in Theorem 3 is that, given n, T , �
and d, M is a constant. Therefore, when we track nodes
of influence spread at least T in a dynamic network, nomat-
ter how the network changes, the sample size M remains
the same.

6 TRACKING TOP-K MOST INFLUENTIAL NODES

Another useful problem setting is to find the top-k influen-
tial nodes, where k is a user-specified parameter.

Denote by Ik the influence spread of the kth most influen-
tial node. Extracting top-k influential individual nodes
equals extracting all nodes whose influence spread is at
least Ik. Again, due to the #P-hardness of influence compu-
tation, we probably have to tolerate errors in the result
when designing algorithms. Similar to the task in Section 5,
we hope the result returned by our algorithm contains all
real top-k nodes, and for each false-positive node returned,
its influence spread is no smaller than Ik � �n with a high
probability.

In this section, we first analyze the number of random RR
setsM we need to achieve the above goalwith a high probabil-
ity. We show thatM is proportional to the maximum individ-
ual influence spread Imax and devise an algorithm that can
give a really good estimation of Imax with a high probability.
Then, combining the theoretical results in Section 5, we pro-
pose a method that improves the precision of the result set of
nodes, that is, reducing the number of false-positive nodes.

6.1 Sample Size
Unlike the task in Section 5, we do not know the threshold
Ik in advance. Thus when selecting nodes according to val-
ues of nFRðuÞ, we do not have a threshold value. This is
similar to mining top-k itemsets using sampled transac-
tions [34], [35]. The intuition of our idea to solve the prob-
lem is that, if we have enough samples, we can bound the
threshold value within a small range.

To collect all real top-k influential nodes and filter out all
nodes whose influence spreads are smaller than Ik � �n, we
sample enough random RR sets such that for every u 2 V ,
jnFRðuÞ � Iuj � �n

4 with a high probability. Denote by FRk

the kth highest FR value. We have the following result.

Lemma 3. If for all u 2 V , jnFRðuÞ � Iuj � �n
4 , then the follow-

ing conditions hold. (1) if Iu � Ik, then nFRðuÞ � nFRk � �n
2 ;

and (2) if Iu � Ik � �n, then nFRðuÞ � nFRk � �n
2 .

Proof. First, nFRk � Ik � �n
4 because there are at least k

nodes having the value of nFR at least Ik � �n
4 . Second,

nFRk � Ik þ �n
4 because there are at most k nodes having

the value of nFR at least Ik þ �n
4 . Thus, we have nFRk �

�n
4 � Ik � nFRk þ �n

4 .

If Iu � Ik, we have nFRðuÞ � Iu � �n
4 � Ik � �n

4 �
nFRk � �n

2 .

If Iu � Ik � �n, we have nFRðuÞ � Iu þ �n
4 � Ik � 3�n

4 �
nFRk � �n

2 . tu
So we need to derive a lower bound of M to make sure

jnFRðuÞ � Iuj � �n
4 for every u 2 V with a high probability.

Denote by Imax the maximum individual influence spread.

Lemma 4.When the number of random RR sets isM, with prob-

ability at least 1� 2expð� Mn�2

48Imax
Þ, jnFRðuÞ � Iuj � �n

4 .

Proof. We need to consider two possible cases.

Case 1. If Iu � �n
4

Pr
n
jnFRðuÞ � Iuj � �n

4

o
� 2exp

n
� 1

3

�2n2

16I2u

MIu
n

o

� 2exp
�
� Mn�2

48Imax

�
:

Case 2. If Iu � �n
4
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Pr
n
jnFRðuÞ � Iuj � �n

4

o

¼ Pr
n
nFRðuÞ � Iu � �n

4

o
� exp

�
� 3

8

�n

4Iu

MIu
n

�

¼ exp
�
� 3M�

32

�
� 2exp

�
� Mn�2

48Imax

�
: tu

By applying the Union Bound, with probability at least
1� 2n � expð� Mn�2

48Imax
Þ, we have jnFRðuÞ � Iuj � �n

4 for u 2 V . In
sequel, we have the following theorem settling the value ofM.

Theorem 4. By setting the number of random RR sets

M ¼ 48Imax
n�2

ln 2n
d
, with probability at least 1� d the following

conditions hold. (1) If Iu � Ik, then nFRðuÞ � nFRk � �n
2 ; and

(2) If Iu < Ik � �n, then nFRðuÞ < nFRk � �n
2 .

Algorithm 2. Sampling Sufficient Random RR sets for
Top-K Influential Individuals

Input:G ¼ hV;E; wi, �, d andRwhich is a set of random RR sets
Output:R
1: while jRj < 48�4�

�2
ln 2n

d
do

2: Sample a random RR set and add toR
3: end while

4: x jRj�2
48 ln 2n

d

5: while FR	 � x� � do
6: Sample a random RR sets and add toR
7: x jRj�2

48 ln 2n
d

8: end while
9: returnR

Unlike [34], [35], [36], the sample size in Theorem 4 not
only depends on the confidence level 1� d and the error �, but
also is proportional to Imax, which varies over different data-
sets. This is meaningful in practice, because for a social net-
work, Imax is normally very small comparing to n [7], [9], [10],
[11], [29], [37]. One may link finding influential nodes with
finding frequent itemsets remotely due to the intuition that a
node frequent in many RR sets is likely influential. In sam-
pling based frequent itemsets mining [34], [35], [36], the sam-
ple size is decided by � and d only, and thus is in general
larger than ours here.

