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Abstract—Ideally, minimizing the flow completion time (FCT)
requires millions of priorities supported by the underlying
network so that each flow has its unique priority. However,
in production datacenters, the available switch priority queues
for flow scheduling are very limited (merely 2 or 3). This
practical constraint seriously degrades the performance of pre-
vious approaches. In this paper, we introduce Explicit Priority
Notification (EPN), a novel scheduling mechanism which emu-
lates fine-grained priorities (i.e., desired priorities or DP) using
only two switch priority queues. EPN can support various flow
scheduling disciplines with or without flow size information. We
have implemented EPN on commodity switches and evaluated
its performance with both testbed experiments and extensive
simulations. Our results show that, with flow size information,
EPN achieves comparable FCT as pFabric that requires clean-
slate switch hardware. And EPN also outperforms TCP by up
to 60.5% if it bins the traffic into two priority queues according
to flow size. In information-agnostic setting, EPN outperforms
PIAS with two priority queues by up to 37.7%. To the best of
our knowledge, EPN is the first system that provides millions of
priorities for flow scheduling with commodity switches.

I. INTRODUCTION

Recent years have witnessed the unprecedented growth of
large datacenters that contain hundreds of thousands of servers
and host a wide-range of diverse distributed applications.
Many key datacenter applications in cloud, such as web search,
social and storage services, involve many small transactional
communications and are very sensitive to the actual comple-
tion time of network flows. Thus there is a wide consensus
that minimizing flow completion time (FCT) is of significant
importance. To minimize FCT, previous work has shown that
it is essential to prioritize network flows to approximate Short-
est Job First (SJF) or Shortest Remaining Processing Time
(SRPT) scheduling discipline [6, 7, 23, 27, 33, 34]. Ideally,
the network should support many fine-grained priorities. For
example, pFabric [6] has illustrated that “near-optimal” FCT
can be achieved if each flow can be assigned to a unique
priority, so that the link bandwidth can be allocated to flows
strictly according to their priorities. There are millions of flows
in a datacenter network (DCN). So ideally we’d like to have
the same number of priorities.

Unfortunately, existing commodity switches only provide
a very limited number of priority levels. For example, some
commodity switches only support eight priorities queues, and
in practice, not all of these priority queues can be used for flow
scheduling. As we will discuss more in §II-B, the number of
priority queues that can be allocated to one traffic class may
be at most 2 or 3 in a production datacenter. With such small
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number of queues, many flows with different sizes have to
coexist in the same queue, resulting in worse performance.

Indeed, other previous work has proposed to emulate fine-
grained priorities with one drop-tail queue using explicit rate
control (ERC). In ERC, the switch needs to examine every data
packet and compute the sending rate for each flow based on
the scheduling policy. Unfortunately, ERC is seldom supported
by existing switch hardware due to its per-packet examination
and complex logic. And most software-based ERC implemen-
tations cannot sustain high link speed of modern datacenters.

In this paper, we want to ask the following question: Can
we achieve fine-grained priority-based flow scheduling (i.e.,
millions priorities like in pFabric), but with only the features
that are supported by existing commodity switch hardware?
We answer this question affirmatively with Explicit Priority
Notification (EPN). We show that with merely one additional
priority queue, EPN can schedule flows based on flows’ fine-
grained priorities (or desired priority, DP), and achieve similar
FCT performance compared to schemes that natively support
many priority levels, i.e., pFabric.

The design of EPN is inspired by the following observation:
With priority-based flow scheduling at any bottleneck network
link, the bandwidth should be allocated entirely to the flow
with the highest priority. Therefore, each link only requires
two physical priority queues (called transmission priority or
TP). One has higher priority (called HIGH queue) than the
other queue (called LOW queue). The flow with the highest
DP is always assigned to the HIGH queue and all rest flows are
assigned to the LOW queue. When the flow in the HIGH queue
finishes, the flow with the next highest DP will be promoted
into the HIGH queue, and so forth. Essentially, this behavior
mimics dynamic priority-based flow scheduling.

To implement this, EPN employs two software components:
a priority controller at each switch and a priority mapper at
each host. The priority mapper maintains a mapping between
the flow’s DP and TP, and tags this information on every
packet of the flow1. The priority controller maintains a list
of flows by examining the packets passing through the switch
and decides flows’ TPs by comparing their DPs. If a flow’s
TP should be changed, the prioirty controller will send an
Explicit Priority Notification message to notify the priority
mapper on the flow source. So the next new packet of the
flow will be tagged with the new TP and be classified into
the corresponding HIGH or LOW queue in switch hardware.
EPN is a general mechanism to support various priority-

1In this paper, TP is marked in the DSCP field in the IP header. Current
commodity switches can conduct priority scheduling according to the DSCP.
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based flow scheduling disciplines with or without flow size
information, which is useful in abound scenarios. However,
we are aware that EPN still has some limitations. For example,
currently, EPN cannot enforce some complex non-priority-
based flow scheduling policies [11] or Coflow Scheduling
policies [12, 14]. See more details in §VII.

