
Expert Systems With Applications 117 (2019) 300–311

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

A Structure-Enriched Neural Network for network emb e dding

Lisheng Qiao

a , Hongke Zhao

a , Xiaohui Huang

b , Kai Li a , Enhong Chen

a , ∗

a Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China, China
b School of Computer Science and Technology, University of Science and Technology of China, China

a r t i c l e i n f o

Article history:

Received 8 May 2018

Revised 23 August 2018

Accepted 18 September 2018

Available online 19 September 2018

Keywords:

Network embedding

Direction adjustment

Attention mechanism

a b s t r a c t

Recent years have witnessed the importance of network embedding in many fields, as well as increased

attention in academia. Although a number of algorithms have been proposed in this area, most existing

models which only utilize the structure topology information of networks often suffer performance losses

because of their insufficiency with regard to selecting structure similar patterns, handling noise data,

and/or capturing non-linear or high-order structure information. To address these challenges, in this pa-

per, we present a novel S tructure- E nriched N eural N etwork (SENN) for network embedding. Specifically,

SENN can not only capture the complex structure similar patterns observed in networks by introducing

direction adjustment parameters of the transition probability, but also introduce a stacked denoise au-

toencoder to perform the dimension reduction for each order matrix independently. Therefore, SENN can

preserve more useful structure information and make the embeddings more robust. Moreover, SENN can

effectively integrate the multi-order structure information by the combining layer with attention mech-

anism. Finally, to compare with other state-of-the-art methods, we conduct extensive experiments with

both synthetic and real-world datasets on various tasks (e.g.,node classification, visualization). The exper-

imental results clearly demonstrate the effectiveness of our proposed model for network embedding.

© 2018 Elsevier Ltd. All rights reserved.

(

u

(

d

t

l

h

v

t

m

i

t

e

r

f

o

T

t

d

t
1. Introduction

Network embedding is an important task of learning low-

dimensional representations in many fields, e.g., vectors of

nodes in networks, to capture and preserve the network struc-

ture (Wang, Cui, & Zhu, 2016). Representing networks in low-

dimensional space could widely benefit some network-oriented

application and research, e.g., influence maximization (Tang, Sun,

Wang, & Yang, 2009), node classification (Bhagat, Cormode, &

Muthukrishnan, 2011), community discovery (Parthasarathy, Ruan,

& Satuluri, 2011), and recommendation (Chorowski, Bahdanau, Cho,

& Bengio, 2014). Due to the importance and fundamental nature of

network embedding, increasing researchers have paid attention to

this research problem and participated in extensive efforts in re-

cent years.

Among the most existing methods of network embedding

which only utilize the structure topology information, those map-

ping a network to a low-dimensional vector space are the most

effective and widely-used ones, such as DeepWalk (Perozzi, Al-

Rfou, & Skiena, 2014), node2vec (Grover & Leskovec, 2016), GraRep
∗ Corresponding author.

E-mail addresses: lsqiaoa@mail.ustc.edu.cn (L. Qiao), zhhk@mail.ustc.edu.cn (H.

Zhao), huangxia@mail.ustc.edu.cn (X. Huang), marvin77@mail.ustc.edu.cn (K. Li),

cheneh@ustc.edu.cn (E. Chen).

i

M

c

h

https://doi.org/10.1016/j.eswa.2018.09.040

0957-4174/© 2018 Elsevier Ltd. All rights reserved.
 Cao, Lu, & Xu, 2015), and DNGR (Cao, Lu, & Xu, 2016). In partic-

lar, DeepWalk combines the random walk and skip-gram model

 Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) to learn low-

imensional network embeddings. This method mainly preserves

he second-order proximity, and it is empirically effective in multi-

abel classification tasks. The node2vec traverses the neighbor-

ood of one node in a network, and can efficiently explore di-

erse neighborhoods by introducing direction control parameters

o a rand walk procedure. To exploit the high-order structure infor-

ation, GraRep linearly maps different-order-structure information

nto different low-dimensional vector spaces. This method can ob-

ain the final embedding of a node by briefly concatenating differ-

nt order embeddings of network. Furthermore, DNGR proposes a

andom surfing model to directly capture the network structure in-

ormation, and it adopts deep learning technique to map the multi-

rder combined structure information to a low-dimensional space.