6.2 Estimating Imax while Sampling
The sample size M in Theorem 4 depends on Imax, which is
unknown and hard to compute in exact. In this section, we
devise a sampling algorithm that gives a tight upper bound
of Imax with a high probability and at the same time samples
enough random RR sets we need.

Our algorithm sets M ¼ 48x
�2

ln 2n
d

and progressively
increases xn until it is enough larger than Imax. The intuition
is that, if nFR	 (FR	 is the highest FRðuÞ value) is suffi-
ciently smaller than xn, probably the current M is large
enough.

Algorithm 2 shows our sampling method. We prove that
the final random RR sets are enough and xn, the upper
bound of Imax, is tight.

Lemma 5. When M ¼ 48x
�2

ln 2n
d
, if Imax � xn, with probability

at least 1� d1, FR	 � x� �, where d1 ¼ ð d2nÞ24 and FR	 is the
maximum FRðuÞ for all u 2 V .

Proof. Suppose u is a node with the maximum influence.
Since xn � Imax, we have

PrfFR	 � x� �g � PrfFRðuÞ � x� �g

¼ Pr FRðuÞ �
�
1� �

x

�
x

� �

� Pr nFRðuÞ �
�
1� �

x

�
Imax

� �

� exp

�
� ð

�
xÞ2MImax

2n

�

� exp

�
� ð

�
xÞ2Mx

2

�
¼

�
d

2n

�24

:

tu
Lemma 5 shows that with a high probability, if

FR	 < x� �, then the current random RR sets are enough.
Lemma 6. When xn � Imax, M ¼ 48x

�2
ln 2n

d
, with probability at

least 1� d2, 8u, if Iu � ðx� 2�Þn, then FRðuÞ � x� �, where

d2 ¼ nð d2nÞ16.
Proof. Let �0 ¼ �

x. Note that the first 3 lines of Algorithm 2
ensure that x � 4� and �0 � 1

4. Thus, 1��0
2 � 1� 2�0. We

have two possible cases.

Case 1. If ð1��
0Þxn
2 � Iu � ð1� 2�0Þxn

PrfFRðuÞ � x� �g

¼ Pr
n
nFRðuÞ �

h
1þ ð1� �0Þxn� Iu

Iu

i
Iu

o

� exp
�
� 1

3

½ð1� �0Þxn� Iu�2
I2u

MIu
n

�

� exp
�
� �02Mx

3ð1� 2�0Þ
�
� exp

�
� 16 ln

2n

d

�
¼

� d

2n

�16

:

Case 2. If Iu � ð1��
0Þxn
2

PrfnFRðuÞ � ð1� �0Þxng

¼ Pr
n
nFRðuÞ �

h
1þ ð1� �0Þxn� Iu

Iu

i
Iu

o

� exp
�
� 3

8

½ð1� �0Þxn� Iu�
Iu

MIu
n

�

� exp
�
� 3ð1� �0ÞMx

16

�

� exp
� 9 ln 2n

d

2�02
�
� exp

�
� 18 ln

2n

d

�
¼

� d

2n

�18
:

Applying the Union Bound, we have that, with proba-
bility at least 1� nð d2nÞ16, FRðuÞ � x� � for any u such
that Iu � ðx� 2�Þn. tu
Lemma 6 implies that when ðx� 2�Þn � Imax, FR	 � x� �

with a high probability. The first time in Algorithm 2 when
ðx� 2�Þn � Imax we have xn � maxð4�n; Imax þ 2�nÞ. If we
set � smaller than Imax

2n ), the upper bound xn is at most 2Imax.
This is achievable in practice since Imax has some trivial
lower bounds, such asmaxu2V

P
v2NoutðuÞ puv.

Theorem 5. Given � and d, with probability 1� oð 1
n14
Þ,

Algorithm 2 returns M ¼ 48x
�2

ln 2n
d
� 48Imax

n�2
ln d

2n random RR
sets, and xn � maxð4�n; Imax þ 2�nÞ.

Proof. There are only two possible reasons that Algorithm 2
may fail to achieve the above goals: (1) it stops sampling
when xn is still smaller than Imax; or (2) it does not stop
sampling when xn reaches Imax þ 2�n. Lemma 6 indicates
that the probability that (2) happens is at most nð d2nÞ16. We
bound the probability that (1) occurs.
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Algorithm 2 stops when FR	 < x� �. According to
Lemma 5, if xn � Imax, FR	 < x� � happens with proba-
bility at most ð d2nÞ24. Before xn is increased to Imax, the test

whether FR	 � x� � is called at most
48Imax ln

2n
d

n�2
¼ OðlognÞ

times when � and d are fixed. Thus, the probability that
Algorithm 2 stops before xn reaches Imax due to
FR	 < x� � is at most OðlognÞ 	 ð d2nÞ24.