EPN has been implemented in a commodity switch with
Broadcom Trident II chipset and run in real-time in a 1Gbps
testbed with 22 servers and 3 switches. Through both testbed
and large-scale simulation experiments, we compare EPN
to previous work in both flow size information-aware and
information-agnostic settings. Our results show that with
flow size information, EPN, with only two hardware queues,
achieves similar FCT compared to pFabric that runs on clean-
slate switch hardware supporting millions of priority queues.
However, if only limited hardware queues are used, EPN
greatly outperforms a practical version of pFabric (more in
§ VI) by up to 60.5% and 35.1%, when the practical version of
pFabric uses 2 or 8 queues respectively. A bit to our surprise, in
information-agnostic setting, EPN also outperforms PIAS [7],
a recent information-agnostic flow scheduling framework, by
up to 37.7% and 19.3%, when PIAS uses 2 or 8 hardware
priority queues respectively. The reason is that the number
of levels in Multi-Level Feedback Queue (MLFQ) in PIAS is
tightly constrained by the number of hardware queues. But in
EPN, we can always use the optimal levels of MLFQ to adjust
flow’s priority. To the best of our knowledge, EPN is the first
system that provides millions of priorities for flow scheduling
with commodity switch hardware.

II. BACKGROUND AND MOTIVATION

A. Near-optimal flow scheduling to minimize FCT

It is well-known that for a single bottleneck link,
SJF (shortest-Job-First) and SRPT (Shortest-Remaining-
Processing-Time) achieve minimum average FCT in the static
and dynamic scheduling scenario respectively. For a general
network, the optimal flow scheduling is known to be NP-
hard [6]. However, previous work, e.g., [6, 23] uses a simple
greedy heuristic to achieve near-optimal flow scheduling in
a datacenter network: Network flows are scheduled across
the network fabric in non-decreasing order of their priorities
(determined by flow size or remaining size). Therefore, the
bottleneck link bandwidth is always allocated to the most
critical flow (the one with highest priority along its traversing
path) as much as it requires and other flows should wait for
their turns to come. A theoretical analysis has shown that
such simple greedy algorithm achieves 2-approximation to
optimum [9].

Clearly, to implement this near-optimal scheduling, one
natural idea is to have switches to support many fine-grained
priority queues, so that each flow can be assigned to one
priority queue according to its size. Unfortunately, in practice,
the number of priority queues in switch hardware is very
limited.
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Fig. 1. EPN Sytem Overview
B. The lack of priority queues in commodity DCNs

There are two reasons that constrain the number of available
priority queues for flow scheduling in a commodity switch.
Firstly, many existing commodity switches support only two
to four priority queues, e.g., BCM5324M based switches sup-
port 4 priority queues [1]. Secondly, although many modern
switches can support up to eight priority queues, many of
them are already reserved for other purposes [24]. We have
interviewed a senior network manager who is responsible
to operate several datacenters of a large IT company and
confirmed that typically 2 to 3 priority levels have been used
to isolate new network protocols, e.g., RDMA or DCTCP,
from normal TCP traffic. Three priorities are used to provide
different QoS classes for TCP traffic, e.g., real-time, best-
effort, or background class. Consequently, there are only 2 to
3 priority queues left for flow scheduling in one traffic class.
With this limited number of priority queues, the performance
of pFabric would be greatly degraded from the optimal.

In this paper, we set out to ask: Can we achieve fine-grained
priority-based flow scheduling with only the features provided
by existing commodity switch hardware? In the following
sections, we answer this question affirmatively with EPN.

III. EPN OVERVIEW

The core idea of EPN is the decoupling of the desired fine-
grained priority (desired priority or DP) and the transmission
priority (TP) that is used for switch hardware to classify
the flow packets. Each flow is assigned a DP, which is
derived from its flow size or other metrics like the number
of transmitted bytes [7]. During the lifetime of the flow, EPN
may dynamically map the flow to different TPs based on the
relative order of the flow’s DP among all other flows that are
sharing some network links with it. Clearly, to implement the
priority-based scheduling outlined in §II-A, EPN requires only
two TPs: a HIGH queue and a LOW queue. At any instance,
the flow with the highest DP should be put into the HIGH
queue, and all other flows should share the LOW queue.

Figure 1 shows the overview of the EPN system. EPN
contains two major components: a priority mapper at the
end host and a priority controller on each network switch.
The priority mapper maintains a DP to TP mapping for each
flow. The DP is carried in an EPN header that is attached to
every data packet. The format of the EPN header is shown in
Figure 2. The TP, however, is also tagged to each packet using
existing mechanisms, i.e., DSCP code in IP header. The switch
hardware is instructed to selectively sample a few critical data
packets, e.g., TCP SYN, FIN and RST, and mirror them to the
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Fig. 2. EPN Header Format.

priority controller. From these sampled packets, the priority
controller builds a list of flows and sorts them according
to their DPs. Then, if the flow with the highest DP is not
already mapped to the HIGH queue, the priority controller
will promote it to the HIGH queue and at the meanwhile,
demote the flow that is already in the HIGH queue to the LOW
queue if any. If any flow’s TP needs to change, the priority
controller will send an EPN message to the priority mapper
on the flow source. The EPN message is simply a copy of
the packet headers (i.e., IP, EPN and TCP) with the new TP
tagged in the EPN header. Upon receiving the EPN message,
the priority mapper will update its local record and map the
flow to the new TP.

