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Abstract—In a social network, even about the same information the excitement between different users are different. If we want to

spread a piece of new information and maximize the expected total amount of excitement, which seed users should we choose? This

problem indeed is substantially different from the renowned influence maximization problem and cannot be tackled using the existing

approaches. In this paper, motivated by the demand in a few interesting applications, we model the novel problem of activity

maximization, and tackle the problem systematically. We first analyze the complexity and the approximability of the problem. We

develop an upper bound and a lower bound that are submodular so that the Sandwich framework can be applied. We then devise a

polling-based randomized algorithm that guarantees a data dependent approximation factor. Our experiments on four real data sets

clearly verify the effectiveness and scalability of our method, as well as the advantage of our method against the other heuristic

methods.

Index Terms—Social network, social influence, information diffusion, activity maximization

Ç

1 INTRODUCTION

CONSIDER how one can stimulate the discussion about a
topic in a social network as much as possible within a

budget. Based on messages between users in an instant mes-
saging network, such as Whatsapp and WeChat, one can
model topics and strengths/frequencies of interaction activ-
ities between users. In some situations, one may want to
raise the awareness of a controversial social issue, such as
Trump’s pulling the US out of Trans-Pacific Partnership
(TPP). Within a budget, one wants to spread the information
in the network so that people in the network discuss the
issue as much as possible. Which users should we choose to
start spreading the words?

We model this problem as activity maximization. Given a
propagation network, which records user interaction activ-
ity strength along each edge, we aim to find an optimal set
of seed users under a given budget, such that starting infor-
mation propagation from the seed users leads to the maxi-
mum sum of activity strengths among the influenced users.

Isn’t this an instance of the well known and well studied
influence maximization problem [1]? The answer is “no”
indeed. Influence maximization selects a seed set of nodes
within a given budget constraint such that the expected

number of nodes influenced by information diffusion is maxi-
mized. However, to satisfy the requirement that “people in
the network discuss the issue as much as possible”, we not
only want to influence many users, but more importantly
also want to maximize the expectation of the sum of
strengths of the interaction activities between influenced
users. Since the activity strength between users differs from
user to user, more influenced users do not necessarily lead
to more interaction activities. Fig. 1 shows an example. In
the figure, the orange nodes and the blue nodes are acti-
vated by seed nodes A and B, respectively. The thick edges
carry an activity strength (i.e., weight) of 1.0 and the thin
edges carry a strength of 0.5. Although A can activate more
nodes (13) than B (10), the number of edges between the
blue nodes as well as the blue nodes and B (i.e., the 15 edges
in blue) is more than that between the orange nodes and the
orange nodes and B (i.e., the 13 edges in orange). The total
activity strength activated by B, 13, is substantially more
than the total activity strength activated by A, 8.5.

Activity maximization is a novel problem that is substan-
tially different from classic influence maximization. Can we
adapt some existing influence maximization methods to
solve the activity maximization problem? Unfortunately,
the answer is no due to the following two major reasons.

First, the activity maximization problem focuses on the
interaction activities between the influenced users. This
requires comprehensive consideration of both the informa-
tion diffusion dynamics and the diffusion network structure
formed by the diffusion process. However, existing influ-
ence maximization methods aim to simply maximize the
expected number of the active users and seldom take the
diffusion network structure into consideration.

Second, at the technical level, the objective functions in
the influence maximization problem and the activity maxi-
mization problem proposed here have different properties,
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as to be shown in Section 3. Many existing methods for the
influence maximization problem rely on some special prop-
erties, such as submodurarity and supermodurarity, of the
objective function in influence maximization, which unfor-
tunately do not hold for activity maximization.

Motivated by the interesting application scenarios and
the technical challenges associated, in this paper, we pro-
pose a novel problem, activity maximization, which aims to
maximize the expectation of the total activity among all
active users. A unique novel feature of our problem is that
the optimization objective captures interactions among
active users. We make several contributions.

First, we identify a novel research problem with interest-
ing applications. We propose the novel activity maximiza-
tion problem that aims to maximize the expectation of the
overall activities in a social network. To the best of our
knowledge, we are the first to explore the interactions
among active nodes in information propagation.

Second, we assess the challenges of the proposed activity
maximization problem. We show that the activity maximi-
zation problem is NP-hard under the two most popularly
used information diffusion models, namely the indepen-
dent cascade (IC) model and the linear threshold (LT)
model. We also prove that computing the activities with
respect to a given set of nodes is #P-hard under both the IC
model and the LT model. Moreover, we show that the objec-
tive function of the problem is neither submodular nor
supermodular. The theoretical results clearly show that the
proposed activity maximization problem cannot be easily
solved using the existing methods for influence maximiza-
tion. To understand the feasibility of approximate solutions,
we appraise the approximability of the problem by con-
structing a reduction from the densest k-subgraph problem.

Third, to develop practical approximate solutions, we
develop a lower bound and an upper bound of activities.
We prove that maximizing the lower bound or upper
bound is still NP-hard under the IC model and the LT
model. Moreover, computing the lower bound or upper
bound is still #P-hard under the IC model and the LT
model. However, we show the submodularity of the
lower bound and the upper bound, which facilitates
approximation.

Fourth, we develop a polling based randomized algo-
rithm. We design a sampling method to obtain an unbiased
estimation of activities. We also show how to efficiently
implement the greedy strategy on the estimate of activities.
We extend the sandwich approximation scheme to prove
that the proposed algorithm has a data dependent approxi-
mation factor.

Last, we verify our algorithm on four real world data
sets. The experimental results confirm the effectiveness and
the efficiency of the proposed algorithm.

The rest of the pager is organized as follows. We formu-
late the activity maximization problem in Section 2. In
Section 3, we observe several interesting and useful proper-
ties of the proposed problem. We develop a lower bound
and an upper bound in Section 4. In Section 5, we devise the
polling based algorithm. We review the related work in
Section 6. We report the empirical evaluation results in
Section 7, and conclude the paper in Section 8. Table 1 sum-
marizes the frequently used symbols and their meanings.

2 PROBLEM FORMULATION

In this section, we first review two widely used information
diffusion models, and then give the formal statement of the
activity maximization problem.

2.1 Diffusion Models

The independent cascade model and the linear threshold
model [1] are the two most widely used information diffu-
sion models. Our discussion in this paper is based on these
two models. We briefly review them here.

Consider a social network G ¼ ðV;E;BÞ, where V is a set
of vertices, E � V � V is a set of edges, and B is a diffusion
model-dependent parameter. Specifically, in the IC model,
Bu;v is the propagation probability of edge ðu; vÞ, which is
the probability that v is activated by u after u is activated. In
the LT model, Bu;v is the influence weight of edge ðu; vÞ,
which indicates the importance of u influencing v.

Both models assume a seed set S � V . Let St be the nodes
that are activated in step t ðt ¼ 0; 1; . . .Þ and S0 ¼ S.

In the IC model, the information diffusion process
unfolds as follows. At step tþ 1, each node v in St has only
one chance to activate each inactive neighbor u with the

Fig. 1. A toy example showing the difference between influence maximi-
zation and activity maximization.