Putting all things together and applying the Union
bound, the failure probability is at most OðlognÞ	
ð d2nÞ24 þ nð d2nÞ16 ¼ oð 1

n14
Þ. tu

When the network is updated, the value of Imax may
change. Thus, after we update the random RR sets, we call
Algorithm 2 to ensure that we have enough but not too
many random RR sets. In addition, if Imax decreases dramat-
ically, which means the current sample size is too large, we
abandon some RR sets. Specifically, if FR	 < x� �, which
means with very high probability that Imax < xn, we keep
deleting the last RR set from R until if deleting the current
last RR set leads to FR	 > x� � (see Algorithm 3).

Algorithm 3. Deleting Redundant Random RR Sets for
Top-K Influential Individuals

Input:G ¼ hV;E; wi, �, d andRwhich is a set of random RR sets
Output:R
1: while FR	 < x� � ^ jRj > 48�4�

�2
ln 2n

d
do

2: h the last RR set of R
3: Delte h fromR
4: if FR	 � x� � _ jRj < 48�4�

�2
ln 2n

d
then

5: Add h back toR
6: break
7: end if
8: end while
9: returnR

Combining Theorem 4 and applying the Union bound,
we have that, with probability at least 1� d� oð 1

n14
Þ, our

maintenance of RR sets ensures that by setting the filtering
threshold FRk � �

2, the set of nodes found includes all real
top-K influential nodes and does not have any nodes such
that Iu < Ik � �n.

6.3 Improving Precision
According to Theorem 4, we filter out nodes such that
FRðuÞ < FRk � �

2. Using Theorem 3, we can further improve
the filtering threshold tomake the precision higher.

Theorem 6. After using Algorithms 2 and 3 to adjust the num-
ber of RR sets, with probability at least 1� 2d� oð 1

n14
Þ, the fol-

lowing conditions hold.

1) If Iu � Ik, then FRðuÞ � FRk � �
4� �1

2
2) If Iu < Ik � �n, then FRðuÞ < FRk � �

4� �1
2

where �1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
FRk��

4
4x

q
� � �

2.

Proof. According to Theorem 5, after adjusting the number
of RR sets by Algorithms 2 and 3, with probability

1� oð 1
n14
Þ, we have M ¼ 48x

�2
ln 2n

d
� 48Imax

n�2
ln d

2n. When M �
48Imax
n�2

ln d
2n, with probability at least 1� d, nFRk � �n

4 � Ik �
nFRk þ �n

4 (Lemmas 3 and 4).
Suppose M ¼ 48x

�2
ln 2n

d
� 48Imax

n�2
ln d

2n and nFRk � �n
4 �

Ik � nFRk þ �n
4 . Let �1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
FRk��

4
4x

q
� � �

2. Applying

Theorem 3 and setting the threshold T ¼ ðFRk � �
4Þn, with

probability at least 1� d, we have the follows. (1) if Iu �
ðFRk � �

4Þn, then FRðuÞ � FRk � �
4� �1

2 ; and (2) if Iu <

ðFRk � �
4� �1Þn, then FRðuÞ < FRk � �

4� �1
2 . Clearly Ik �

ðFRk � �
4Þn and Ik � �n � nFRk � 3�n

4 �FRk � �
4� �1Þn.

Applying the Union bound, we have that with proba-
bility at least 1� 2d� oð 1

n14
Þ, the above conditions hold

after executions of Algorithms 2 and 3. tu
Theorem 6 shows that we can use a tighter filtering

threshold FRk � �
4� �1

2 which is no greater than the original
one FRk � �

2. Meanwhile, the failure probability is only
increased by d at most.

6.4 Maintaining Nodes Ranking Dynamically
Besides efficiently updating RR sets from where accurate
estimations of influence spreads of influential nodes can be
obtained, how to maintain the set of influential nodes is also
an essential building block of influential nodes mining on
dynamic networks. A brute force solution is to perform an
OðnlognÞ sorting every time after an update but the cost
may be unacceptably high in practice. To solve this prob-
lem, we adopt the data structure for maximum vertex cover
in a hyper graph [8]. This data structure can help us main-
tain all nodes sorted by their estimated influence spreads,
which are proportional to their degrees in H. Clearly, if all
nodes are sorted, the set of influential nodes are those ones
in the top. Fig. 3 shows the data structure.