In this paper, we embed the EPN header inside the reserved
bits of VxLAN [26], which is widely used in datacenters
to tunnel packets among different virtual machines. Simi-
larly, EPN can also work with other tunnel protocols, like
NVGRE [31] or STT [15].

The decoupling between the flow DP and TP makes EPN
a general framework for priority-based flow scheduling. EPN
can incorporate various priority-based flow scheduling disci-
plines by adopting different DP adjustment algorithms. For
example, we can set flow DP according to its remaining size
if flow size information is known [6, 23]. Alternatively, EPN
can also perform information-agnostic flow scheduling using
a MLFQ-based algorithm [7] (more details in §IV-C).

IV. DETAILED DESIGN

A. EPN flow scheduling

At high level, the flow scheduling in EPN is very simple.
The priority controller maintains a list of flows passing the
switch, and for each output link, the controller will select the
flow with highest DP to the HIGH queue and put all other
flows into the LOW queue. If two flows have equal DP, ties
are broken by comparing flow 5-tuples similar to [6]. Once a
flow TP needs to change, the priority controller will send out
an EPN message to the flow source.

However, there are a few detailed issues need to take care.
Inconsistent decisions from multiple switches. In DCN,

a flow may bypass several switches to reach the destination
and at each switch, the flow may share link with different sets
of competing flows. Therefore, it is possible that two switches
in the flow path may make different decisions of the flow TP.
Figure 3 shows such an example. Flow f2 traverses switch A
and B and shares links with flow f1 and f3 at two switches
respectively. Assume the three flows have DP (f1) < DP (f2)
< DP (f3). At switch A, f2 is the highest priority flow, so that
switch A tries to promote it to the HIGH queue. But at switch
B, f3 has the highest DP. So if switch B finds f2 is mapped to
the HIGH queue, it will demote f2 into the LOW queue. As
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Fig. 3. Inconsistent TP decisions between two switches. f3 has the highest
DP and f1 has the lowest DP. f2 is in-between.
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Fig. 4. An example for asymmetric network. f3 has the highest DP and f1
has the lowest DP. f2 is in-between.

a result, the TP of f2 will oscillate. This issue can be simply
removed by adding a Demoting Switch ID (or DSID) into the
EPN header(Figure 2). DSID marks the switch that demotes
the flow. If a switch finds the DSID of a flow does not point to
itself, it should not try to promote the flow as the flow would
be demoted at another switch.

There is one more tricky thing. How should we identify
a switch? Clearly, in a datacenter, there are thousands of
switches. We could assign each switch a unique ID, but this is
cumbersome: First, it is a tedious and error-prone process to
do this assignment. Second, it may take more bits (i.e., 12+) in
the EPN header to record it, making it more difficult to embed
the EPN header in existing tunnel standards, e.g., VxLAN only
reserves 32 bits. In this paper, we observe that for EPN, the
switch ID needs only be unique along the network path of a
flow. So we simply use the TTL field of the IP header as the
switch ID, as it will decrease by one after passing a switch
along the network path.

Asymmetric network. Commonly, links in DCN may have
different speeds. For example, the link to a server may be
10Gbps. But the links that connect the ToR switch to the Spine
may have much higher speed like 40Gbps. Figure 4 shows
a concrete example, where the switch-switch link has twice
capacity compared to the server-switch links. Now, if switch
A only schedules one flow (i.e. f3) in the HIGH queue on the
switch-switch link, f2 and f1 are forced to share the LOW
queue together. This is not optimal as the switch-switch link
has enough bandwidth to support f2 in the HIGH queue as
f3 is bottlenecked at its access link. To address this issue,
EPN stores the bottleneck rate, i.e. the speed of the link that
has minimal capacity in the path in the BR field of the EPN
header. The priority controller computes the sum of bottleneck
rates of all flows that are mapped to the HIGH queue. If this
sum is below the link capacity, the priority controller will
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Fig. 5. [Simulation] FCT of tiny flows w/ and w/o strict priority scheduling.
try to promote more flows into the HIGH queue. In current
design, the BR field has 7 bits and the unit is 1Gbps. So it
can represent link speeds from 1G to 127Gbps. To find the
bottleneck rate, when a flow starts, the priority mapper will
first fill its output link rate in the BR field. And when the
packet passes through the switches along the path, the switch
will send an EPN notification to the source if the switch’s
output link speed is smaller than the value in the EPN header.
After the packet arrives at the receiver, the source will pick
up the lowest link speed as its bottleneck rate and tag the
subsequent packets of this flow.

Tiny flows. For very tiny flows, whose sizes are less than
bandwidth delay production (BDP), the EPN scheduling will
not get any benefit, since the flow would have already finished
when the EPN messages arrive at the flow source. Therefore,
in EPN, we just put these tiny flows into the HIGH queue and
the priority controller will simply ignore them. This decision is
reasonable. Although the number of tiny flows are large, they
only contribute to a small portion of data traffic. For example,
Fig. 10 shows two typical workloads in a datacenter [5, 19].
The tiny flows only account for 1 % of overall traffic volume
and their transmissions are seldom overlapped. Therefore,
there is no need to schedule these tiny flows.