TABLE 1
Frequently Used Notations

Notation Description

G ¼ ðV;E;BÞ A social network, where each edge ðu; vÞ 2 E
is associated with a diffusion model-depen-
dent parameter Bu;v

GS ¼ ðVS;ESÞ The propagation subgraph induced by seed set
S, where VS is the set of all active nodes and
ES ¼ fðu; vÞ j u 2 VS ^ v 2 VSg

n ¼ jV j The number of nodes in G

Au;v The interaction strength of edge ðu; vÞ
dAðSÞ The activity of a given seed set S

dLð�Þ, dUð�Þ The lower bound and the upper bound respec-
tively

g A “live-edge” graph instance of G

g � G g is sampled from all possible instances of G

RgðSÞ The set of nodes reachable from node set S in g

gT The transpose graph of g:
ðu; vÞ 2 g iff ðv; uÞ 2 gT

RgT ðvÞ The reverse reachable (RR) set of node v

H The hypergraph consist of hyperedges
mH The number of the hyperedges inH
DðSÞ The degree of the node set S inH
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probability Bv;u. The process terminates when no more
nodes can be activated.

In the LT model, the information diffusion process
unfolds as follows. Initially, each node v selects a threshold
uv in range ½0; 1� uniformly at random. At step t > 0, an
inactive node v is activated if

P
w2NðvÞ\ð[i < t SiÞ Bw;v � uv. The

process stops at a step twhen St ¼ ;.
Kempe et al. [1] also provided an alternative perspective

of the information diffusion based on “live-edge” graphs.
Given a graph G, each edge is marked as “live” on certain
randomized rules, and the random subgraph obtained from
all live edges and all nodes in V is called the “live-edge”
graph [2]. Kempe et al. [1] proved that we can construct
equivalent “live-edge” graph models for both IC model and
LT model. For the IC model, a “live-edge” graph instance
can be obtained by marking each edge ðu; vÞ as “live” with
probability Bu;v independently. For the LT model, the corre-
sponding rule is: each node v marks at most one incoming
edge ðu; vÞ as “live” with probability 1	P

u2NðvÞ Bu;v.

2.2 Activity Maximization

The activity maximization problem also considers informa-
tion diffusion in a social network with an extra parameter
A. Each edge ðu; vÞ 2 E is associated with an activity
strength Au;v. Different from diffusion parameter Bu;v,
which indicates how node u influences/activates its neigh-
bor v, Au;v captures the interaction strength between u and v
when they are both active. The activity strength between a
pair of nodes depends on application scenarios, and take
any numerical domain. For example, one may learn the
activity strength from interaction log data with machine
learning methods or simply use some statistical results as
activity strength.

Given a social networkG, an information diffusionmodel
M, and a seed set S, the diffusion process forms a propaga-
tion induced subgraph GS ¼ ðVS; ESÞ, where VS is the set of
all active nodes and ES ¼ fðu; vÞ 2 E ju 2 VS ^ v 2 VSg is the
set of all edges whose two endpoints are both in VS . Then, we
can define the activity of a given seed set S as

dAðSÞ ¼ E

" X
ðu;vÞ2ES

Au;v

#
; (1)

where E½�� is the expectation operator. Since information dif-
fusion is a stochastic process, we take the expectation with
respect to all possible diffusion instances. The activity meas-
ures the overall interaction strength among the active nodes
and thus can reflect the overall strength of the activity
caused by the information propagated in the social network.

Now, we can formally define the activity maximization
problem as follows. Given a social network G, an informa-
tion diffusion model M, and a budget k, find a seed set S


such that

S
 ¼ arg max
S � V

jSj ¼ k

dAðSÞ:
(2)

From the definition, we can see that activity maximiza-
tion is a discrete optimization problem, just as the tradi-
tional influence maximization problem is. Both diffusion

parameter B and activity parameter A are inputs to the
problem. The activity maximization problem tries to find a
set of seed nodes to maximize the activity with given
parameter settings. In the next section, we discuss the prob-
lem in general. Thus, the solution does no dependent on
any specific settings.

3 PROPERTIES OF ACTIVITY MAXIMIZATION

In this section, we first prove the hardness of the activity
maximization problem. Then we discuss the properties of
the objective function dAð�Þ. Last, we show the approxim-
ability of the problem.

3.1 Hardness Results

We first assess the hardness of the activity maximization
problem.

Theorem 1. Activity maximization is NP-hard under the IC
model and the LT model.

Proof. Weprove by reducing from the set cover problem [3],
which is well known in NP-complete. Given a ground set
U ¼ fu1; u2; . . . ; ung and a collection of sets fS1; S2; . . . ;
Smg whose union equals the ground set, the set cover
problem is to decide if there exist k sets in S so that the
union equals U.

Given an instance of the set cover problem, we con-
struct a corresponding graph with 2nþm nodes as fol-
lows. We create a node xi for each set Si, two nodes yj
and y0j for each element uj, and two edges ðxi; yjÞ and
ðxi; y

0
jÞ with propagation probability 1 for the IC model

and with influence weight 1 for the LT model and activ-
ity 0 if uj 2 Si. We also create an edge between yj and y0j
with propagation probability 0 and activity 1 for each ele-
ment uj. The information diffusion will be a deterministic
process, since all propagation probabilities are either 1 or
0. Therefore, the set cover problem is equivalent to decid-
ing if there is a set S of k nodes such that dAðSÞ ¼ n. The
theorem follows immediately. tu
Activity maximization is NP-hard. Then, what is the

hardness of computing the activity with respect to a given
seed set S?

Theorem 2. Given a seed set S, computing dAðSÞ is #P-hard
under the IC model and the LT model.

Proof. We prove by reducing from the influence spread
computation problem, which was proved #P-hard under
the IC model and the LT model [4], [5].

Given an instance of the influence spread computation
problem, we keep the same graph G and influence diffu-
sion parameters B. We set Au;v ¼ 1 for any u; v 2 V and
compute x1 ¼ dAðSÞ in the graph G. Next, we add a new
node v0 for each node v in the graph G and an edge
between v and v0 with propagation probability 1 for the IC
model and with influence weight 1 for the LT model and
activity 1. Now, we obtain a new graph G0 and can com-
pute x2 ¼ dAðSÞ in the graph G0. For any newly added
node v0, the only way to be activated is through its only
neighbor v. Moreover, a newly added node v0 will be acti-
vated if its neighbor v is active, since the propagation
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probability of the newly added edges is 1. Thus, x2 	 x1 is
exactly the influence spread in the graph G. The theorem
follows immediately. tu
In [1], Kempe et al. introduced the triggering model that

generalizes the IC model and the LT model. In the trigger-
ing model, each node v independently chooses a subset of
its neighbors as its “triggering set” according to some distri-
bution. A node will be activated if at least one node of its
triggering set is active. We can see that the reduction we
construct in the proof of Theorem 2 still holds for the trig-
gering model. Thus, we have the following result.

Corollary 2.1. Given a seed set S, computing dAðSÞ is #P-hard
in any triggering model M if computing influence spread is
#P-hard inM.

3.2 Modularity of Objective Functions

The objective function of influence maximization is sub-
modular under the IC model and the LT model. Unfortu-
nately, the objective function in activity maximization is not
submodular. Moreover, we can show that dAð�Þ is not super-
modular as well.

Theorem 3. dAð�Þ is not submodular under the IC model and the
LT model.