We maintain all nodes sorted by their degrees inH (recall
that DðuÞ, the degree of u in H, means how many RR sets
contain u). Nodes with the same degree in H are grouped
together and stored in a doubly linked list like in Fig. 3.
Moreover, for those nodes, we create a head node which is
the start of the linked list containing all nodes with the same
given degree. Apparently, the number of head nodes is the
number of distinctive values of DðuÞ inH. We also maintain
all head nodes sorted in a doubly linked list. For each
u 2 V , we maintain its address in the doubly linked lists
structure and the corresponding head node. Note that when
a RR set is updated, a new RR set is generated or an existing
RR set is deleted, DðuÞ changes at most by 1 for each u.
Thus, every time when DðuÞ is updated (increased or
decreased by 1), we only need Oð1Þ time to find the head
node of the linked list u should be in (if such a head node
does not exist now, we can create it and insert it into the
doubly linked list of head nodes in Oð1Þ time) and insert it
to the next of the head in Oð1Þ time. If after an update, a
head node has no nodes after it, we delete it from the

Fig. 3. Linked list structure, where d1 > d2 > d3 > � � � > dmin.
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doubly linked list of head nodes in Oð1Þ time. Therefore, in
total maintaining the linked list data structure only costs
Oð1Þ time when the degree of a node changes due to the
update of an RR set. With this data structure, we can always
maintain all nodes sorted by their degrees in H. Also,
retrieving FR	, which is needed in the frequently called test
whether FR	 � x� � , can be done in Oð1Þ time.

7 EXPERIMENTS

In this section, we report a series of experiments on 5 real
networks to verify our algorithms and our theoretical analy-
sis. The experimental results demonstrate that our algo-
rithms are both effective and efficient.

7.1 Experimental Settings
We ran our experiments on 5 real network data sets that are
publicly available online (http://konect.uni-koblenz.de/
networks/, http://www.cs.ubc.ca/�welu/and http://
konect.uni-koblenz.de). Table 2 shows the statistics of the
four data sets.

To simulate dynamic networks, for each data set, we ran-
domly partitioned all edges exclusively into 3 groups: E1

(85 percent of the edges), E2 (5 percent of the edges) and E3

(10 percent of the edges). We used B ¼ hV;E1 [ E2i as the
base network. E2 and E3 were used to simulate a stream of
updates.

For the LTmodel, for each edge ðu; vÞ in the base network,
we set theweight to be 1. For each edge ðu; vÞ 2 E3, we gener-
ated a weight increase update ðu; v;þ; 1Þ (timestamps
ignored at this time). For each edge ðu; vÞ 2 E2, we generated
one weight decrease update ðu; v;�;DÞ and one weight
increase update ðu; v;þ;DÞwhere Dwas picked uniformly at
random in ½0; 1�. We randomly shuffled those updates to
form an update stream by adding random time stamps. For
each data set, we generated 10 different instances of the base
network and update stream, and thus ran the experiments 10
times. Note that for the 10 instances, although the base net-
works and update streams are different, the final snapshots
of them are identical to the data set itself.

For the IC model, we first assigned propagation probabil-
ities of edges in the final snapshot, i.e., the whole graph. We

set wuv ¼ 1
in-degreeðvÞ, where in-degreeðvÞ is the number of

in-neighbors of v in the whole graph. Then, for each edge
ðu; vÞ in the base network, we set wuv to

1
in-degreeðvÞ. For each

edge ðu; vÞ 2 E3, we generated a weight increase update
ðu; v;þ; 1

in-degreeðvÞÞ (timestamps ignored at this time). For

each edge ðu; vÞ 2 E2, we generated one weight decrease
update ðu; v;�;D 1

in-degreeðvÞÞ and one weight increase

update ðu; v;þ;D 1
in-degreeðvÞÞ where D was picked uni-

formly at random in ½0; 1�. We randomly shuffled those
updates to form an update stream by adding random time
stamps. For each dataset we also generated 10 instances.

For the parameters of tracking nodes of influence at least
T , we set � ¼ 0:0002, d ¼ 0:001, and T ¼ 0:001� n for the
first four data sets. We set � ¼ 0:001, d ¼ 0:001, and
T ¼ 0:005� n for the twitter data set. For the top-K influen-
tial individuals tracking task, we set K ¼ 50, d ¼ 0:001, and
� ¼ 0:0005 for first four data sets. We set K ¼ 100, d ¼ 0:001,
and � ¼ 0:0025 for the twitter data set. The reason we have
different parameter settings for the twitter data is that it has
more influential nodes than other networks.

All algorithms were implemented in Java and ran on a
Linux machine of an Intel Xeon 2.00 GHz CPU and 1 TB
main memory.

7.2 Effectiveness
We first assess the effectiveness of our techniques.

7.2.1 Verifying Provable Quality Guarantees

A challenge in evaluating the effectiveness of our algorithms
is that the ground truth is hard to obtain. The existing litera-
ture of influence maximization [5], [9], [11], [15], [16], [21]
always use the influence spread estimated by 20,000 times
Monte Carlo (MC) simulations as the ground truth. However,
such a method is not suitable for our tasks, because the rank-
ing of nodes really matters here. Even 20,000 times MC simu-
lations may not be able to distinguish nodes with close
influence spread. As a result, the ranking of nodes may differ
much from the real ranking. Moreover, the effectiveness of
our algorithms has theoretical guarantees while 20,000 times
MC simulations is essentially a heuristic. It is not reasonable
to verify an algorithm with a theoretical guarantee using the
results obtained by a heuristic method without any quality
guarantees.