hus, the high order proximity and non-linear structure informa-

ion can be captured. However, these existing models usually han-

le the network embedding from one view of diversifying struc-

ure similar patterns, exploiting high-order proximity, or captur-

ng non-linear structure information rather than a holistic manner.

oreover, some of them may also suffer performance losses be-

ause of their insufficiency in selecting neighborhood patterns or

andling noise data. Indeed, it is necessary to utilize the full ef-

https://doi.org/10.1016/j.eswa.2018.09.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.09.040&domain=pdf
mailto:lsqiaoa@mail.ustc.edu.cn
mailto:zhhk@mail.ustc.edu.cn
mailto:huangxia@mail.ustc.edu.cn
mailto:marvin77@mail.ustc.edu.cn
mailto:cheneh@ustc.edu.cn
https://doi.org/10.1016/j.eswa.2018.09.040

L. Qiao et al. / Expert Systems With Applications 117 (2019) 300–311 301

Table 1

Symbols.

Notations Descriptions

d the dimension of embedding

N the number of nodes in network G

K the total number of orders

T the number of categories in the classification task

V = { v i } n i =1
the input network node data

S = { S 1 , · · ·, S n } the adjacency matrix for the network

U k the k -order adjusted transfer probability matrix

M

k the k -order adjusted optimization matrix

X k the positive k -order adjusted optimization matrix

Y k the k -order latent network embedding matrix

W e , W d the weight parameters of the denoise autoencoder

b e , b d the biased parameters of the denoise autoencoder

θ = { W e , W d , b e , b d } the unified parameter of the denoise autoencoder

f

(

N

S

o

l

w

o

d

m

m

b

e

w

w

a

a

s

d

w

a

p

t

f

p

m

S

d

m

m

2

b

t

x

a

s

s

V

t

o

b

o

Fig. 1. The structure information of the network.

s

t

(

o

(

F

p

D

n

d

s

t

t

n

3

3

o

v

p

n

L

s

m

c

h

(

b

s

F

o

t

c

r

m

p

m

w

(

a

m

t

(

N
ective features of different views in learning network embedding

 Airoldi, Bai, & Carley, 2011).

Therefore, in this paper, we design a novel S tructure- E nriched

 eural N etwork (SENN) for network embedding task. Specifically,

ENN captures the different adjusted k -order relation information

f a network from a probabilistic perspective, by directly manipu-

ating different order transition matrices defined over the network

ithout involving the slow and complex sampling process. More-

ver, SENN adopts a stacked denoise autoencoder to perform the

imension reduction for each order matrix independently. In this

anner, SENN can preserve more useful non-linear structure infor-

ation and work robustly for noise data. Moreover, SENN can com-

ine the multi-order structure information by the combining layer

ffectively with attention mechanism. In experiments, to compare

ith other state-of-the-art methods, we conduct extensive tests

ith synthetic and real-world datasets from various aspects, i.e.,

 multi-label classification task, adjusted case study, visualization

nd parameter sensitivity. The experimental results clearly demon-

trate the effectiveness of our proposed model for network embed-

ing learning.

We believe that this is an explorative work for conducting net-

ork embedding with rich multi-order structure information from

 holistic perspective, e.g., introducing the direction adjustment

arameters of transition probability into different order transi-

ion matrices, and using the stacked denoise autoencoder to per-

orm the dimension reduction for different order matrices inde-

endently. Moreover, we also employ the approach with attention

echanism to combine the multi-order information.

The main body of this paper is organized as follows.

ection 2 formalizes the research problem, and Section 3 intro-

uces the related work of this study. Then, Section 4 elaborates the

odel we proposed. Section 5 evaluates the effectiveness of our

odel in four tasks. Finally, we conclude this study in Section 6 .