Proof. We prove by a counter example. Consider Fig. 2a.
The first number in the tuple on each edge represents the
propagation probability for the IC model and the influ-
ence weight for the LT model. The second number is the
activity of the edge. For example, in the counter example
1, ð1; 1Þ on edge ðv1; v2Þmeans Bv1;v2 ¼ 1 and Av1;v2 ¼ 1. In
this example, we have dAðfv1gÞ ¼ 1, dAðfv1; v5gÞ ¼ 5 and
dAðfv5gÞ ¼ 2. That is,

dAðfv1gÞ 	 dAð;Þ < dAðfv1; v5gÞ 	 dAðfv5gÞ:
Therefore, dAð�Þ is not submodular. tu
From the counter example in the proof of Theorem 3

(Fig. 2a), we can see that the reason why dAð�Þ is not sub-
modular is the “combination effect” between the newly
added node and the existing seed nodes. For example, If we
add v1 into S when S ¼ ;, then there is only one active end-
point for edge ðv2; v4Þ and ðv2; v3Þ, that is v2. But if we add v1
to S when S ¼ fv5g, then both the two endpoints of edge
ðv2; v4Þ and ðv2; v3Þ are active, since v3 and v4 are activated
by v5. The “combination effect” has its roots in the definition
of activity. We only count the activity on the edges whose
two endpoints are both active. As a result, the newly added
node and the existing seed nodes may activate the two end-
points of an edge together, which leads to a violation of
submodularity.

Theorem 4. dAð�Þ is not supermodular under the IC model and
the LT model.

Proof. Again, we prove by a counter example. Consider the
counter example 2 in Fig. 2b, we have dAðfv2gÞ ¼ 4,
dAðfv1; v2gÞ ¼ 4 and dAðfv1gÞ ¼ 4. Thus,

dAðfv2gÞ 	 dAð;Þ > dAðfv2; v1gÞ 	 dAðfv1gÞ:

That is, dAð�Þ is not supermodular. tu
From the counter example in the proof of Theorem 4

(Fig. 2b), we can see that the reason why dAð�Þ is not super-
modular is the “overlap effect” between the newly added
node and the existing seed nodes. The nodes that the newly
added node can activate may have already been activated
by the existing seed nodes, which means that adding a new
node does not bring any marginal gain.

3.3 Approximability

Since dAð�Þ is neither submodular nor supermodular, we
cannot adopt the standard procedure for optimizing sub-
modular function or supermodular function to get an
approximation solution. To explore the approximability of
the activity maximization problem, we explore the connec-
tion between the activity maximization problem and the
densest k-subgraph extraction problem.

Theorem 5. If there exists a polynomial time algorithm approxi-
mating the activity maximization problem within a ratio of a,
then there exists a polynomial time algorithm that can approxi-
mate the densest k-subgraph problem within a ratio of a.

Proof. We prove by constructing a reduction from the dens-
est k-subgraph problem to the activity maximization
problem. Given a graph and an integer k, the densest
k-subgraph problem is to find a subgraph of exactly k ver-
tices that has the maximum density. For a subgraph
GS ¼ ðVS; ESÞ, the density is defined as jES j

jVS j.
Given an instance of the densest k-subgraph problem,

we construct a corresponding instance of the activity
maximization problem. We keep the same graph and set
Bu;v ¼ 0 and Au;v ¼ 1 for u; v 2 V . Then, the activity max-
imization problem is to find a set of k vertices and maxi-
mize the number of edges whose both endpoints are in
this set. It is equivalent to maximizing the density since
the number of vertices is constant. tu
Khot [6] showed that the densest k-subgraph problem

does not admit PTAS1 (Polynomial Time Approximation
Scheme [7]) assuming NP ~

T
�> 0 BPTIMEð2n�Þ, we imme-

diately have the following result.

Corollary 5.1. There is no PTAS for the activity maximization
problem assuming NP ~

T
�> 0 BPTIMEð2n�Þ.

In fact, finding a good approximation to the densest
k-subgraph problem is challenging. The current best
approximation ratio of n1=4þ� for � > 0 was achieved by
Bhaskara et al. [8]. It is still unknown if there exists a

Fig. 2. Counter examples.

1. A PTAS is an algorithm that returns a solution within a factor 1 + �
of being optimal (or 1 - � for maximization problems) in polynomial
time for any � > 0.
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polynomial time algorithm that can approximate the dens-
est k-subgraph problem with a constant factor.

4 LOWER BOUND AND UPPER BOUND

In this section, we first give a lower bound and an upper
bound on activities. Then we discuss the properties of the
lower bound and the upper bound.

4.1 The Bounds

Since the “combination effect” among seed nodes comprises
the submodularity of the objective function dAð�Þ, we try to
develop a lower bound of dAð�Þ that is submodular by ignor-
ing the “combination effect”. The major idea is that we only
consider the edges whose two endpoints are activated by
the same seed node. Accordingly, the lower bound can be
defined as

dLðSÞ ¼ E½
X

ðu;vÞ2
[
x2S

Efxg

Au;v�; (3)

where Efxg is the set of edges of the propagation subgraph
induced by seed set fxg. Recall that the propagation sub-
graph induced by a seed set consists of the nodes that can
be activated by the seed set. Here, the seed set consists of
only one node x. It is easy to see that dLðSÞ � dAðSÞ for any
S � V , since we ignore the edges whose endpoints are acti-
vated by different seed nodes.

A straightforward way to get an upper bound is to con-
sider all the edges that have at least one active endpoint. In
this way, the upper bound equals to the activity of edges
that have one active endpoint plus the activity of edges
whose two endpoints are both active. The latter is exactly
the activity we want to compute. Here, we present a tighter
upper bound from the perspective of active nodes, which
can be defined as

dUðSÞ ¼ E
X
v2VS

wðvÞ
" #

; (4)

where

wðvÞ ¼ 1

2

X
u2NðvÞ

Au;v:

Given a seed set S, dUðSÞ equals to the half of the activity of
edges that have one active endpoint plus the activity of edges
whose two endpoints are both active. Thus, dUðSÞ is better
than the straightforward one. Also, we can see that the upper
bound is essentially a weighted version of the influence
spread, where the weight of node v is 1

2

P
u2NðvÞ Au;v. For the

influence spread,wðvÞ ¼ 1 for each node v.

4.2 Properties of the Bounds

Using the lower bound and the upper bound,we can approx-
imate the information activity problem by maximizing the
lower bound and the upper bound [9]. However, maximiz-
ing the lower bound and the upper bound is still NP-hard.

Theorem 6. Maximizing the lower bound is NP-hard under the
IC model and the LT model.

Proof. We prove by reducing from the NP-complete set
cover problem [3]. We show the reduction constructed in

the proof of Theorem 1 still holds for the lower bound.
The lower bound only considers the edges whose two
endpoints can be activated by the same seed node. In the
previous reduction, for all the edges whose activity is not
equal to 0 (the edges between yj and y0j), their two end-
points can be activated by the same node. Thus, the set
cover problem can be solved by deciding if there is a set S
of k nodes such that dLðSÞ ¼ n. tu

Theorem 7. Maximizing the upper bound is NP-hard under the
IC model and the LT model.

Proof. We prove by reducing from the NP-hard influence
maximization problem [1].

Given an instance of the influence maximization prob-
lem, let dmax be the highest degree of the nodes in the
graph G. Then, for each node v in G, we add
Nd ¼ dmax 	 dv new nodes, v01; v

0
2; . . . ; v

0
Nd
, and Nd new

edges, ðv; v01Þ; ðv; v02Þ; . . . ; ðv; v0Nd
Þ. Now we obtain a new

graph G0. We set the propagation probability of the
newly added edges to 0 for the IC model, and set
the influence weight of the newly added edges to 0 for
the LT model, and set the information activity of all the
edges in G0 to 2

dmax
.