In our experiments, we only used wiki-Vote and Flixster
to run MC simulations and compare the results to those pro-
duced by our algorithms. We used 2,000,000 times MC sim-
ulations as the (pseudo) ground truth in the hope we can
get more accurate results. According to our experiments,
even so many MC simulations may generate slightly differ-
ent rankings of nodes in two different runs but the differ-
ence is acceptably small. We only compare results on the
identical final snapshot shared by all instances because run-
ning MC simulations on multiple snapshots is unaffordable
(10 days on the final snapshots of Flixster).

Table 3 reports the recall of the sets of influential nodes
returned by our algorithms and the maximum errors of the
false positive nodes in absolute influence value. Ave.
SD
represents the average value and the standard deviation of a
measurement on 10 instances. Our methods achieved
100 percent recall every time as guaranteed theoretically.
Moreover, the real errors in influence were substantially
smaller than themaximum error bound provided by our the-
oretical analysis. One may ask why we do not report the pre-
cision here. We argue that precision is indeed not a proper
measure for our tasks when 100 percent recall is required.
Since we can only estimate influence spreads of nodes via a
sampling method due to the exact computation being #P-
hard, if two nodes have close influence spreads, say Iu ¼ 100
and Iv ¼ 99, it is hard for a samplingmethod to tell the differ-
ence between Iu and Iv. Thus, if there are many nodes whose
influence spreads are just slightly smaller than the threshold,
it is hard to achieve a high precision when ensuring 100 per-
cent recall. Moreover, with a high probability, our method
guarantees that influence spreads of false positive nodes are
not far away from the real threshold. Such small errors are
completely acceptable in many real applications.

TABLE 2
The Statistics of the Data Sets

Network #Nodes #Edges Average degree

wiki-Vote 7,115 103,689 14.6
Flixster 99,053 977,738 9.9
soc-Pokec 1,632,803 30,622,564 18.8
flickr-growth 2,302,925 33,140,018 14.4
Twitter 41,652,230 1,468,365,182 35.3
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Table 4 reports our estimation of the upper bound of Imax on
the final snapshot of each network when tracking top-k influ-
ential nodes. The results indicate that the upper bound esti-
mated by our algorithm is only a little greater than the real Imax.

For the 3 large data sets, we did not run 2,000,000 times
MC simulations to obtain the pseudo ground truth since the
MC simulations are too costly. Instead, we compare the sim-
ilarity between the results generated by different instances.
Recall that the final snapshots of the 10 instances are the
same. If the sets of influential nodes at the final snapshots of
the 10 instances are similar, at least our algorithms are sta-
ble, that is, insensitive to the order of updates. To measure
the similarity between two sets of influential nodes, we
adopted the Jaccard similarity.

Fig. 4 shows the results where I1, . . . , I10 represent the
results of the first, . . . , tenth instances, respectively. We also

ran the sampling algorithm directly on the final snapshot,
that is, we computed the influential nodes directly from the
final snapshot using sampling without any updates. The
result is denoted by ST. The results show that the outcomes
from different instances are very similar, and they are simi-
lar to the outcome from ST, too. The minimum similarity in
all cases is 87 percent.

7.2.2 Varying �

For the 2 datasets with (pseudo) ground truth, we also set
the error parameter � different values and report results of
the Top-K tracking task. Due to limit of space, we omit
results of the threshold-based tracking task and results of
varying k because they are all similar. In all cases the recall
is always 100 percent, we report maximum errors of nodes
returned by our algorithm in different settings of � in Fig. 5.

TABLE 3
Recall and Maximum Error

wiki-Vote Flixster

Theoretical Value (w.h.p.) Ave. 
 SD (LT) Ave. 
 SD (IC) Theoretical Value (w.h.p.) Ave. 
 SD (LT) Ave. 
 SD (IC)

Recall (Threshold) 100% 100% 100% 100% 100% 100%
Max. Error (Threshold) 0:0002 	 7115 ¼ 1:423 0.758 
 0.033 0.814 
 0.013 0:0002 	 99053 ¼ 19:81 10.81 
 0.46 11.79 
 0.85
Recall (Topk-K) 100% 100% 100% 100% 100% 100%
Max. Error (Top-K) 0:0005 	 7115 ¼ 3:558 1.254 
 0.080 1.272 
 0.090 0:0005 	 99053 ¼ 49:53 21.77 
 0.87 21.17 
 0.56

The errors are measured in absolute influence value. “w.h.p.” is short for “with high probability”.

TABLE 4
Estimated Upper Bounds of Imax and the Experimental Values

Dataset LT Model IC Model

xn(Ave. 
 SD) Imax Approx. Ratio(Ave. 
 SD) xn(Ave. 
 SD) Imax Approx. Ratio(Ave. 
 SD)

wiki-Vote 57.7297 
 0.3372 51.770 1.1151 
 0.0065 55.2079 
 0.0941 51.7697 1.0664 
 0.0018
Flixster 456.3168 
 2.3474 404.2442 1.1288 
 0.0058 419.9483 
 1.6652 372.2075 1.1283 
 0.0045

Fig. 4. Similarity among results in different instances.
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The maximum error is constantly smaller than the theoreti-
cal value, and it increases roughly linearly as � increases.
Moreover, the theoretical value increases faster than the
maximum error.