. Problem definition

In this section, we give the problem definition of network em-

edding in our study. Table 1 lists the main mathematical nota-

ions used in this paper. Specifically, we use lowercase letters (e.g.,

 and y) to denote scalars, and boldface lowercase letters (e.g., x

nd y) to denote vectors. We use calligraphic letters to represent

ets (e.g., V and E). The notation | · | denotes the total number of

amples of a given set. Let G = (V, E) denote a network, where

 = { v 1 , · · ·, v N } represents N nodes, and E = { e i, j } N i, j=1
represents

he set of edges. Each e i, j is associated with a weight S i, j ≥ 0 (we

nly consider non-negative links in this paper). The network em-

edding aims to learn a low-dimensional vector v v i ∈ R d (d � |V|)
for each node v i in the network, where the nodes close to each

ther in the network are assumed to be similar in the embedding
pace. To this goal, from a holistic perspective, the main struc-

ure information that can be utilized are: (1) the similar patterns

e.g., the kinds of the nodes of different colors are shown in Fig. 1)

f structure information, (2) the multi-order structure information

e.g., v 4 is the 2nd-order structure information of v 2 shown in

ig. 1), (3) the complex non-linear relation information. Then, the

roblem can be defined:

efinition 1. (Network embedding) Given a network G = (V, E) ,

etwork embedding aims to represent each node v ∈ V in a low-

imensional space R d , and the embeddings should explicitly pre-

erve the following information: (1) the similar patterns of struc-

ure information, (2) the multi-order structure information, and (3)

he non-linear structure information, such that nodes with similar

etwork structure should be similarly represented.

. Related work

In this section, we introduce the related work of this study.

.1. Network embedding

The mainstream methods of learning network embedding that

nly use the structure topology information can be generally di-

ided into three categories, i.e., matrix factorization based ap-

roaches, random walk based methods, and deep learning tech-

iques.

Matrix factorization based approaches , Bullinaria and

evy (2012) utilize the global statistics of various matrix repre-

entations of the network, especially the Laplacian and adjacency

atrices. From the perspective of linear algebra, these methods

ould be considered as dimension reduction techniques. There

ave been several linear (e.g., Laplacian Eigenmaps) and non-linear

e.g., IsoMap) methods proposed (Belkin & Niyogi, 2002; Tenen-

aum, De Silva, & Langford, 20 0 0). However, these methods have

ome weak points in computational and statistical performance.

or the aspect of computational efficiency, eigen decomposition

f a data matrix is computationally expensive if the quality of

he solution cannot be guaranteed by approximations. In terms of

haracteristics, the objective of matrix factorization is generally to

epresent the nodes with high first-order proximity closely, which

eans it sometimes may not preserve the necessary high-order

roximity information of a network. Furthermore, though these

ethods are optimized for objectives, they may also not adapt

ell to the diverse structure similar patterns observed in networks

 Grover & Leskovec, 2016), because some prior information (such

s homophily and structure equivalence) of the network structure

ay not be utilized well. In addition, it is difficult for these models

o capture the highly non-linear relations in networks effectively

 Wang et al., 2016).

Random walk based methods , whose ideas mainly come from

LP fields, often employ a slide window or introduce probabilis-

302 L. Qiao et al. / Expert Systems With Applications 117 (2019) 300–311

a

c

p

G

2

r

p

a

a

i

4

N

w

t

p

m

f

t

a

t

m

c

p

t

o

t

a

c

k

s

s

i

f

c

s

i

o

t

w

s

4

f

f

t

t

f

o

a

i

s

4

t

t

f

t

o

n
tic sampling algorithms to capture the neighborhood nodes of

one node. Specifically, DeepWalk (Perozzi et al., 2014), node2vec

(Grover & Leskovec, 2016) and metapath2vec (Dong, Chawla, &

Swami, 2017) are the representative ones in this category. In gen-

eral, the first two methods transformed the network structure into

several linear node sequences by using a truncated or adjusted

random walk procedure, while the last one transformed the net-

work structure into several probabilistic meta-paths by using meta-

path-based random walks. Then they generated network embed-

dings by using a skip-gram (or heterogeneous skip-gram) model

or stochastic gradient descent algorithm. These methods perform

well on some specific tasks such as multi-label classification task

and prediction task. However, despite some statistically significant

sampling strategies having been adopted, they are insufficient in

fully capturing the necessary information since they use separate

local context windows.