Then, we have 8v 2 V , wðvÞ ¼ 1, and 8v0 2 V 0 n V ,
wðv0Þ ¼ 2

dmax
. Since the propagation probability of all

newly added edges is 0, the newly added nodes can

never be activated. Therefore, we have IGðSÞ ¼ dG
0

U ðSÞ;
8S � V , where IðSÞ is the influence spread of a give seed

set S in G and dG
0

U ðSÞ is the upper bound in G0.
Next, we prove that S


U ¼ argmaxdG
0

U ðSÞ does not con-
tain any newly added nodes. If there is any newly added
node in S


U , we can always replace it with a node in
V n S


U and increase the value of the objective function.
Thus, if S


U is the optimal solution of maximizing the
upper bound in G0, it must be the optimal solution of the
influence maximization in G. tu
Although maximizing the lower bound and the upper

bound is NP-hard, the objective functions of the lower
bound and the upper bound are submodular.

Theorem 8. dLð�Þ is submodular under the IC model and the LT
model.

Proof. Given a graph G and an influence diffusion model,
either the IC model or the LT model, we can construct
“live-edge” graphs for G using the methods proposed
in [1]. Let g be a “live-edge” graph instance. Denote by
PrðgÞ the probability that g is selected from all possible
instances. Let EgðSÞ be the set of edges whose two end-
points can be reachable from the same node in the seed
set S. Then we can rewrite dLðSÞ to

dLðSÞ ¼
X
g�G

PrðgÞ
X

ðu;vÞ2EgðSÞ
Au;v:

We only need to prove QðSÞ ¼ P
ðu;vÞ2EgðSÞ Au;v is sub-

modular for any “live-edge” graph instance g, since an
non-negative linear combination of submodular func-
tions is also submodular.

To prove, let M and N be two sets such that
M � N � V . For any v 2 V nN , consider the difference
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between QðM [ fvgÞ and QðMÞ. It must be contributed
from the edges whose two endpoints can be reachable
from v but cannot be reachable from the nodes in M.
These edges must be a super set of the edges whose two
endpoints can be reachable from v but cannot be reach-
able from the nodes in N , since M � N . It follows that
QðM [ fvgÞ 	QðMÞ � QðN [ fvgÞ 	QðNÞ. Therefore, QðSÞ
is submodular and the theorem follows. tu

Theorem 9. dUð�Þ is submodular under the IC model and the LT
model.

Proof. We can prove the theorem by the same “live-edge”
technique used in the proof of Theorem 8. Let RgðSÞ be
the set of nodes reachable from S in g. Then, dUðSÞ can be
rewritten to

dUðSÞ ¼
X
g�G

PrðgÞ
X

v2RgðSÞ
wðvÞ:

The way to prove that Q0ðSÞ ¼ P
v2RgðSÞ wðvÞ is sub-

modular is similar to the proof of QðSÞ in Theorem 8.

The nodes that can be reachable from v but cannot be

reachable from the nodes in M must be a super set of the

nodes that can be reachable from v but cannot be reach-

able from the nodes in N . It follows that Q0ðM [ fvgÞ	
Q0ðMÞ � Q0ðN [ fvgÞ 	Q0ðNÞ. Therefore, Q0ðSÞ is sub-

modular and the theorem follows. tu
Theorems 8 and 9 are good news. With the submodular-

ity we can adopt the standard procedure for optimizing
submodular functions to obtain an approximation solu-
tion [10]. One challenge remains. Applying the algorithm
proposed in [10] requires evaluating the lower bound and
the upper bound. However, computing the lower bound
and the upper bound with respect to a given seed set is
unfortunately #P-hard.

Theorem 10. Given a seed set S, computing dLðSÞ is #P-hard
under the IC and the LT model.

Proof. We prove by reducing from the influence spread
computation problem. We show that the reduction we
construct in the proof of Theorem 2 still holds for the
lower bound case. Let y1 ¼ dLðSÞ in the graph G and
y2 ¼ dLðSÞ in the graph G0. Since the propagation proba-
bility of the edge ðv; v0Þ is 1 for the IC model and the
influence weight of the edge ðv; v0Þ is 1 for the LT model,
v and v0 can be activated by the same seed node. It fol-
lows that y2 	 y1 is also the influence spread in the
graph G. tu

Theorem 11. Given a seed set S, computing dUðSÞ is #P-hard
under the IC and the LT model.

Proof. We prove by reducing from the influence spread
computation problem. The reduction is the same as the
one in the proof of Theorem 7. We already showed
IGðSÞ ¼ dG

0
U ðSÞ for any seed set S � V . Therefore, the the-

orem follows immediately. tu
Since computing the activity, the lower bound and the

upper bound is #P-hard, we will discuss how to estimate
them in the next section.

5 A POLLING BASED METHOD

Recently, a polling based algorithmic framework [11], [12]
was proposed for the influence maximization problem. The
framework includes two steps. In the first step, it estimates
the influence spread through sampling. In the second step,
it finds an approximation solution for maximizing the esti-
mate. If we can bound the estimation error, then the solu-
tion also enjoys an approximation guarantee for the
influence maximization problem. To solve the activity maxi-
mization problem, we also design a polling based method.

5.1 Estimation

In a social network G, given an information diffusion
model, either the IC model or the LT model, and a seed set
S, let g be a “live-edge” graph instance of G and RgðSÞ be
the set of nodes reachable from S in g. Denote by RgT ðvÞ the
reverse reachable (RR) set [13] for node v in g, where gT is
the transpose graph [11] of g: ðu; vÞ 2 g iff ðv; uÞ 2 gT . We
write ðu; vÞ � E to indicate that we randomly pick ðu; vÞ
from E as a sample according to a certain distribution. The
meaning of v � V is similar.

To estimate the activity, we first have the following
result.

Theorem 12. For any seed set S � V ,

dAðSÞ ¼ T � Pr
g�G;ðu;vÞ�E

"
S \RgT ðuÞ 6¼ ; ^ S \RgT ðvÞ 6¼ ;

#
;

where T ¼ P
ðu;vÞ2E Au;v.

Proof.

dAðSÞ ¼ E

" X
ðu;vÞ2ES

Au;v

#

¼
X

ðu;vÞ2E
Pr

"
ðu; vÞ 2 ES

#
Au;v

¼
X

ðu;vÞ2E
Pr
g�G

"
u 2 RgðSÞ ^ v 2 RgðSÞ

#
Au;v

¼
X

ðu;vÞ2E
Pr
g�G

"
9w1; w2 2 S;w1 2 RgT ðuÞ^

w2 2 RgT ðvÞ
#
Au;v

¼ T �
X

ðu;vÞ2E
Pr
g�G

"
9w1; w2 2 S;w1 2 RgT ðuÞ^

w2 2 RgT ðvÞ
#
Au;v

T

¼ T � Pr
g�G;ðu;vÞ�E

h
9w1; w2 2 S;w1 2 RgT ðuÞ^

w2 2 RgT ðvÞ
i

¼ T � Pr
g�G;ðu;vÞ�E

h
S \RgT ðuÞ 6¼ ; ^ S \RgT ðvÞ 6¼ ;

i
:

(5)
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Eq. (5) is the expected probability with respect to the
activity distribution of edges, where the probability for
edge ðu; vÞ is Au;v

T . tu
The intuition of Theorem 12 is that if a seed set S has a

high activity value, then the probability that S is simulta-
neously reachable from both two endpoints of a randomly
picked edge in a randomly picked “live-edge” graph
instance is high, since we only count the activity on the edges
whose two endpoints are both active. Theorem 12 implies
that we can estimate dAðSÞ by estimating the probability
of the event S \RgT ðuÞ 6¼ ; ^ S \RgT ðvÞ 6¼ ;. To achieve
the estimation, we conduct a poll as follows. We select an
edge ðu; vÞwith probability

Au;v

T , and runMonte Carlo simula-
tion of the “live-edge” process. During the process, we
record all the nodes that can reach u and v through “live”
edges. Algorithm 1 summarizes the process.