7.2.3 Comparing with Simple Heuristics

We also compare our algorithms with two simple heuristics,
degree and PageRank, which simply return top ranked
nodes by degree or PageRank values as influential nodes.
The reason we choose these two heuristics is that they both
can be efficiently implemented in the setting of dynamic
networks. Note that these two heuristics cannot solve the
threshold based influential nodes mining problem because
they do not know the influence spread of each node.

To compare our algorithms with degree and PageRank
heuristics, we report the recall of the top ranked nodes
obtained by each method on wiki-Vote and Flixster data sets
in Fig. 6. Nodes ranking by 2,000,000 times Monte Carlo sim-
ulations is regarded as the (pseudo) ground truth. The mea-

sureRecall@N is calculated by TPN
N , where TPN is the number

of nodes ranked top-N by both our algorithms and the
ground truth. The results show that the rankings of the top
nodes generated by our algorithms constantly have very
good quality, while the two heuristics sometimes perform
well but sometimes return really poor rankings. Moreover,
performance of a heuristic algorithm is not predictable.

7.3 Scalability

7.3.1 Running Time with Respect to Number of

Updates

We also tested the scalability of our algorithms. Fig. 7 shows
the average running time with respect to the number of
updates processed. The average is taken on the running
times of the 10 instances. The time spent when the number
of updates is 0 reflects the computational cost of running
the sampling algorithm on the base network. In Table 5, we
also report running time of algorithms on the static final
snapshot of each dataset. Clearly, the non-incremental algo-
rithm (rerunning the sampling algorithm from scratch

Fig. 5. � versus maximum error.

Fig. 6. Recall@N.

Fig. 7. Scalability.
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when the network changes) is not competent at all because
the running time of processing the base network and the
update stream is only several times larger than the running
time of processing the whole network, and the number of
updates is huge, tens of thousands or even hundreds of mil-
lions. This result shows that our incremental algorithm out-
performs rerunning the sampling algorithm from scratch by
several orders of magnitude.

For the LT model, our algorithm scales up roughly line-
arly. For the IC model, the running time increases more
than linear. This is due to our experimental settings. For the
LT model, the sum of propagation probabilities from all in-
neighbors of a node is always 1, while in the IC model, at
the beginning the sum of propagation probabilities from all
in-neighbors is roughly 0.9 but becomes 1 finally. Thus, the
spreads of nodes change more dramatically in the IC
model than in the LT model. According to our analysis in
Section 4.2, the cost of updating the RR sets is proportional
to It�1v , the influence of v at time t� 1, and M, the sample
size. In the top-k task, M is decided by Imax. So the running
time curves of the IC model are not linear.

Fig. 8 shows how Imax and the sample size M in the top-k
task changes over time in the flickr-growth dataset.We do not
report results on other datasets because they are all similar.

7.3.2 Memory Usage with Respect to Input Size

We also report the memory usage of our algorithm against
the increase of the input graph size. Since thememory needed
in Top-K influential nodes mining is usually much higher
than the threshold-based mining, we only report results of
the Top-K influential nodes mining algorithm. We used the
second largest data set, flickr-growth network, to generate
some smaller networks. Specifically, we sampled 20, 40, 60
and 80 percent nodes and extract the induced subgraphs. For
each sample rate, we sampled 10 subgraphs and for each
subgraph we generated a base network and an update
stream as we described in Section 7.1. We ran the Top-K
influential nodes mining algorithm on those generated data.
Fig. 9 reports the average memory storing the input graph

and the average peak memory usage of the RR sets against
the sample rate. The results show that the size of sampled
graph increases super-linearly while the memory of RR sets
increases roughly linearly as the sample rate increases. Fig. 9
also shows that the average peak memory used by the RR
sets increases sub-linearly as the input graph size increases.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed novel, effective and efficient poll-
ing-based algorithms for tracking influential individual
nodes in dynamic networks under the Linear Threshold
model and the Independent Cascade model. We modeled
dynamics in a network as a stream of edge weight updates.
We devised an efficient incremental algorithm for updating
randomRR sets against network changes. For two interesting
settings of influential node tracking, namely, tracking nodes
with influence above a given threshold and tracking top-k
influential nodes, we derived the number of random RR sets
we need to approximate the exact set of influential nodes.We
reported a series of experiments on 5 real networks and dem-
onstrated the effectiveness and efficiency of our algorithms.

There are a few interesting directions for future work.
For example, can we apply similar techniques to other influ-
ence models such as the Continuous Time Diffusion
Model [7]? Since the Continuous Time Diffusion model has
an implicit time constraint, how to efficiently update RR
sets according to the time constraint is a critical challenge.