To verify this statement, we further conduct a simulation
study. In our simulation, we first generates load consists flows
across all sizes using the two real distributions in Fig. 10. Then
we only put tiny flows that are smaller than 69KB (a BDP
worth of data) into the network by filtering larger flows. We
compare the normalized average FCT (AFCT) of these flows
without any scheduling (labeled as “TCP+ECN”) and with
pFabric that performs strict priority scheduling. Fig. 5 shows
the result. We can see that the performance in two cases are
really close. pFabric provides just 0.1% to 0.5% advantage.
This result confirms our decision not to perform scheduling
over these tiny flows.

Algorithm 1 summarizes the EPN scheduling algorithm,
which is executed on every sampled packets at the priority
controller. Line 1 checks the DSID of the flow. If the DSID
points to another switch, no further process is performed. Line
4 to 6 selects the set of flows in the HIGH queue and put
rest of the flows into the LOW queue. Line 7 sends out EPN
messages if needed.

B. Selective sampling

Before the priority controller can perform flow scheduling,
it should first collect information of all flows that pass the
switch. Since modern switch may serve multiple Tb traffic
per second, it is simply infeasible for the priority controller

Algorithm 1 EPN Priority Controller On Receiving a Packet
Require: incoming packet pkt, flow table FlowTable;

1: if pkt.DSID = otherswitch then
2: delete flow from FlowTable if found;
3: else
4: sort flows in DP ascending order, ties are broken by

comparing flow five-tuple;
5: select out κ flows, so that

∑κ
i=1BRi ≤ LinkRate and∑κ+1

i=1 BRi > LinkRate;
6: mark those κ flows’ TP to HIGH queue, other flows’

TP to LOW queue;
7: on flow TP change, send EPN message to flow sender;
8: end if

to examine every data packet. Therefore, in EPN, we use a
selective sampling strategy. A preinstalled rule is used to match
any packet with S-bit set in the EPN header and mirror this
matched packet to the priority controller.

The priority mapper is responsible to S-mark a data packet.
Following rules are applied to select packets to be sampled:
1) All TCP control packets like SYN, FIN and RST should
be S-marked. For those persistent TCP connections, data are
sent in bursts, and there are no SYN nor FIN packets for each
burst. In those cases, each burst is treated as a different flow
in EPN. EPN relies on application to specify the start and end
packets of the flow, i.e. burst, and those packets are S-marked.
2) If the priority mapper receives an EPN message to change
a flow TP, the next packet of the flow should be S-marked.
This is equivalent to send an acknowledgment to the switch.
3) If a flow changes its DP, the priority mapper should S-mark
the next data packet of the flow to notify the switches in the
network path.

It is noteworthy that when a priority controller fails and
reboots, it forgets all its current flow information. In such case,
flows demoted by this controller may never have a chance to
be promoted (other controllers cannot promote because they
have different DSID). To prevent such deadlock, flows that
have been demoted to LOW queue will S-mark their packets
periodically to probe for promotion. As a failover scheme, this
probing interval can be set quite long, say several ms.

Finally, the priority controller should keep a close track on
each flow in the HIGH queue. If such a HIGH queue flow
dies, the priority controller should be able to quickly detect
it and schedule another flow into the HIGH queue. Note that
it does not need to track the flows in the LOW queue, as a
dead flow will be eventually detected by the controller when
trying to promote it to the HIGH queue, or be removed after
a long timeout. We use the programmable counters to track
the liveness of a flow. Such counters are widely supported
in current switch hardware. For example, in our BCM95334K
switch, there are 1.7K programmable counters. When a flow is
promoted to the HIGH queue, the priority controller will also
install a rule in the switch hardware to count the number of
bytes sent by the flow. Then, the priority controller will read
the counter periodically, e.g., every a few ms. If the counter
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remains unchanged for several reads, the flow is detected as
dead and removed from the list.

C. Setting DP

As aforementioned, the decoupling of flow DP and TP
enables EPN a general flow scheduling framework for various
priority-based scheduling principles. When accurate flow size
information is available (i.e. information-aware), DP can be
set to flow size or flow remaining size, thus minimizing FCT
by using SJF or SRPT scheduling principle. In many cases,
the accurate flow size information may not be available (i.e.
information-agnostic), and recent work PIAS [7] proposes to
use MLFQ to emulate SJF flow scheduling, where a flow
is gradually demoted from higher-priority queues to lower-
priority queues. EPN can easily implement similar MLFQ
algorithm to support information-agnostic scheduling as well.
If the flow size information is not available, the priority mapper
can use MLFQ to adjust the flow DP based on the number
of bytes it has transmitted. Under different DP settings, the
behavior of the priority controller does not need to change,
and always allocates link bandwidth to the flows with higher
DP.