One critical observation is that we do not need to conduct
the “live-edge” process on the entire graph. Instead, we can
simulate the process starting from u and v, respectively. We
only need to make sure that each edge is marked consis-
tently as the same status (“live” or “blocked”) in these two
simulations. We call the pair of two RR sets obtained from a
poll a hyperedge. All the generated hyperedges constitute a
hypergraphH.

Denote by mH the number of the hyperedges in H. If a
node v appears in both RR sets of a hyperedge E, E is said
to be fully covered by v. If a node v only appears in one of
the two RR sets of a hyperedge E, E is said to be partially
covered by v. Denote by DðSÞ the degree of the set of nodes
S, which is the number of hyperedges in H that can be
fully covered by S. According to Theorem 12, T � DðSÞ

mH
is an

unbiased estimator of dAðSÞ for any fixed mH . Please note
that there also exists “combination effect” between nodes
in this case. For example, in the left part of Fig. 3, v1 only
appears in the first RR set of hyperedge E and v4 only
appears in the second RR set. v1 and v4, respectively, par-
tially covers E. But E is fully covered by the combination of
v1 and v4. Thus, similar to dAð�Þ, Dð�Þ is not submodular
neither.

Algorithm 1. Generate Hyperedges

Input: Social network G ¼ ðV;E;BÞ, A and diffusion modelM
Output: A hyperedge E
1: Initialize E ¼ ð;; ;Þ
2: Pick an edge ðu; vÞwith probability

Au;v

T .
3: Generate a “live-edge” graph g according toM
4: Let N1 ¼ RgT ðuÞ and N2 ¼ RgT ðvÞ
5: Let E ¼ ðN1; N2Þ
6: return E

Similarly, for the lower bound and the upper bound, we
have the following two results.

Theorem 13. For any seed set S � V ,

dLðSÞ ¼ T � Pr
g�G;ðu;vÞ�E

h
S \ ðRgT ðuÞ \RgT ðvÞÞ 6¼ ;

i
;

where T ¼ P
ðu;vÞ2E Au;v.

Proof. The lower bound only considers the edges whose
two endpoints can be activated by the same seed node.
Thus, to prove the theorem, we only need to let w1 ¼ w2

in the proof of Theorem 12, that is

dLðSÞ ¼ T � Pr
g�G;ðu;vÞ�E

h
9w 2 S;w 2 RgT ðuÞ ^ w 2 RgT ðvÞ

i
¼ T � Pr

g�G;ðu;vÞ�E

h
S \ ðRgT ðuÞ \RgT ðvÞÞ 6¼ ;

i
:

tu
Using Theorem 13, we can estimate the lower bound

using essentially the same sampling process as the activity.
The only difference is that there is only one node set in the
hyperedge for the lower bound, that is N1 \N2. In this case,
a hyperedge E is covered by node v if and only if
v 2 N1 \N2.

Theorem 14. For any seed set S � V ,

dUðSÞ ¼ W � Pr
g�G;v�V

h
S \RgT ðvÞ 6¼ ;

i
;

whereW ¼ P
v2V wðvÞ.

Proof. The upper bound is essentially a weighted variation
of the influence spread. Thus, we can apply the proof pro-
posed in [14]. tu
There is also only one node set in the hyperedge for the

upper bound. We can generate the hyperedge using the
sampling method proposed in [14].

Since we can estimate the objective function (dAð�Þ, dLð�Þ
or dUð�Þ) by the degrees of the set of nodes, we can regard H
as encoding an approximation to the objective function.
With the estimate of the objective function, we go to the sec-
ond step of the polling based framework, that is, maximiz-
ing the estimate. To achieve this goal, we adopt the simple
but powerful greedy strategy, which picks the node with
the largest marginal gain (the increase of degree in H for
our case) iteratively. Next, we show how to efficiently
implement a greedy strategy on the hypergraph.

5.2 Efficient Implementation of the Greedy Strategy

For the lower bound and the upper bound, there is only one
node set in each hyperedge. Thus, we can use the standard
greedy algorithm for maximum coverage problem to obtain
an approximate solution [13]. However, there are two node
sets in the hyperedge for the activity maximization problem.
A hyperedge can be fully or partially covered by a node or a
node set. Thus, we cannot directly apply the greedy strat-
egy. To tackle this issue, here we discuss how to efficiently
implement the greedy strategy on the hypergraph.

First, we store the original hyperedges of two RR sets in a
more efficient manner. There are three sets, n1, n2 and n3 for

Fig. 3. Hyperedge for activities.
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each hyperedge E, where n1 and n2 are the sets of nodes that
can only cover the first and second RR set of E, respectively,
and n3 is the set of nodes that can cover both two RR sets of
E. Fig. 3 illustrates the idea.

Then, we build an inverted index for each node. There
are three sets, e1, e2 and e3 for each node v, where e1 and e2
are the sets of hyperedges whose first and second RR set
can be covered by v, respectively, and e3 is the set of hyper-
edges that can be fully covered by v.

Third, we maintain a global data structure to record the
current covered hyperedges. There are also three sets, E1, E2

andE3, in this data structure, whereE1 andE2 are the sets of
hyperedges whose first and second RR sets have been cov-
ered, respectively, and E3 is the set of hyperedges that have
been fully covered. Fig. 4 shows these two data structures.
With these data structures, we have the following fact.

Fact 1. Given a seed set S, for each vertex v 2 V n S, the marginal
gain DðS [ fvgÞ 	 DðSÞ is

MGðvÞ ¼ jv:e3 n E3j þ jv:e1 \ E2j þ jv:e2 \E1j: (6)

RATIONALE. If we add a node v to the current seed set S,
the newly covered hyperedges can be divided into two
groups. The first group is the hyperedges that can be cov-
ered by v alone but not covered by S, that is v:e3 n E3. The
second group is the hyperedges that are partially covered
by S and are fully covered if v is added to S, that is
v:e1 \ E2 and v:e2 \E1.

Fact 1 implies that we can pick the node with the largest
marginal gain in each iteration and then incrementally
update the marginal gains of the rest nodes. Algorithm 2
describes the details.

Here, we briefly explain how to incrementally update the
marginal gain. Assuming E1, E2 and E3 are updated to E0

1,
E0

2, and E0
3, respectively, we update the marginal gains as

follows. For each hyperedge E 2 E0
1 n E1, we increase the

marginal gains of the nodes in E:n2 by 1. For each hyper-
edge E 2 E0

2 n E2, we increase the marginal gains of the
nodes in E:n1 by 1. For each hyperedge E 2 E0

3 n E3, we first
decrease the marginal gains of the nodes in E:n3 by 1. Then,
we decrease the marginal gains of the nodes in E:n2 by 1 if
E 2 E1, and decrease the marginal gains of the nodes in E:n1

by 1 if E 2 E2.
Now, the only remaining question is to decide how many

hyperedgeswe need to sample,whichwill be addressed next.