Deep learning techniques perform well in capturing the non-

linear relationships in complex network. In this category, two rep-

resentative algorithms are SDNE (Wang et al., 2016) and DNGR

(Cao et al., 2016). Specifically, SDNE was proposed as a semi-

supervised deep model to jointly optimize the first-order and

second-order proximity to preserve the network structure informa-

tion. DNGR adopted a new sampling strategy, i.e., a random surfing

model, to capture the structure information of a network directly,

and then it obtained the low-dimensional embedding using a deep

learning method. Although these models are effective (often more

accurate than the above two types of methods) on certain tasks,

there is still room on utilizing the information. For example, nei-

ther SDNE and DNGR are designed for adjusting the structure sim-

ilar pattern information or utilizing the high-order information.

3.2. Deep neural network

Deep neural networks have excellent discrimination and inter-

pretation in low-dimensional and non-linear embedded spaces. In

actual networks, such as semantic networks, there are not only

linear relations, but also various complex and non-linear relations

(Bayer & Riccardi, 2016). Therefore, the deep network architecture

has been widely used in learning tasks (Bengio et al., 2009; Hin-

ton & Salakhutdinov, 2006), and using the deep network architec-

ture to establish discriminative embeddings (Bengio, Courville, &

Vincent, 2013), has achieved good results. Meanwhile, the layer-

by-layer training can help to find better local solutions to non-

convex target objects (Bengio, Lamblin, Popovici, & Larochelle,

2007). Moreover, the improvement of computing hardware make it

possible for rapid application of deep methods, such as the greedy

layer-by-layer training strategy (Bengio et al., 2007; Dean et al.,

2012).

Recently, there have been several deep learning works for net-

work embedding learning. Inspired by related research results

(Bengio et al., 2013; Cao et al., 2016; Gutmann & Hyvärinen, 2012;

Tian, Gao, Cui, Chen, & Liu, 2014; Vincent, Larochelle, Bengio, &

Manzagol, 2008; Wang et al., 2016), we take the denoise autoen-

coder as the basic component in our model, and combine them in

a stacked manner. At the same time, we adopt the greedy layer-

by-layer training (Vincent et al., 2008) to learn the embeddings, so

that the network embeddings obtained can capture the complex

non-linear relations of the network.

3.3. Attention mechanism

attention mechanism is a processing method based on the hu-

man visual attention mechanism. The essence of the human vi-

sual attention mechanism is to focus on a specific area of the

picture according to the “high resolution”, perceive the peripheral
rea of the image with “low resolution”, and then adjust the fo-

using mode continuously. Attention based models have been ap-

lied to various tasks, including image classification (Mnih, Heess,

raves et al., 2014), machine translation (Bahdanau, Cho, & Bengio,

014) and speech recognition (Chorowski et al., 2014). Our work

elates to the attention based model, which aims to infer the im-

ortance of different latent embeddings, and makes the learning

lgorithm focus on the informative parts. By taking advantage of

ttention mechanism, our model can focus on the information that

s more important to the embedding.