Unlike PIAS, which tightly couples the number of MLFQ
levels with the physical priority queues, EPN can always
apply the optimal number of MLFQ levels as long as there
are two hardware queues. The ability to have many MLFQ
levels greatly simplifies the threshold setting, which is one
key challenge for information-agnostic flow scheduling [7].
In PIAS, if the levels of MLFQ are limited, the thresholds to
move to a lower level should be carefully optimized according
to the precise flow size distribution. However, in EPN, with
many MLFQ levels, this threshold setting is less sensitive to
the actual flow size distribution. Therefore, we can follow a
simple scheme, which exponentially increases the threshold
when moving to a lower level [13, 21], for all practical
traffic patterns without specific knowledge of their flow size
distributions. Later in §VI, we show that EPN outperforms
PIAS significantly with this simple threshold setting strategy.

D. Discussion

We discuss a few issues in this section.
Application-constraint flows: In practice, some flows may

be bottlenecked by the application instead of the network links.
In those cases, HIGH priority flow cannot saturate the link, and
the rest bandwidth is shared among multiple LOW priority
flows. However, EPN is still work-conserving and the whole
network bandwidth is fully utilized. Moreover, it still performs
better than baseline TCP without any scheduling, because
EPN still ensures the priority scheduling for the flow with
the highest priority. Further improvements can be done using
a rate estimator at the end host to consider the application
sending speed when calculating the bottleneck rate BR. We
plan to study more about this in the future.

TCP Out-Of-Order: EPN works with all existing transport
protocols, predominately TCP. Since EPN schedules packets
of one TCP flow between two priority queues, these packets
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Fig. 6. [Simulation] CDF for consecutive duplicate ACK amount.

may get out-of-order (OoO), which may adversely affect TCP
performance [25]. However, the OoO packets generated by
EPN scheduling is minor and can be ignored. The reasons
are as follows. First, if a flow switches from HIGH queue to
the LOW queue, there is no OoO packets. Second, when a
flow switches from LOW queue to the HIGH queue, there is
a chance for OoO, but the chance is very low. This is because
the LOW queue is shared by many flows, so that most of
flows have a small window, usually only one. When the flow
is promoted to the HIGH queue, the sender will send out
new data packets (marked as high TP) only when it receives
ACKs from the receiver. This means the packets queued in the
LOW queue have already drained. To qualify this effect, we
perform an EPN simulation using NS3 [2] with a 10G FatTree
topology with 128 servers (settings are discussed more in §VI).
We use two different workloads as shown in Fig. 10. We run
the simulation for 10 seconds and record the probability of
consecutive duplicate ACKs. Of all the duplicate ACKs, we
eliminate those caused by packet drops to show only OoO
caused ones. As shown in Fig. 6, in about 99.9% cases, EPN
scheduling does not cause any OoO packets. In merely 0.005%
cases, EPN may cause 3+ duplicate ACKs, which may result in
a false retransmission. In summary, the OoO packets caused
EPN scheduling is actually minor and can be neglected in
practice.

Frequency of DP adjustment: In EPN, when a flow DP
changes, the priority mapper should S-mark a packet to notify
this change to the priority controller. If a flow changes its
DP too frequently, e.g., updating for every packet, this will
effectively force the priority controller to sample every data
packet, adding considerable processing burden. To address this
issue, the priority mapper will rate limit the S-marked packets
below a threshold.

Multi-Path Support: Recent works propose to enable
multi-path in datacenter networks [4, 10, 16, 22, 35]. In
those works, a flow is cut into small parts, e.g., sub-flows
(or flowlets), and each part may traverse different paths. A
flow is finished only when all its consisting parts are finished.
Scheduling under multi-path settings is much like recently
proposed task-aware scheduling [12, 14, 17], in which a task
is finished only when all it’s consisting flows are finished. EPN
in its current form doesn’t support scheduling under multi-path
settings or task-aware scheduling. EPN works with the de facto
ECMP routing in datacenters, i.e. a flow goes through a single
path. Extending EPN to support multi-path settings and to be
task-aware is part of our future work.
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V. IMPLEMENTATION

A. Priority Mapper

We have implemented the priority mapper in Windows
operating system. The architecture of the priority mapper is
illustrated in Figure 7.

Kernel mode packet filter driver. We have developed an
NDIS (Network Driver Interface Specification) filter driver
in Windows kernel. This filter driver is under the TCP/IP
stack and it intercepts all outgoing and incoming traffic. All
intercepted packets are directed to a user-mode priority mapper
module for processing. Since EPN needs to add additional
VxLAN header for every packet, we turn off the TCP Large
Segmentation Offloading (LSO) and Receive Segment Coa-
lescing (RSC). We optimized the driver to make it able to
operate at line rate on our testbed.

Priority mapper module. All functions of the priority
mapper are implemented in a user-mode module. The prioirty
mapper module reads packets captured by the kernel filter
driver. For outgoing packets, the priority mapper will add a
VxLAN header to each packet and also fill the EPN header. For
incoming packets, the priority mapper will strip the VxLAN
header and hand the original packets to the application. All
flow information is maintained using a hash table, indexed
by flow 5-tuples. Currently, we maintain a counter for the
sent bytes for every flow and we also implement a MLFQ in
the priority mapper with reconfigurable number of levels and
thresholds.