ACKNOWLEDGMENTS

Drs. Yang and Pei’s research is supported in part by the
NSERC Discovery Grant program, the Canada Research
Chair program, and the NSERC Strategic Grant program.
Drs. Wang and Chen’s research is supported in part by the
Nature Science Foundation of China (Grant No. U1605251)
and the National Science Foundation for Distinguished
Young Scholars of China (Grant No. 61325010). All opin-
ions, findings, conclusions, and recommendations in this
paper are those of the authors and do not necessarily reflect
the views of the funding agencies.

REFERENCES

[1] P. Domingos and M. Richardson, “Mining the network value of
customers,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2001, pp. 57–66.

[2] X. Chen, G. Song, X. He, and K. Xie, “On influential nodes track-
ing in dynamic social networks,” in Proc. SIAM Int. Conf. Data
Mining, 2015, pp. 613–621.

[3] C. C. Aggarwal, S. Lin, and P. S. Yu, “On influential node discov-
ery in dynamic social networks,” in Proc. SIAM Int. Conf. Data
Mining, 2012, pp. 636–647.

[4] N. Ohsaka, T. Akiba, Y. Yoshida, and K.-I. Kawarabayashi,
“Dynamic influence analysis in evolving networks,” Proc. VLDB
Endowment, vol. 9, no. 12, pp. 1077–1088, 2016.

[5] D. Kempe, J. Kleinberg, and �E. Tardos, “Maximizing the spread of
influence through a social network,” in Proc. ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2003, pp. 137–146.

TABLE 5
Running Time (ms) on Static Networks

Dataset Threshold Top-K

LT IC LT IC

wiki-Vote 3,635 15,771 17,396 72,447
Flixster 52,970 253,570 116,085 633,498
soc-Pokec 164,330 729,906 751,462 1,790,433
flickr-growth 267,720 1,317,851 1,015,788 3,569,932
Twitter 649,378 5,509,209 3,219,163 19,997,943

Fig. 8. Imax andM change over time of flickr-growth data.

Fig. 9. Memory usage.

YANG ETAL.: TRACKING INFLUENTIAL INDIVIDUALS IN DYNAMIC NETWORKS 2627



[6] W. Chen, L. V. S. Lakshmanan, and C. Castillo, “Information and
influence propagation in social networks,” Synthesis Lectures Data
Manage., vol. 5, no. 4, pp. 1–177, 2013.

[7] N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha, “Scalable influ-
ence estimation in continuous-time diffusion networks,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 2013, pp. 3147–3155.

[8] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing
social influence in nearly optimal time,” in Proc. 25th Annu. ACM-
SIAM Symp. Discrete Algorithms, 2014, pp. 946–957.

[9] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-
linear time: A martingale approach,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2015, pp. 1539–1554.

[10] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximiza-
tion in social networks under the linear threshold model,” in Proc.
Int. Conf. Data Mining, 2010, pp. 88–97.

[11] A. Goyal,W. Lu, andL. V. S. Lakshmanan, “SIMPATH:An efficient
algorithm for influence maximization under the linear threshold
model,” in Proc. Int. Conf. DataMining, 2011, pp. 211–220.

[12] B. Lucier, et al., “Influence at scale: Distributed computation of
complex contagion in networks,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2015, pp. 735–744.

[13] M.-E. G. Rossi, F. D. Malliaros, and M. Vazirgiannis, “Spread it
good, spread it fast: Identification of influential nodes in social
networks,” in Proc. Int. Conf. World Wide Web, 2015, pp. 101–102.

[14] Q. Liu, et al., “An influence propagation view of pagerank,” ACM
Trans. Knowl. Discovery Data, vol. 11, no. 3, 2017, Art. no. 30.

[15] E. Cohen, et al., “Sketch-based influence maximization and com-
putation: Scaling up with guarantees,” in Proc. ACM Int. Conf. Inf.
Knowl. Manage., 2014, pp. 629–638.

[16] Y. Tang, et al., “Influence maximization: Near-optimal time com-
plexity meets practical efficiency,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2014, pp. 75–86.

[17] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “Discovering lead-
ers from community actions,” in Proc. ACM Int. Conf. Inf. Knowl.
Manage., 2008, pp. 499–508.

[18] N. Agarwal, H. Liu, L. Tang, and P. S. Yu, “Identifying the influ-
ential bloggers in a community,” in Proc. ACM Int. Conf. Web
Search Data Mining, 2008, pp. 207–218.

[19] J. Weng, E.-P. Lim, J. Jiang, and Q. Hu, “TwitterRank: Finding
topic-sensitive influential Twitterers,” in Proc. ACM Int. Conf. Web
Search Data Mining, 2010, pp. 261–270.

[20] M. Cha, et al., “Measuring user influence in Twitter: The million
follower fallacy,” Proc. Int. AAAI Conf. Weblogs Social Media,
vol. 10, no. 10–17, 2010, Art. no. 30.

[21] W. Chen, et al., “Scalable influencemaximization for prevalent viral
marketing in large-scale social networks,” in Proc. ACM SIGKDD
Int. Conf. Knowl. Discovery DataMining, 2010, pp. 1029–1038.

