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ABSTRACT 
As users implicitly express their preferences to items on many 
real-world applications, the implicit feedback based collaborative 
filtering has attracted much attention in recent years. Pairwise 
methods have shown state-of-the-art solutions for dealing with 
the implicit feedback, with the assumption that users prefer the 
observed items to the unobserved items. However, for each user, 
the huge unobserved items are not equal to represent her prefer-
ence. In this paper, we propose a Multiple Pairwise Ranking (MPR) 
approach, which relaxes the simple pairwise preference assump-
tion in previous works by further tapping the connections among 
items with multiple pairwise ranking criteria. Specifically, we ex-
ploit the preference difference among multiple pairs of items by 
dividing the unobserved items into different parts. Empirical stud-
ies show that our algorithms outperform the state-of-the-art 
methods on real-world datasets. 1 
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1 INTRODUCTION 
Collaborative filtering methods have become wildly used technolo-
gies in recommender systems [1, 2]. In many real-world scenarios, 
explicit feedback is not always available. On the contrary, there 
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are lots of data in one-class form, e.g., purchases in Tmall, likes in 
WeChat, watches in Netflix. Such data do not contain the scoring 
between users and items, which are usually called one-class or im-
plicit feedback. Implicit feedback is different from explicit feed-
back: the latter explicitly express users’ positive and negative pref-
erences through the rating scores, while the former only contains 
positive feedback. Hence, the huge unobserved item feedbacks 
cannot be treated as negative preferences, as the most possible 
reason is that users have not seen them before. 

Previous methods for dealing with the implicit feedback can be 
divided into two groups [3]: (1) pointwise regression methods, and 
(2) pairwise ranking methods. Pointwise methods take implicit 
feedback as absolute preference scores and minimize a pointwise 
square loss to approximate the absolute rating scores. Pairwise 
methods take pairs of items as basic units and try to maximize the 
likelihood of pairwise preferences over the observed items and the 
unobserved items. Bayesian Personalized Ranking (BPR) [4] is one 
of the most popular approaches that adopt such pairwise prefer-
ence assumption. For an observed (user, item) interaction (𝑢, 𝑖) 
and an unobserved (user, item) interaction (𝑢, 𝑗), BPR assumes 
that a user 𝑢 has a higher preference on item 𝑖 than on item 𝑗. 

Many pairwise methods improve over BPR [5, 6].  These ap-
proaches have shown better performance compared to the 
pointwise based methods [7]. However, we argue that the huge 
unobserved item preferences are not well exploited in these pair-
wise based models. Specifically, all these pairwise based models 
inherited the assumption in BPR that users prefer the observed 
items to the unobserved items. Nevertheless, the unobserved item 
preference could be attributed to two aspects: the active user does 
not like the item, or simply the user does not observe or notice the 
item before. Thus, the core optimization idea of BPR that all the 
observed items should rank higher than all the unobserved items is 
too strict in the model design process.  

In this paper, we propose a new pairwise ranking method, 
namely Multiple Pairwise Ranking (MPR), for attempting to solve 
the limitation. For each user, we further divide her unobserved 
item feedback into two parts: the possibly negative item feedback 
and the unknown preference for the items. Then, for each user, we 
have three parts of feedback: the positive feedback and two parts 
from the unobserved feedback. We take these three parts and fur-
ther exploit the preference difference among multiple pairs of 
items, which can be thought of as a new multiple pairwise model. 
MPR is a novel basic algorithm and can be easily adopted by 
aforementioned works, like group preference, to further improve 
their performances.  
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2 THE PROPOSED METHOD 

2.1 Preliminaries 
Rendle et al. [4] proposed the BPR method, which takes pairs of 
items as basic units and tries to maximize the likelihood of pair-
wise preferences. The two fundamental assumptions adopted by  
BPR are as follows: (a) It assumes that user 𝑢 prefers item 𝑖 over all 
the unobserved items if item 𝑖 has been observed by user 𝑢.    (b) It 
assumes that the likelihood of pairwise preference of a user 𝑢 is 
independent of the others. Mathematically, the likelihood of BPR 
among items can be formulated as 