B. Priority Controller

Due to the limited programmability of the switch in our
testbed, we implement the priority controller in a commodity
server that sits aside the switch (Figure 8). We configure the
switch to match any S-marked packet and mirror them to the
control server. Then, the controller software will capture these
packets, execute the scheduling algorithm and send out EPN
messages as outlined in §IV-A.

Ideally, the priority controller should be implemented in the
switch CPU. To estimate the packet rate that the priority con-
troller needs to handle, we refer to the Everflow system [37].
Similar to EPN, EverFlow also uses match-and-mirror function
in the switch to sample all critical packets of TCP flows, like
SYN, FIN and RST. According to their measurement in a large
datacenter with 10K switches, the average rate of sampled
packets from one switch is about 30Kpps, which should be
rather easily supported even with a relatively weak CPU on a
switch.

C. Switch Configuration

Packet Scheduling. Our testbed switches can support up to
8 queues. For EPN, we configure two Weighted Round Robin
(WRR) queues with weights of 100 and 1. We deliberately
reserve some bandwidth to the LOW queue to avoid starvation.
For PIAS and pFabric, we configure strict priority queueing
as they require.

ECN Marking. As stated in [7, 8], per-queue ECN marking
may cause lots of packet drops when many queues are active
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Fig. 7. EPN priority mapper.
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simultaneously. Thus we configure per-port ECN for PIAS as it
requires [7]. Also, for pFabric with limited number of queues
(more in§VI), we use the same configuration as PIAS. For
EPN and other schemes with 2 priority queues, switch buffer
is large enough in a per-queue basis. Thus, we configure per-
queue ECN for EPN and those schemes.

D. Testbed Setup

We use 3 24-port GbE BCM956334K switches and 25 Dell
PE R610s servers to build the testbed (Figure 8). 22 servers
(h1 ∼ h11, h13 ∼ h24) are used for data communication
while the other 3 (h12, h24, h25) are used for the priority
controller. All servers are installed Windows 2008R2 along
with our NDIS driver. The MTU is 1.5KB.

VI. EVALUATION

Using both testbed experiments and large-scale packet-level
NS3 [2] simulations, we have following three key observa-
tions:
• Targeted testbed micro-benchmarks show that EPN can

provide fast and seamless switching between flows according
to their priorities. (§VI-B)
• Testbed experiments using realistic workloads under both

information-aware and information-agnostic scenarios show
that EPN outperforms other latest practical solutions under
various realistic scenarios. (§VI-C)
• Simulations show that EPN can scale to larger and faster

network, and achieves comparable performance to pFabric that
relies on clean-slate switch hardware. (§VI-D)

Performance Metric: Except the micro-benchmark experi-
ment, in all the following experiments, we use normalized FCT
as the performance metric for different scheduling schemes,
i.e., FCT is normalized to the ideal FCT which is the best
FCT a flow can achieve on an idle link under TCP.

A. Schemes compared

TCP + ECN [36]: This scheme is compared as the baseline.
In this scheme, TCP flows simply share the bandwidth with
others (if any) and cuts its window by half in the presence
of ECN [30]. Note that we don’t use DCTCP [5], because
it’s currently not available on our Windows operating system
and TCP + ECN with a deliberately tuned threshold can have
similar performance as DCTCP [36].

PIAS: We implement PIAS in both simulation and testbed.
We evaluate the performance of PIAS with different queues,
e.g., 8 queues (denoted as PIAS8, etc.).

TCP[α]Q: This is the dirty-slate version of pFabric de-
scribed in §6 of [6]. It classifies flows to different priority

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications



 0

 200

 400

 600

 800

 1000

 0  5  10  15  20  25  30

th
ro

ug
hp

ut
 (

M
bp

s)

Time (Second)

f1
f2
f3

Fig. 9. [Testbed] Multi-Hop thrupt

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000 10000 100000

CD
F 

(%
)

Flow Size (KB)

Web Search
Data Mining

Fig. 10. Real traffic distribution

queues at the switch based on flow size. We have optimized
the flow size thresholds of different priority queues using the
model in [6]. TCP[α]Q means that it uses α switch queues.

pFabric: We implement all the features of pFabric in
simulation, e.g. priority-based dequeue/drop at the switch and
probing mode at the end host, based on the simulation code
shared by pFabric authors.

All the schemes are evaluated both in testbed and simula-
tion, except for pFabric not in testbed because it cannot be
implemented using commodity switches.

B. Testbed micro-benchmark

Using the topology shown in Fig.s 8, we demonstrate EPN’s
ability to coordinate between switches and to seamlessly
switch between flows. We test EPN via the example we used
in Figure 3. At time 0, we simultaneously start 3 flows f1, f2,
f3 traversing paths as shown in Figure 8. The three flows has
DP relation as f1 < f2 < f3. We run f1 for 30s, f2 for 20s
and f3 for 10s.

As shown in Figure 9, at start, f2 is demoted to LOW queue
by switch B (SB) because it shares path with a higher priority
flow f3. The DSID of f2 is set to SB thus SA won’t promote
f2. As a result, f1 can transmit at HIGH queue in parallel
with f3. After 10s, f3 finishes, SB immediately promotes f2
to HIGH queue and ToR switch A (SA) demotes f1 to LOW.
Later when f2 finishes, SA promotes f1. The flow switching
time is within one RTT of our testbed.