5.3 Sample Complexity

In this section, we discuss how to use a sample of proper
size to restrict the estimate error of the activity, the lower

bound and the upper bound. With the technique, we show
that the polling algorithm can provide an approximate solu-
tion to maximizing the lower bound and the upper bound.

To bound the estimate error of the polling method, we
have the following lemma from [15].

Algorithm 2.Maximum Coverage on Hypergraph

Input: Social network G, HypergraphH and budget k
Output: Seed set S
1: Initialize S ¼ E1 ¼ E2 ¼ E3 ¼ ;
2: for v 2 V do
3: MGðvÞ ¼ jv:ej
4: end for
5: while jSj < k do
6: v ¼ argmaxu2V nSMGðuÞ
7: S ¼ S [ fvg
8: update E1; E2; and E3

9: for u 2 V n S do
10: updateMGðuÞ according to Eq. (6)
11: end for
12: end while
13: return S

Lemma 1. Let Z1; Z2; . . . be independently and identically dis-
tributed according to Z in the interval ½0; 1� with mean mZ . Let
S ¼ PN

i¼0 ZN and m̂Z ¼ S
N. Let � ¼ 4ðe	 2Þ lnð2=dÞ

�2
and �1 ¼

1þ ð1þ �Þ�. If N is the number of samples when S >¼ �1,
then Pr½jm̂Z 	 mZ j � �mZ � > 1	 d andE½N � � �1=mZ .

Lemma 1 provides a stopping condition for the sampling
process. Given a seed set S, we can keep sampling hyper-

edges until DðSÞ � �1. Then, T � DðSÞ
mH

is an ð�; dÞ estima-

tion [16] of dAðSÞ. The analysis is similar in the cases of the
lower bound and the upper bound.

Nguyen et al. [17] analyzed the conditions that the poll-
ing algorithmic framework must meet to obtain an approxi-
mation solution. Let S
 be the optimal seed set and Ŝ be the
seed set returned by the greedy strategy on the estimate of
the objective function fð�Þ (dLð�Þ or dUð�Þ). Denote by f̂ð�Þ the
estimate of the objective function fð�Þ. The conditions are

Pr½f̂ðŜÞ � ð1þ �1ÞfðŜÞ� � 1	 d1 (7)

Pr½f̂ðS
Þ � ð1	 �2ÞfðS
Þ� � 1	 d2; (8)

where d1 þ d2 � d and �1 þ ð1	 1=eÞ�2 � �. Let N be the
number of samples such that both Eqs. (7) and (8) are
guaranteed. Then we have the following lemma from [17].

Lemma 2. Given a social network G, if the number of hyperedges
mH � N , then the polling algorithm returns Ŝ satisfying
Pr½fðŜÞ � ð1	 1=e	 �ÞfðS
Þ� � 1	 d and Ŝ is an ð1	 1=
e	 �Þ approximate solution.

Using Lemmas 1 and 2, to obtain an approximation solu-
tion to maximizing the lower bound or upper bound, we can
keep sampling hyperedges and checking if the conditions
aremet. SSA algorithm from [17] describes the process.

Using SSA algorithm, we can provide a ð1	 1=e	 �Þ
approximation solution to maximizing the lower bound and
the upper bound with probability of at least 1	 d. But we
must point out that the analysis does not hold for the activity

Fig. 4. Data structures.
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maximization problem. This is because a necessary condition
of the polling algorithmic framework is that we can approxi-
mate the estimate using the greedy strategy. The condition is
not met in the case of the activity maximization problem,
since the estimate of the activity is not submodular. Thus, the
polling algorithm cannot provide an approximation solution
to the activity maximization problem. But it is still a good
heuristic for the activity maximization problem. Further-
more, by combining the approximation algorithm for the
lower bound and the upper bound, we can derive a data
dependent approximation scheme for the activity maximiza-
tion problem.

5.4 Data Dependent Approximation

There is no general way to optimize or approximate a non-
submodular function. Lu et al. [9] proposed a sandwich
approximation strategy, which approximates the objective
function by approximating its lower bound and upper bound.
The sandwich approximation strategyworks as follows. First,
we find a solution to the original problem with any strategy.
Second, we find an approximate solution to the lower bound
and the upper bound, respectively. Last, we return the solu-
tion that has the best result for the original problem.

Here, we extend the strategy to the case in which the
objective function is intractable and have the following
result.

Algorithm 3. Sandwich Approximation Framework

1: Let SU be a a approximation to the upper bound
2: Let SL be a b approximation to the lower bound
3: Let SA be a solution to the original problem
4: d̂Að�Þ is a multiplicative g-error estimate of dAð�Þ
5: S ¼ argmaxS02fSU ;SL;SAgd̂AðS0Þ
6: return S

Theorem 15. Let S be the seed set returned by Algorithm 3, then
we have

dAðSÞ � max

(
dAðSUÞ
dUðSUÞa;

dLðS

LÞ

dAðS

AÞ

b

)
1	 g

1þ g
dAðS


AÞ: (9)

Proof. Let S

L, S



U and S


A be the optimal solutions to maxi-
mizing the lower bound, the upper bound and the activ-
ity, respectively. Then, we have

dAðSUÞ ¼ dAðSUÞ
dUðSUÞ dUðSUÞ � dAðSUÞ

dUðSUÞ � a � dUðS

UÞ

� dAðSUÞ
dUðSUÞ � a � dUðS


AÞ �
dAðSUÞ
dUðSUÞ � a � dAðS


AÞ

dAðSLÞ � dLðSLÞ � b � dLðS

LÞ �

dLðS

LÞ

dAðS

AÞ

� b � dAðS

AÞ:

Let Smax ¼ argmaxS02fSU ;SL;SAgdAðS0Þ, then

dAðSmaxÞ � max

(
dAðSUÞ
dUðSUÞa;

dLðS

LÞ

dAðS

AÞ

b

)
dAðS


AÞ:

Since 8S0 2 fSU; SL; SAg; jd̂AðS0Þ 	 dAðS0Þj � gdAðS0Þ, we
have ð1þ gÞdAðSÞ � ð1	 gÞdAðSmaxÞ. It follows that

dAðSÞ � ð1	 gÞ
ð1þ gÞ dAðSmaxÞ:

tu
Theorem 15 indicates that we can approximate the activ-

ity maximization problem within a factor that is dependent
on the data. Since it is #P-hard to compute dAð�Þ and dUð�Þ,
and is NP-hard to find S


L and S

A, we cannot compute the

exact approximation factor. But we can estimate dAðSU Þ
dU ðSU Þ by

computing its lower bound ð1	gÞd̂AðSU Þ
ð1þgÞd̂U ðSU Þ

. It follows that
ð1	gÞ2
ð1þgÞ2 � a � d̂AðSU Þ

d̂U ðSU Þ
is a computable lower bound of the approxi-

mation factor.