𝐵𝑃𝑅 = ∏ ∏ ∏ 𝑃𝑟(𝑟𝑢𝑖 > 𝑟𝑢𝑗) × [1 − 𝑃𝑟 (𝑟𝑢𝑗 > 𝑟𝑢𝑖)]

𝑗𝜖𝐼−𝐼𝑢
+𝑖∈𝐼𝑢

+𝑢∈𝑈

  

where 𝑈 = {𝑢}𝑢=1
𝑛  represents the set of users and 𝐼 = {𝑖}𝑖=1

𝑚  rep-
resents the set of items, and each user  𝑢 ∈ 𝑈 has expressed her 
positive feedbacks on items 𝐼𝑢

+ ⊂ 𝐼. 𝑟𝑢𝑖 denotes 𝑢’s preference on 
item 𝑖.  The goal of implicit feedback problem is to recommend a 
personalized ranking list of items for each user 𝑢 from the unob-
served item set 𝐼 − 𝐼𝑢

+. 
Group Bayesian Personalized Ranking (GBPR) [5] relaxes as-

sumption (b) among users in BPR by considering that users’ pref-
erences are influenced by other users with similar interests. The 
likelihood of GBPR among items can be given by 

  

 

where 𝒢 ⊆ 𝑈  is a user group,𝑢 𝜖 𝒢 , 𝑟𝑢𝒢𝑖 =
1

| 𝒢|
∑ 𝑟𝑤𝑖𝑤∈ 𝒢  is the 

group preference of users from the group 𝒢 on item i. 

2.2  Multiple Pairwise Ranking 
For each user 𝑢, besides the positive item set 𝐼𝑢

+, the huge unob-
served item feedback could be attributed to two reasons: she dis-
likes it or she has not seen it. Given this intuition, we relax the as-
sumption (a) adopted by BPR with equal importance of the unob-
served items. Specifically, we first consider three subsets contained 
in the set of items 𝐼.  

 𝐼𝑢
+: The real positive items that user 𝑢 has expressed her 

feedbacks on. 
 𝐼𝑢

−: The possibly negative items that user 𝑢 has seen but 
not given her feedback on. 

 𝐼𝑢
∗ : The uncertainly negative items that user 𝑢 has not 

seen. 
It should be noted that 𝐼𝑢

− ∪ 𝐼𝑢
∗  makes up the unobserved items 

for 𝑢. Secondly, we define preference difference 𝑟𝑢𝑖𝑗 =  𝑟𝑢𝑖 − 𝑟𝑢𝑗 

as a difference value of user 𝑢’s preferences between item 𝑖 and 
item 𝑗. Finally, we give an illustration of our preference assump-
tion in Figure 1. Here we use “1” for “like”, and “0” for “dislike”, 
and “?” for “unclear”. For a user 𝑢, we can suspect that the prefer-
ences 𝑟𝑢𝑖 = 𝑟𝑢𝑝 = 𝑟𝑢𝑝′ = 1 , and 𝑟𝑢𝑗 ≈ 𝑟𝑢𝑞′ ≈ 0 , and  𝑟𝑢𝑞 =

? (0 ≤? ≤ 1) according to 𝑖, 𝑝, 𝑝′ ∈ 𝐼𝑢
+ ,  𝑗, 𝑞′ ∈ 𝐼𝑢

− , and 𝑞 ∈ 𝐼𝑢
∗ . 