This micro-benchmark experiment demonstrates that EPN
is able to schedule flows strictly according to their DPs and
ensures fast and seamless flow switching.

C. Testbed results under realistic traffic trace

We now use our 1Gbps testbed (Figure 8) to evaluate
EPN’s ability to minimize FCT in both information-aware
and information-agnostic scenarios. We developed a query/re-
sponse application with the client running on host h11. The
server applications are installed on 10 other hosts (h1∼h10)
under the same rack. The client periodically generates queries
to fetch a certain amount size of data from one of the
servers. When received the query, the server sends out the
requested data to the client as a response. The query data
size is sampled from traffic distribution generated from real
datacenters, namely web search [5] and data mining workload
[19], as shown in Figure 10. The inter-arrival time of the
queries is sampled according to a poisson distribution. We
vary the load from 0.4 to 0.8 by controlling the inter-arrival
time.

In this experiment, we configure 2/8 priority queues for
PIAS and tune the per-port ECN threshold to be 40 data
packets, which gives PIAS its best performance on our testbed.
We use the thresholds shared by the authors of PIAS. For
TCP[α]Q, switch configuration is the same as PIAS. And
the priority queue thresholds are optimized according to the
analysis model in [6].

In both senarios, EPN defines the tiny flows to be under
69KB. EPN uses per-queue ECN marking with an ECN
threshold to be 40 packets.

Information-Aware Scenario: We first evaluate the
information-aware scenario, i.e. flow size information known
to the DP allocator. Fig. 11(a) and Fig. 12(a) show the average
FCT of all flows under two workloads respectively. Overall,
EPN achieves 24.6%∼60.5% and 13.3%∼56.1% lower aver-
age FCT than TCP2Q from load 0.4 to 0.8 under web search
and data mining workloads, respectively. Using more queues
helps TCP8Q to achieve a better performance than TCP2Q.
However, it’s FCT is still 18.0%∼33.2% and 6.1%∼35.1%
longer than EPN under the two workloads, respectively.

We now break down the results by size to reveal where
EPN’s gain comes from. We show the FCT performance for
small flows (≤100KB), middle flows (100KB∼10MB) and
large flows (>10MB) in the first three sub-figures of Fig. 11
and Fig. 12.

For small flows, EPN has 12.0%∼14.0% and 6.2%∼45.9%
lower FCT than TCP2Q at various loads under the two
workloads, respectively. Even compared to TCP8Q with a
well-optimized threshold setting, EPN still has -2.1%∼3.2%
and 2.0%∼34.5% lower FCT under the web search and data
mining workloads, respectively. EPN improves the perfor-
mance of TCP[α]Q due to two reasons: 1) Flow sharing in
TCP[α]Q still frequently happens with a small number of
priority queues using a fixed flow size threshold setting, while
EPN can dynamically mapping flows with different sizes into
different queues. Although a well-optimized threshold in a
few certain scenarios (e.g., web search) can bring TCP8Q a
good performance (even slightly better than EPN), this fixed
setting manner still greatly falls short in other workloads
such as data mining. 2) The per-port ECN marking scheme
used in TCP[α]Q will make high priority flows slow down
its sending rate when low priority flows build up queue in
network, while EPN uses per-queue ECN marking (see §V-C
for more discussion).

For middle and large flows with larger sizes, there is much
richer time than small flows for EPN to conduct fine-grained
serialization scheduling. Thus, EPN performs much better
than other schemes for these flows. Specifically, for middle
flows, EPN achieves 33.2%∼101.2% and 9.2%∼100.1% lower
FCT than TCP2Q and TCP8Q under the two workloads at
various loads, respectively. And for large flows, EPN’s FCT
is 4.8%∼94.2% and 44.4%∼66.6% lower than others.

Information-Agnostic Scenario: Then we evaluate the
information-agnostic scenario, i.e. flow size information un-
known to the DP allocator. Information-agnostic scheduling
can be enabled naturally on EPN by using MLFQ as flow

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications



 1

 2

 3

 4

 5

 0.4  0.5  0.6  0.7  0.8

N
or

m
al

iz
ed

 A
FC

T

Load

TCP+ECN
TCP8Q
TCP2Q

EPN

(a) Flow size: Overall

 1

 2

 3

 4

 5

 0.4  0.5  0.6  0.7  0.8

N
or

m
al

iz
ed

 A
FC

T

Load

(b) Flow size: ≤ 100KB

 1

 2

 3

 4

 5

 0.4  0.5  0.6  0.7  0.8

N
or

m
al

iz
ed

 A
FC

T

Load

(c) Flow size: 100KB ∼ 10MB

 1

 2

 3

 4

 5

 0.4  0.5  0.6  0.7  0.8

N
or

m
al

iz
ed

 A
FC

T

Load

(d) Flow size: > 10MB
Fig. 11. [Testbed] Information-aware FCT performance under web search workload.
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Fig. 12. [Testbed] Information-aware FCT performance under data mining workload.
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Fig. 13. [Testbed] Information-agnostic scenario overall FCT.