Now, we put all the pieces of the puzzle together. We
first adopt the polling algorithm to maximize the lower
bound and the upper bound. As discussed in Section 5.3, it
provides ð1	 1=e	 �Þ approximate solutions to the lower
bound and the upper bound, respectively. Consequently,
we have a ¼ b ¼ ð1	 1

e 	 �Þ in Algorithm 3. Then, we also
use the polling algorithm to get a heuristic solution (SA) to
the activity maximization problem. Last, we get a ðg; dÞ esti-
mation of dAð�Þ based on Lemma 1 to complete Line 5 of
Algorithm 3. According to Theorem 15, the sandwich algo-
rithm returns a seed set S such that

dAðSÞ � max

(
dAðSUÞ
dUðSUÞ ;

dLðS

LÞ

dAðS

AÞ

)
1	 g

1þ g
ð1	 1

e
	 �ÞdAðS


AÞ:

6 RELATED WORK

Domingos and Richardson [18] first exploited the influence
between users in social networks for viral marketing. The
key idea behind viral marketing is that, by targeting on only
a small number of individuals (in practice, for example, per-
suading them to adopt the product), we can trigger a large
cascade of (product) adoption spreading in a social net-
work. Kempe et al. [1] formulated the problem as a discrete
optimization problem, which is also well known as the
influence maximization problem. The influence maximiza-
tion problem aims to optimize the influence spread (the
expected number of active nodes) in a given information
diffusion model, such as the IC model and the LT model.
Due to its important applications in viral marketing and
some other areas, it has drawn much attention from both
academia and industry [19], [20], [21], [22], [23], [24], [25].
Influence maximization is good for the scenarios of viral
marketing, because the active state of a node means product
adoption. But for topic promotion, the activity of a topic
also depends on the interactions among active nodes, which
are exactly where activity maximization differs from influ-
ence maximization.

Under the IC model and the LT model, Kempe et al. [1]
proved that influence maximization is NP-hard. Moreover,
Chen et al. [4], [5] proved that computing influence spread is
#P-hard. Thus, many heuristic algorithms were proposed to
solve the problem under these two models [4], [5], [26], [27],
[28], [29]. Recently, a polling based method [11] was pro-
posed for influence maximization. Unlike the previous heu-
ristic algorithms, this method can provide a solution with
provable approximation guarantee. Later, Tang et al. [12],
[13] reduced the sample complexity and improved the
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efficiency. Nguyen et al. [17] further sped up the algorithm
with a different bounding technique [15]. In this paper, we
extend this algorithmic framework to solve our activity max-
imization problem in a non-trivial way.

Although influence maximization has its root in viral
marketing, it may still be impractical under many real-life
scenarios. To fill this gap, a series of extensions to the influ-
ence maximization problem were studied. For example,
Goyal et al. [30] proposed a data based approach to influ-
ence maximization based on a credit distribution model.
Instead of maximizing the influence spread under some
propagation models with respect to some learned parame-
ters, they tried to find influential nodes from the action log
data directly. Chen et al. [31] considered the time-delay
aspect of influence diffusion and studied the influence max-
imization with time-critical constraint. Similarly, the spatial
factor of influence diffusion is considered and influence
maximization on euclidean space has been studied as
well [32], [33], [34]. Tang et al. [35] studied the problem of
maximizing the influence spread and the diversity of the
influenced crowd simultaneously. Bhagat et al. [36] argued
that product adoption should be distinguished from influ-
ence spread in viral marketing, as influence spread is essen-
tially used as “proxy” for product adoption. Wang et al. [37]
distinguished the information coverage and information
propagation, and proposed a new optimization objective
that includes the values of the informed nodes. All these
extensions were from the perspective of nodes and tried to
exploit the values of nodes as separate individuals in differ-
ent diffusion models and different problem settings. They
did not consider activity strengths on edges in their objec-
tives. In contrast, our problem captures the interactions
among nodes and enables different (often orthogonal) appli-
cations of information diffusion.

7 EXPERIMENTS

In this section, we evaluate our algorithm via a series of
experiments on four real-world data sets.

7.1 Settings

We ran our experiments on four real-world data sets, which
include Douban [38], AMiner [39], DBLP [40] and LiveJour-
nal [40]. The last two data sets are available at the SNAP
website (http://snap.stanford.edu). Table 2 shows the sta-
tistics of the data sets.

The Douban data set is a social network about movie rat-
ings. We use the number of shared movies between a pair
of users as their activity strength, which reflects the com-
mon interest between users. The AMiner data set is an aca-
demic social network. We use the number of co-authored
papers between a pair of users as their activity strength,

which reflects the collaboration strength between users. To
explore the possibility of other kind of activity strengths, we
also verify our algorithm using two synthetic activity set-
tings on the DBLP data set and the Livejournal data set. In
the first case, we uniformly set Au;v to 1 for each edge ðu; vÞ.
In the second case, we set Au;v to the value of the diffusion
parameter Bu;v. The intuition is that there may be more
interactions between u and v if u is more likely to activate v.
The propagation probability Bu;v for the IC model and the
influence weight for the LT model of an edge ðu; vÞ is set to

1
degreeðvÞ, as widely used in literature [2]. For the parameters
controling approximation quality, we set � ¼ 0:1, d ¼ 0:001
and g ¼ 0:05 for all data sets.

We compare the proposed algorithm, referred as Sand-
wich, with three heuristic algorithms: InfMax, Degree and
PageRank. InfMax returns the nodes for influence maximi-
zation. We followed the implementation reported in [17].
Degree returns the nodes with high degrees. PageRank
returns the nodes with high PageRank [41] scores.

We implemented our algorithm and the baselines in Java.
All experiments were conducted on a PC with a 3.4 GHZ
Intel Core i7-3770 processor and 32 GB memory, running
Microsoft Windows 7.

7.2 Effectiveness

Fig. 5 shows the activity computed by each algorithm on the
four data sets, respectively. For better illustration, we report
the comparative gain ratio instead of the absolute activity
value, since the activity value scales vary greatly with
respect to seed set size. It is easier to distinguish the gaps
between the baselines and our algorithm when we use com-
parative gain ratio as the metric, since it is not affected by
activity value scales. The comparative gain ratio of an algo-

rithm A is defined as
dAðSAÞ	dAðSÞ

dAðSÞ , where SA and S are the

seed sets returned by algorithm A and the Sandwich algo-
rithm, respectively.

In the cases of real activity settings, our algorithm Sand-
wich always has the best performance. Only in very few
cases of synthetic activity settings, Sandwich is outper-
formed marginally. In the real activity settings, InfMax has
a poor performance and almost in all cases is the poorest
one. This is because influence maximization only considers
the number of active nodes and ignores the network struc-
ture. This phenomenon also demonstrates what we have
pointed out in Section 1: more active users do not necessar-
ily lead to more interaction activities.

In the uniform settings, algorithm Degree performs well
under the IC model but has a relatively bad performance
under the LT model. InfMax and PageRank often have a
bad performance under both the IC model and the LT
model in the uniform settings. In the diffusion settings,
InfMax algorithm is a good heuristic under both the IC
model and the LT model. Algorithm PageRank performs
well on the DBLP data set but has a bad performance on the
other two data sets. Algorithm Degree often has a bad per-
formance under both the IC model and the LT model in the
diffusion settings. These results show that these baseline
algorithms are not stable in performance in this task and
can only work well in some specific data set or activity set-
ting. The reason is that these baseline algorithms only use
the properties of the social network or the diffusion process

TABLE 2
The Statistics of the Data Sets

Network # Vertices # Edges Average degree

Douban 45,559 293,377 6.4
Aminer 1,712,433 4,258,615 2.5
DBLP 317,080 1,049,866 3.3
LiveJournal 3,997,962 34,681,189 8.7
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but totally ignore the activity strengths on edges. In con-
trast, our algorithm utilizes the unbiased estimate of the
activity and its lower and upper bounds to solve the prob-
lem. This is why our algorithm always has a good perfor-
mance while the baseline algorithms fail in many cases.