Since the user 𝑢 has expressed her positive feedback on item 𝑖, and 
item 𝑗 and item 𝑞′ are possibly negative items for user 𝑢, we can 
believe 𝑟𝑢𝑖𝑗 is not less than 𝑟𝑢𝑞𝑞′  whether 𝑞 is a positive or nega-

tive item for user 𝑢. Simultaneously, for 𝑝, 𝑝′, user 𝑢 likes both of 

them, so the difference value of user 𝑢’s preferences between them, 
namely 𝑟𝑢𝑝𝑝′, can be small. Based on the assumption, we give a 
new criterion called Multiple Pairwise Ranking (MPR) showing 
overall likelihood for users and items, 

 
 
 
 

In summary, our proposed model of three pairs of items fur-
ther deep exploit user’s preference difference between (I) an ob-
served item and an unobserved item, and (II) two unobserved 
items, and (III) two observed items. The difference value of user’s 
preferences between (I) is not less than (II), and (II) is not less than 
(III). Through the two inequalities, we relax the strict pairwise 
preference assumption in BPR and define a more realistic prefer-
ence assumption. It could be considered that MPR digs implied 
positive feedbacks in the unobserved items by extracting the im-
plicit partial ordering relation in the observed items, as well as in 
the unobserved items respectively in the optimizing process. 

As the proposed MPR is a novel basic method, we can easily 
extend MPR to our new model Group Multiple Pairwise Ranking 
(GMPR) via introducing group preference of users. The likelihood 
of GMPR among items can be given by 

 
 

  
 
where 𝑟𝑢𝒢𝑖  is the same as in Eq. (2), 𝑟𝑢𝒢𝑖𝑗 = 𝑟𝑢𝒢𝑖 − 𝑟𝑢𝑗 , 

𝑟𝑢𝒢𝑝𝒢𝑝′ = 𝑟𝑢𝒢𝑝 − 𝑟𝑢𝒢𝑝′ . 

2.3 Implicit Feedback Data Division 
There are many ways to help us divide the unobserved items 
into 𝐼𝑢

− and 𝐼𝑢
∗ , and two of them are detailed. The first one is for 

online product recommendation problems. Many E-commerce 
platforms for online shopping record users’ click data that can 
help us divide the unobserved data. An obvious idea is that: the 
products that the user has clicked and purchased are the real posi-
tive items, and the products that the user has clicked but not pur-
chased are the possibly negative items, and the products that the 
user has not clicked are the uncertainly negative items.  

However, additional click data are not always available. In an-
other scenario like movie recommendation, “watches” are only 
feedbacks from customers. We give our second general method of 
dividing the unobserved items based on popularity. We rank items 
from 𝐼 in descending order based on their observed counts by all 
users and choose the last part as the unpopular items 𝐼𝑒 . We as-

𝐺𝑀𝑃𝑅 = ∏ ∏ ∏ 𝑃𝑟(𝑟𝑢𝒢𝑖𝑗 ≥ 𝑟𝑢𝑞𝑞′ , 𝑟𝑢𝑞𝑞′ ≥ 𝑟𝑢𝒢𝑝𝒢𝑝′)

𝑗,𝑞′∈𝐼𝑢
−;𝑞∈𝐼𝑢

∗𝑖,𝑝,𝑝′∈𝐼𝑢
+𝑢∈𝑈

 

× [1 − 𝑃𝑟(𝑟𝑢𝒢𝑖𝑗 < 𝑟𝑢𝑞𝑞′ , 𝑟𝑢𝑞𝑞′ < 𝑟𝑢𝒢𝑝𝒢𝑝′)] (4) 
 

𝐺𝐵𝑃𝑅 = ∏ ∏ ∏ 𝑃𝑟(𝑟𝑢𝒢𝑖 > 𝑟𝑢𝑗)

𝑗𝜖𝐼−𝐼𝑢
+𝑖∈𝐼𝑢

+𝑢∈𝑈

× [1 − 𝑃𝑟(𝑟𝑢𝑗 > 𝑟𝑢𝒢𝑖)] 

  
 

𝑀𝑃𝑅 = ∏ ∏ ∏ 𝑃𝑟(𝑟𝑢𝑖𝑗 ≥ 𝑟𝑢𝑞𝑞′ , 𝑟𝑢𝑞𝑞′ ≥ 𝑟𝑢𝑝𝑝′)