DP setting paradigm (details in §IV-C). We use 16 MLFQ
levels with an exponential threshold like in [21] and [13].
The base threshold is set to be 200KB and an exponential
factor is 2. The threshold setting is the same for different
workloads. We compare EPN with PIAS, which is the latest
work on scheduling flows without size information. For PIAS,
we configure 2 and 8 priority queues and use the thresholds
setting shared by the authors.

For the space limitation, we only show the overall per-
formance of all flows in Fig. 13, and omit the results of
breakdown by the flow size. Thanks to the multiple MLFQ
levels, it enables EPN to achieve finer grained flow size
estimation as well as the scheduling, and makes EPN signifi-
cantly outperform other schemes in this scenario. Specifically,
for web search and data mining workload, EPN achieves
20.5%∼34.5% and 9.5%∼37.7% lower FCT than PIAS with
2 priority queues under the two workloads, respectively.
More priority queues can give PIAS better performance,
however, EPN still outperforms PIAS8 by 2.7%∼14.1% and
6.5%∼19.3% under the two workloads. Notice that, in both
workloads, EPN’s threshold setting remains the same. This
verifies our previous claim that when there are enough MLFQ
levels, a single exponential threshold setting in EPN can fit a
wide range of workload distribution. In other word, EPN is
able to achieve distribution-agnostic scheduling.

In conclusion, EPN is general enough to support both
information-aware and information-agnostic flow scheduling
under realistic traffic, and performs better than other existing
practical solutions.

D. Large Scale Simulation

Simulation Setup: The topology used in our NS3 [2]
simulation is a 128-server 10Gbps FatTree [3] with a base
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Fig. 14. [Simulation] Information-aware scenario overall FCT.

fabric RTT of 55.2us. We use ECMP [32] as the underlying
load balance scheme. Again we evaluate all the schemes under
web search [5] and data mining workload [19] from real
datacenters. EPN treats flows with size less than one BDP
(69KB in this experiment) as tiny flows.

Information-aware performance: As seen in Fig. 14, EPN
outperforms other practical solutions (TCP2Q and TCP8Q)
and performs close to pFabric. Specifically, under web search
workload, EPN’s overall FCT is 31.7%∼50.8% lower than
TCP2Q and 26.8%∼38.1% lower than TCP8Q for vari-
ous load. Compared with pFabric, EPN has 8.0%∼14.4%
longer FCT. Under Data mining workload, EPN performs
7.0%∼9.6% and 5.1%∼6.5% better than TCP2Q and TCP8Q
for various load respectively. EPN achieves only 2.7%∼3.87%
longer FCT than pFabric.

We have also evaluated the information-agnostic scenario,
but omit them due to space limitation. EPN performs better
than other schemes, with 8.8%∼20.7% and 3.9%∼6.9% lower
FCT than PIAS2 and PIAS8 under the two workloads.

In conclusion, EPN is able to scale to larger topologies and
higher bandwidth fabrics.

VII. RELATED WORK

Besides PDQ [23], pFabric [6] and PIAS [7] which we have
deeply discussed before, there are also other rich related works
in flow scheduling [18, 29, 34]. Due to space limitation, we
are not able to cover them all. Here we only discuss those that
are closely related to EPN but not covered before.

PASE [27] proposes a framework for flow scheduling that
combines self-adjusting end-host, in-network prioritization
and arbitration. PASE uses designated servers as arbitrators
for network links. A scheduling decision is made through
the communication among arbitrators. On the contrary, EPN
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aims to support fine-grained priority-based flow scheduling
on commodity switches. In this paper, we demonstrate the
implementation feasibility of controller logic on commodity
switches. Moreover, unlike PASE, EPN does not introduce
communication among switches or modification to transport.

QJUMP [20] tries to provide bounded latency for small
flows and high throughput for large flows. This is orthogonal
to EPN aiming at fine-grained priority-based flow scheduling.

Recently, NUMFabric [28] provides flexible and fast band-
width allocation control. It requires programmable priority
queue support from switches. Contrarily, EPN aims to enable
flow scheduling via commodity switches.

Finally, other task-aware [12, 14, 17] scheduling work try
to minimize average task or Coflow completion time. Also,
recently there appears Karuna [11] that studies scheduling
under Mix-Flow (flows with and without deadlines) scenario.
In this paper, we only focus on priority-based flow scheduling
under non-Mix-Flow scenario. Extending EPN to be task-
aware or Mix-Flow-applicable is our future work.

VIII. CONCLUSION

This paper presents Explicit Priority Notification (EPN),
a priority-based flow scheduling mechanism for minimizing
FCT in datacenter networks. By adding merely one additional
priority queue, EPN can schedule flows with millions of fine-
grained priorities. EPN is general and can support various
priority-based flow scheduling disciplines with or without flow
size information. We have implemented EPN on commodity
switch and evaluate its performance with both testbed ex-
periments and extensive simulations. Our results show that
EPN achieves comparable FCT to pFabric which is a clean-
slate design. But when the number of priority queues are
limited, EPN greatly outperforms other related work in both
information-aware and information-agnostic settings. To the
best of our knowledge, EPN is the first system that provides
millions of priorities for flow scheduling with commodity
switch hardware.
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