[22] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins,
“Microscopic evolution of social networks,” in Proc. ACM SIGKDD
Int. Conf. Knowl. Discovery DataMining, 2008, pp. 462–470.

[23] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, “Graphs
over time: Densification laws, shrinking diameters and possible
explanations,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2005, pp. 177–187.

[24] B. Bahmani, et al., “Fast incremental and personalized pagerank,”
Proc. VLDB Endowment, vol. 4, no. 3, pp. 173–184, 2010.

[25] N. Ohsaka, et al., “Efficient pagerank tracking in evolving
networks,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2015, pp. 875–884.

[26] T. Hayashi, et al., “Fully dynamic betweenness centrality mainte-
nance on massive networks,” Proc. VLDB Endowment, vol. 9, no. 2,
pp. 48–59, 2015.

[27] S. Lei, et al., “Online influence maximization,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discovery DataMining, 2015, pp. 645–654.

[28] M. Kimura, et al., “Tractable models for information diffusion in
social networks,” in Proc. Eur. Conf. Principles Data Mining
Knowl. Discovery, 2006, pp. 259–271.

[29] A. Goyal, et al., “Learning influence probabilities in social
networks,” in Proc. ACM Int. Conf. Web Search Data Mining, 2010,
pp. 241–250.

[30] F. Chung and L. Lu, “Concentration inequalities and martingale
inequalities: A survey,” Internet Mathematics, vol. 3, no. 1, pp. 79–
127, 2006.

[31] K. Saito, R. Nakano, and M. Kimura, “Prediction of information
diffusion probabilities for independent cascade model,” in
Knowledge-Based Intelligent Information and Engineering Systems.
Berlin, Germany: Springer, 2008, pp. 67–75.

[32] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans.
Math. Softw., vol. 11, no. 1, pp. 37–57, 1985.

[33] G. Cormode, et al., “Finding frequent items in data streams,” Proc.
VLDB Endowment, vol. 1, no. 2, pp. 1530–1541, 2008.

[34] M. Riondato and E. Upfal, “Efficient discovery of association rules
and frequent itemsets through sampling with tight performance
guarantees,” ACM Trans. Knowl. Discovery Data, vol. 8, no. 4, 2014,
Art. no. 20.

[35] M. Riondato and E. Upfal, “Mining frequent itemsets through pro-
gressive sampling with rademacher averages,” in Proc. ACM
SIGKDD Int. Conf. Knowl. DiscoveryDataMining, 2015, pp. 1005–1014.

[36] A. Pietracaprina, M. Riondato, E. Upfal, and F. Vandin, “Mining
top-K frequent itemsets through progressive sampling,” Data
Mining Knowl. Discovery, vol. 21, no. 2, pp. 310–326, 2010.

[37] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization
in social networks,” in Proc. ACM SIGKDD Int. Conf. Knowl. Dis-
covery Data Mining, 2009, pp. 199–208.

Yu Yang received the BE degree from the Hefei
University of Technology, in 2010, and the ME
degree from the University of Science and Tech-
nology of China, in 2013, both in computer sci-
ence. He is currently working toward the PhD
degree in the School of Computing Science,
Simon Fraser University, Canada. His research
interests lie in algorithmic aspects of data mining,
with an emphasis on managing and mining
dynamics of large scale networks.

Zhefeng Wang received the BE degree from the
University of Science and Technology of China,
China, in 2012. He is currently working toward
the PhD degree in the School of Computer Sci-
ence and Technology, University of Science and
Technology of China. His research interests
include social network and social media analysis,
recommender system, and text mining. He has
published several papers in refereed conference
proceedings such as SIGIR, KDD, and IJCAI.

Jian Pei is a professor in the School of Computing
Science, Simon Fraser University, Canada. His
research interests can be summarized as develop-
ing effective and efficient data analysis techniques
for novel data intensive applications. He is currently
interested in various techniques of data mining,
Web search, information retrieval, data warehous-
ing, online analytical processing, and database
systems, as well as their applications in social net-
works, health-informatics, business, and bioinfor-
matics. His research has been supported in part by

government funding agencies and industry partners. He has published pro-
lifically and served regularly for the leading academic journals and confer-
ences in his fields. He is an associate editor of the ACM Transactions on
Knowledge Discovery from Data. He is a fellow of the Association for Com-
putingMachinery (ACM) and the Institute of Electrical and Electronics Engi-
neers (IEEE). He is the recipient of several prestigious awards.

Enhong Chen received the PhD degree from the
University of Science and Technology of China
(USTC). He is a professor and vice dean of the
School of Computer Science and Technology,
USTC. His general area of research includes
data mining, personalized recommendation sys-
tems, and web information processing. He has
published more than 150 papers in refereed con-
ferences and journals. His research is supported
by the National Natural Science Foundation of
China, National High Technology Research and

Development Program 863 of China, etc. He is a program committee
member of more than 40 international conferences and workshops. He
is a senior member of the Institute of Electrical and Electronics Engi-
neers (IEEE).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2628 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 11, NOVEMBER 2017



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