𝑗,𝑞′∈𝐼𝑢
−;𝑞∈𝐼𝑢

∗𝑖,𝑝,𝑝′∈𝐼𝑢
+𝑢∈𝑈

 

× [1 − 𝑃𝑟(𝑟𝑢𝑖𝑗 < 𝑟𝑢𝑞𝑞′ , 𝑟𝑢𝑞𝑞′ < 𝑟𝑢𝑝𝑝′)] (3) 
 

Figure 1: Illustration of preference assumption. 

 

  
 

(1) 
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sume that most people may not like the items in 𝐼𝑒 . The previous 
researchers have found that the implied positive samples are com-
paratively few in the unobserved items [8], so we set 𝐼𝑢

− = 𝐼𝑒 − 𝐼𝑢
+ 

in which have more chances to be the possibly negative items for 
𝑢. As before, the uncertainly negative items 𝐼𝑢

∗ = 𝐼 − 𝐼𝑢
+ ∪ 𝐼𝑢

−. 

Figure 2: Illustration of notations. 

We illustrate this idea in Figure 2. User John likes movies “The 
Dark Knight” and “Alien”, which denote the items in 𝐼𝑢

+. Several 
movies with few observed counts denote the unpopular items in 
𝐼𝑒 . We generally assume that movies in shadow part (items in 𝐼𝑢

−) 
may not interest John. It is hard to judge John’s preferences on 
items in 𝐼𝑢

∗ .   

2.4 Learning the MPR 
Based on the above explanation, here we represent 𝑟𝑢𝑖𝑗 ≥

𝑟𝑢𝑞𝑞′ , 𝑟𝑢𝑞𝑞′ ≥ 𝑟𝑢𝑝𝑝′  as 𝜆(𝑟𝑢𝑖𝑗 − 𝑟𝑢𝑞𝑞′) + (1 − 𝜆)(𝑟𝑢𝑞𝑞′ − 𝑟𝑢𝑝𝑝′), 

where 𝜆 is a trade-off parameter used to fuse their relation, and we 
abbreviate the above formula as 𝑟≻𝑢

. Following BPR, we use 

𝜎(𝑥) =
1

1+𝑒−𝑥 to approximate the probability 𝑃𝑟 (∙). Then Eq. (3) 

can be simplified as 𝑃𝑟(𝑟≻𝑢
)[1 − 𝑃𝑟(−𝑟≻𝑢

)] = 𝜎(𝑟≻𝑢
)[1 −

𝜎(−𝑟≻𝑢
)] = 𝜎2(𝑟≻𝑢

). Based on this trick, the objective function of 
MPR can be represented as follows, 
 

 
where Θ = {𝑈𝑢∙ ∈ 𝑅1×𝑑 , 𝑉𝑖∙ ∈ 𝑅1×𝑑 , 𝑏𝑖 ∈ 𝑅, 𝑢 ∈ 𝑈, 𝑖 ∈ 𝐼} is a set 
of model parameters to be learned, 𝑈𝑢∙ is a latent feature vector 
describing user 𝑢, 𝑉𝑖∙ is a latent feature vector describing item 𝑖, 𝑏𝑖 
is the bias of item 𝑖, and 𝑑 is the number of latent factors.  
 
 
 
 

Eq. (6) is the log-likelihood of MPR. 
𝑅(Θ) = ∑ ∑ [𝛼𝑢‖𝑈𝑢∙‖

2 + 𝛼𝑣‖𝑉𝑡∙‖
2 + 𝛽𝑣‖𝑏𝑡∙‖

2]𝑡∈𝑆𝑢∈𝑈  is a regu-
larization term to prevent overfitting in the learning process, and 
𝑆 = {𝑖, 𝑗, 𝑝, 𝑝′, 𝑞, 𝑞′} is the sampled items. The individual prefer-
ence is modeled by matrix factorization, for example 𝑟𝑢𝑖 =

𝑈𝑢∙𝑉𝑖∙
𝑇 + 𝑏𝑖 . 