7.3 Approximation Quality

A major advantage of our algorithm is that it carries a data
dependent approximation ratio. Since the exact approxima-
tion is intractable to compute, we report the computable

lower bound of the approximation ratio, that is ð1	gÞ2
ð1þgÞ2 � ð1	

e	 �Þ � d̂AðSU Þ
d̂U ðSU Þ

. Fig. 6 shows the results on the four data sets.

The ratio varies in different data sets. On the same data
set, the ratios under the IC model and the LT model also dif-
fer. In general, the ratio under the LT model is greater than
the one under the IC model in the same activity settings.
The ratio does not change much with respect to the size of

the seed set k. Roughly the ratio increases when k increases.
A possible reason is that the gap between the activity and
the upper bound shrinks when k increases, since there are
more nodes activated with a larger value of k. Interestingly,
we observe that, in terms of approximation ratio, the LT
model consistently outperforms the IC model on both the
real data sets (i.e., Douban and Aminer in Figs. 6a and 6b)
and the data sets with synthetic activities (i.e., DBLP and
LiveJournal in Figs. 6c and 6d). The consistency in the
experimental results indicates that the uniform setting and
diffusion setting of synthetic activities are two possible
ways to simulate real activities.

7.4 Scalability

Since the activity settings do not affect the running time, we
only report the running time in the uniform case. Fig. 7
shows the running time on the four data sets.

Fig. 5. Information activity on four data sets. (a)-(d) Show the performances on two real data sets (Douban and Aminer) under IC and LT models.
(e)-(l) Show the performances on real data sets (DBLP and LiveJournal) with two types of synthetic activity settings, such as uniform and diffusion.

Fig. 6. The performance of approximation ratio on four data sets. (a)-(b) Show the performances on Douban and Aminer under IC model and LT
model. (c)-(d) Show the performances on DBLP and LiveJournal with two types of synthetic activity settings, such as uniform (U) and diffusion (D).
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In most of the cases, the running time of our algorithm
decreases when the size of seed set k increases. This is
because the time cost in Sandwich depends on the number
of sampled hyperedges. According to Lemma 1, the
expected number of samples is inversely proportional to
mZ , which is the probability of the event S \RgT ðuÞ 6¼
; ^ S \RgT ðvÞ 6¼ ;. It increases when k increases. A similar
analysis holds for the lower bound and the upper bound.
PageRank is faster than our algorithm on the smallest data
sets but slower on the largest data set. Degree and InfMax
are more efficient than our algorithm, but they are substan-
tially weaker than ours in effectiveness in many cases. As
described in the previous sections, there are many differen-
ces between our algorithm and InfMax, which lead to differ-
ent time costs of the two algorithms. First, to obtain a data
dependent approximation factor, the Sandwich algorithm
actually solves three problems with polling based method.
Second, during the sampling process of the original prob-
lem and maximizing the lower bound, we need to conduct a
poll from both two endpoints of a randomly picked edge.

Third, the sampling objects of the two algorithms are differ-
ent, i.e., nodes versus edges. The sampling complexity of
InfMax is mainly dependent on the number of nodes while
the sampling complexity of Sandwich is mainly dependent
on the number of edges. It is worthy noting that our algo-
rithm is actually very efficient. The largest running time is
only about 600 seconds on the largest data set, which has
millions of nodes and tens of millions of edges.

To further explore the scalability of the algorithms, we
sample five data sets from the LiveJournal data sets as fol-
lows. First, we start a breadth first search (BFS) from a ran-
domly selected node on the whole graph G until the desired
number of nodes are visited. Denote byN the set of all nodes
visited by the BFS. We useN to induce a subgraphGN as the
sampled data set. The number of nodes and edges of the five
subgraphs are listed in Table 3. After we obtain the sample
data sets, we run the algorithms when the size of seed set is
set to 200. The results are shown in Fig. 8. For both the IC
model and the LT model, the Sandwich algorithm scales up
roughly linearly with respect to the number of edges. Also,
the slope in the ICmodel is greater than that in the LTmodel.
In other words, the time cost increases more rapidly in the IC
model. A possible reason is that the influence in the ICmodel
is more sensitive to the number of edges in the graph, since
each edge is activated independently in the ICmodel.

7.5 Influence Spread versus Activity

To explore the relation between influence spread and activ-
ity strength, we report their values on the DBLP data set
and the LiveJournal data set with the uniform settings. We
choose the uniform settings for these experiments here
because, in such a situation, the total nactivity strength is
exactly the number of edges between the active nodes. In
this case, the activities can reflect the effect of the network
structure formed by the propagation induced subgraph. In
the the other two data sets, there is no such correspondence.
We also calculate the ratio, which is the influence spread
against the information activity. Table 4 shows the results
on the two data sets.

The ratio differs under different models. In general, the
ratio under the LT model is greater than the one under the
IC model. Possibly active nodes are more closely connected

Fig. 7. The running time of all methods on four data sets under IC model
and LTmodel. We only report the running time under the uniform activity
setting, because the activity settings do not affect the running time.

TABLE 3
The Sampled LiveJournal Data Sets

Sample ID 1 2 3 4 5

Vertices (�105) 1.0 5.0 9.0 13 20
Edges (�106) 1.6 5.8 9.7 13 18

Fig. 8. The run running time of all methods on five sampled data sets.
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to each other under the LT model. We also notice that the
ratio is similar when k ¼ 20 and k ¼ 200. This result sug-
gests that the relation between the influence spread and the
activity does not vary much with respect to the size of seed
set. The reason is that more seed nodes lead to more active
nodes, but, at the same time, the activity also depends on
the network structure among these nodes.

The ratio can be viewed as the average degree of the
propagation induced subgraph. The average degree of the
propagation induced subgraph is smaller than the average
degree of the whole graph. This is because only a small
proportion of the nodes can be activated. Thus, there are
many edges between active nodes and inactive nodes. The
average degree of the propagation induced subgraph only
considers the edges between active nodes. Thus, we report
the interaction ratio of the active nodes, which is the num-
ber of edges whose both endpoints are active against the
number of edges that have at least one active endpoint.
The results are shown in Fig. 9. The interaction ratios are
not high on the two data sets. This indicates that only a
small proportion of the neighbors are activated and inter-
act with the active nodes. This result demonstrates an
essential difference between activity maximization and
influence maximization.

8 CONCLUSION

In this paper, to address the demand raised in several
interesting applications, we proposed and formulated a
novel problem, activity maximization. We proved the
hardness of the problem under both the IC model and the
LT model. We also developed a lower bound and an upper
bound of the objective function, and observed several use-
ful properties of the lower bound and the upper bound.
We designed a polling based algorithm to solve the prob-
lem that carries a data dependent approximation ratio.
Our experimental results on four real data sets verified the
effectiveness and efficiency of our method. As future work
we are interested in learning the activity of user pairs from
real-world data.
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