The optimization problem of the objective function in Eq. (5) 
can be solved by the widely used Stochastic Gradient Descent 
(SGD) algorithm. The process of SGD is to select a record, which 
includes a user 𝑢, six items containing 𝑖, 𝑗, 𝑝, 𝑝′, 𝑞, 𝑞′, and iterative-
ly update model parameters based on the sampled feedback rec-
ords. The tentative objective function can be written as  

= − ln 𝜎(𝑟≻𝑢
) +

𝛼𝑢

2
‖𝑈𝑢∙‖

2 +
𝛼𝑣

2
∑ ‖𝑉𝑡∙‖

2
𝑡∈𝑆 +

𝛽𝑣

2
∑ ‖𝑏𝑡∙‖

2
𝑡∈𝑆       =

ln[1 + exp (−𝑟≻𝑢
)] +

𝛼𝑢

2
‖𝑈𝑢∙‖

2 +
𝛼𝑣

2
∑ ‖𝑉𝑡∙‖

2
𝑡∈𝑆 +

𝛽𝑣

2
∑ ‖𝑏𝑡∙‖

2
𝑡∈𝑆 . 

Wisth the above gradients, we can update the model parameters as  

Θ = Θ − 𝛾
𝜕𝑓(𝑢,𝑆)

𝜕Θ
, where 𝛾 > 0 is the learning rate.  

GMPR can be formulated in the same way. Here we directly 

give the objective function as 𝑚𝑖𝑛
Θ

 −
1

2
ln 𝐺𝑀𝑃𝑅 + 𝑅(Θ𝒢), where 

ln 𝐺𝑀𝑃𝑅 = ∑ ∑ ∑ 2 ln 𝜎(𝜆(𝑟𝑢𝒢𝑖𝑗 − 𝑟𝑢𝑞𝑞′)𝑗,𝑞′∈𝐼𝑢
−;𝑞∈𝐼𝑢

∗𝑖,𝑝,𝑝′∈𝐼𝑢
+𝑢∈𝑈  

+(1 − 𝜆)(𝑟𝑢𝑞𝑞′ − 𝑟𝑢𝒢𝑝𝒢𝑝′)) is the log-likelihood of GMPR, and 

𝑅(Θ𝒢) = ∑ ∑ [𝛼𝑢 ∑ ‖𝑈𝑤∙‖
2

𝑤∈ 𝒢 + 𝛼𝑣‖𝑉𝑡∙‖
2 + 𝛽𝑣‖𝑏𝑡∙‖

2]𝑡∈𝑆𝑢∈𝑈  is 
the regularization term.  

3 EXPERIMENTAL EVALUATION 

3.1 Experimental Setup 
3.1.1 Datasets. We employ five real-world datasets for experi-
ments, including Tmall, MovieLens100K, MovieLens1M, UserTag 
and NF5K5K [8]. We take a pre-processing step mentioned in [5] 
to deal with the rating data. In summary, the statistics of all da-
tasets are presented in Table 1.  

Table 1: The statistics of datasets. 

Statistics Tmall ML100K ML1M UserTag NF5K5K 
#users 28,059 943 6,040 3,000 5,000 
#items 32,339 1,682 1,952 2,000 5,000 
#feedbacks 464,426 100,000 1,000,209 246,436 282,474 
 

Tmall dataset also has 1,024,575 click records. Here we con-
duct some experiments under various conditions of data sparse-
ness to simulate realistic situations. For example, the case of “5%” 
denotes that we randomly select 5% of user-item pairs as training 
set and use the remainder for validation set and test set. For MPR 
with popularity, we rank items from the training set in descending 
order based on their observed counts and choose the last 20% as 
the unpopular set. The final experimental results are averaged 
over every evaluation metric on 20 copies of the test set. 
3.1.2 Baselines and Evaluation Metrics. We compare the perfor-
mance of MPR with several state-of-the-art implicit feedback rec-
ommendation methods: Weighted Matrix Factorization (WMF) [9], 
which is a typical pointwise method based on matrix factorization, 
BPR [4], and Group Bayesian Personalized Ranking (GBPR) [5], 
which is a state-of-the-art extension of BPR. We use “MPR (GMPR) 
+ click” to represent dividing the unobserved items with click data 
on Tmall dataset and the other situations use popularity. Prec@5, 
MAP, NDCG@5, and AUC are employed to evaluate the recom-
mendation performance of models. We set iteration number 
𝑇 = 100,000 , learning rate 𝛾 = 0.01 , regularization terms 
𝛼𝑢 = 𝛼𝑣 = 𝛽𝑣 = 0.01, the number of latent dimensions 𝑑 = 20, 
and the tradeoff parameter 𝜆 = 0.7 by default in both MPR and 
GMPR. For GMPR, we fix the size of user group 𝐺 = 3, the param-
eter 𝜌 = 1.0 introduced in [5]. For other model parameters, the 
optimal values are tuned according to NDCG@5 on the validation 
set. 
 
 
 

ln 𝑀𝑃𝑅 = ∏ ∏ ∏ 2 ln 𝜎(𝜆(𝑟𝑢𝑖𝑗 − 𝑟𝑢𝑞𝑞′)

𝑗,𝑞′∈𝐼𝑢
−;𝑞∈𝐼𝑢

∗𝑖,𝑝,𝑝′∈𝐼𝑢
+𝑢∈𝑈

 

+(1 − 𝜆)(𝑟𝑢𝑞𝑞′ − 𝑟𝑢𝑝𝑝′))  (6) 
 

𝑚𝑖𝑛
Θ

  −
1

2
ln 𝑀𝑃𝑅 +

1

2
𝑅(Θ) (5) 

 
 

 𝑓(𝑢, 𝑆)  
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Table 2: Performance comparisons of MPR, GMPR and baselines. Numbers in boldface are the best results, and marking * indi-
cates MPR or GMPR is superior to other algorithms significantly.

Dataset Method Prec@5 MAP NDCG@5 AUC Dataset Method Prec@5 MAP NDCG@5 AUC 
 WMF 0.0050 0.0039 0.0062 0.1809  WMF 0.0075 0.0052 0.0079 0.2420 
 BPR 0.0184 0.0133 0.0196 0.7130  BPR 0.0203 0.0142 0.0215 0.7355 
Tmall  MPR+click 0.0221* 0.0146* 0.0225* 0.7494* Tmall  MPR+click 0.0226 0.0155 0.0238 0.7592 
(25%) MPR 0.0210 0.0143 0.0217 0.7429 (50%) MPR 0.0230* 0.0161* 0.0254* 0.7621* 
 GBPR 0.0222 0.0147 0.0229 0.7501  GBPR 0.0239 0.0168 0.0257 0.7622 
 GMPR+click 0.0229* 0.0160* 0.0242* 0.7608*  GMPR+click 0.0246 0.0172 0.0266 0.7694 
 GMPR 0.0224 0.0154 0.0231 0.7534  GMPR 0.0251* 0.0177* 0.0279* 0.7773* 
 WMF 0.1042 0.0756 0.1173 0.2537  WMF 0.1498 0.0789 0.1592 0.3960 
 BPR 0.2100 0.1300 0.2149 0.7449  BPR 0.2458 0.1456 0.2522 0.7720 
ML100K  MPR 0.2190* 0.1530* 0.2258* 0.7849* ML100K  MPR 0.2857* 0.1884* 0.2923* 0.8258* 
(5%) GBPR 0.2211 0.1389 0.2277 0.7650 (10%) GBPR 0.2622 0.1580 0.2698 0.7965 
 GMPR 0.2297* 0.1587* 0.2353* 0.7900*  GMPR 0.3223* 0.2022* 0.3288* 0.8326* 
 WMF 0.1869 0.0667 0.1972 0.3755  WMF 0.2373 0.0880 0.2469 0.5257 
 BPR 0.2529 0.1318 0.2590 0.8069  BPR 0.3223 0.1707 0.3306 0.8498 
ML1M  MPR 0.3063* 0.1743* 0.3087* 0.8583* ML1M  MPR 0.3659* 0.1979* 0.3723* 0.8784* 
(5%) GBPR 0.2739 0.1436 0.2801 0.8278 (10%) GBPR 0.3570 0.1916 0.3656 0.8657 
 GMPR 0.3381* 0.1857* 0.3406* 0.8630*  GMPR 0.3670* 0.1982* 0.3740* 0.8785* 
 WMF 0.1968 0.0884 0.2026 0.2999  WMF 0.1938 0.0812 0.1995 0.4282 
 BPR 0.2011 0.1038 0.2046 0.6279  BPR 0.2024 0.1108 0.2063 0.6493 
UserTag  MPR 0.2074* 0.1239* 0.2100* 0.6464* UserTag  MPR 0.2214* 0.1374* 0.2239* 0.6697* 
(5%) GBPR 0.2239 0.1147 0.2281 0.6422 (10%) GBPR 0.2296 0.1260 0.2345 0.6670 
 GMPR 0.2285* 0.1349* 0.2306* 0.6562*  GMPR 0.2476* 0.1497* 0.2499* 0.6812* 
 WMF 0.0631 0.0246 0.0636 0.1506  WMF 0.0920 0.0363 0.0945 0.2685 
 BPR 0.1509 0.1056 0.1553 0.8670  BPR 0.1656 0.1163 0.1707 0.8802 
NF5K5K  MPR 0.1735* 0.1270* 0.1766* 0.8868* NF5K5K  MPR 0.1831* 0.1362* 0.1877* 0.9007* 
(5%) GBPR 0.1610 0.1125 0.1649 0.8770 (10%) GBPR 0.1812 0.1274 0.1865 0.8913 
 GMPR 0.1844* 0.1322* 0.1887* 0.8880*  GMPR 0.1967* 0.1435* 0.2015* 0.9029* 

 

3.2 Experimental Results 
The experimental results are shown in Table 2, and Wilcoxon 
rank-sum statistical tests have been used to check whether the dif-
ference between our algorithms and other baselines are statistical-
ly significant (with a 0.05 significance level). From the table, we 
can see that MPR and GMPR significantly outperform other base-
lines on all evaluation metrics on all datasets, which shows that 
our proposed algorithm can recommend a more accurate rank bi-
ased list for users, especially for the top-𝑘 recommendation. MPR 
and GMPR shows significant improvement compared with other 
baselines on datasets for scenarios under 5% and 10%, which indi-
cates that our algorithms can improve the quality of recommenda-
tion in situations of data sparsity. GMPR further improves GBPR 
and MPR on all datasets, which proves that our proposed algo-
rithm can be used as a basic method and has extensive applicabil-
ity. MPR (GMPR) with additional click data performs better than 
MPR (GMPR) using popularity on Tmall for scenarios under 25%, 
which indicates that click data may provide more information in 
situations of data sparsity.  

4 CONCLUSION 
In summary, we proposed a new pairwise ranking model, namely 
Multiple Pairwise Ranking (MPR), for item recommendation using 
implicit users’ feedbacks. The main contribution of our approach is 
to dig implied positive feedbacks in the unobserved items based on 
the new multiple pairwise model. Empirical studies verified the ef-
fectiveness of our methods on real-world datasets. The multiple 
pairwise model is a new pairwise thinking *that helps us under-

stand the preference difference among pairs of items and is not 
limited to the assumption in this paper. We encourage more appli-
cation-oriented preference assumptions to be proposed based on 
our model. 
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