. Methodology

The overall architecture of the proposed S tructure- E nriched

 eural N etwork (SENN) is shown in Fig. 2 , which is a novel frame-

ork defined for network-oriented tasks, such as node classifica-

ion or node clustering. The architecture mainly consists of four

arts. Specifically, SENN first introduces the k -order adjusted opti-

ization matrix M

k which is used to capture network structure in-

ormation. In this subsection, we introduce the control parameters

o adjust the transition probability and propose the concept of the

djusted transition probability matrix, which can select and adjust

he structure similar patterns of the network flexibly. Because the

otive of SENN is to use the necessary information to better ac-

omplish the embedding, it is necessary to introduce adjustment

arameters to select the necessary information to better complete

he task flexibly. Secondly, to improve the sparsity and consistency

f embeddings, SENN calculates the positive k -order adjusted op-

imization matrix X

k . After that, SENN utilizes the stacked denoise

utoencoder to reduce the dimension for each X

k , and obtain the

orresponding embedding Y k , where k ∈ { 1 , 2 , . . . , K } . The different

 -order embeddings reflect the different aspects and levels of the

tructure characteristics of the networks due to the diversity of

tructure similar patterns (e.g., the network structure homogene-

ty, structure equivalence, size of different sub-graphs and other

actors). Then, SENN combines the multi-order information by the

ombining layer and obtains the final output. Because SENN can

elect and adjust the structure similar patterns of the network flex-

bly, and can optimize the weights corresponding to different k -

rders in the combining layer, our model can focus on the informa-

ion that is more important to the embedding task. In accordance

ith the flow of SENN, we will detail each part in the following

ubsections.

.1. Adjusted optimization matrix M

k

In this subsection, to capture the similar pattern of structure in-

ormation, we first put forward the concept of the adjusted trans-

er probability matrix U

k which can learn representations based on

he notes’ roles in networks and/or communities that they belong

o by choosing an appropriate notion of a neighborhood, and in-

er the theoretical loss function L k of network embeddings based

n U

k . Then, we optimize the loss function L k , and get the associ-

ted adjusted optimization matrix M

k which can capture the sim-

lar pattern of structure information guaranteed by the designed

trategy.

.1.1. The adjusted transfer probability matrix U

k .

To selectively capture the similar pattern of structure informa-

ion, it is intuitive to solve this problem from the perspective of

he transfer probability between the nodes of network. Here, we

ormally propose our adjusted method to capture the similar pat-

ern structure information.

First, to capture the transfer information from one node to an-

ther, we assume that the transition probability from node v i to

ode v j is proportional to S ij , which is an element in the adjacency

L. Qiao et al. / Expert Systems With Applications 117 (2019) 300–311 303

Fig. 2. The Structure-Enriched Neural Network (SENN).

m

d

A

w

j

n

a

D

w

n

f

o

h

m

n

s

i

t

w

a

d

j

w

W

s

t

f

t

w

a

i

m

b

m

k

f

U

U

k

w

c

4

d

d

s

U

s

t

p

t

t

p

(

t

t

atrix S . Then the (1-order) transition probability matrix can be

efined as follows:

 = D

−1 S,

here A ij is the transition probability from v i to v j , S is the ad-

acency matrix of the network, and D is the degree matrix of the

etwork, which is a diagonal matrix. The relationship between D

nd S is as follows:

 =

{ ∑

h ∈H

S v i v h , if v i = v j

0 , if v i � = v j
,

here H represents the neighbor nodes of node v i , and v j ∈ H .

To get the needed structure similar patterns observed in the

etwork selectively, we introduce two control parameters in our

ormalization to adjust the transfer probability between the nodes

f the network. That is to say, we explore the diverse neighbor-

oods of one node by introducing direction control parameters to

ake the structure similar pattern reflected by the embeddings of

odes be the structural similar pattern we need. This idea is in-

pired by the adjusted walk in Grover and Leskovec (2016) . Specif-

cally, we design the direction control function (here we call it as

he adjusted control function for simplicity) as follows:

αpq

(
v i , v j

)
=

⎧ ⎨

⎩

1
p

if d v i v j = 0

1 if d v i v j = 1

1
q

if d v i v j ≥ 2

,

here d v i v j is the distance between node v i and node v j , and p

nd q are the hyper-parameters to control the likelihood of imme-

iately transferring from one node to another.

To combine the transition probability information with the ad-

usted information, we make πv i , v j = αpq

(
v i , v j

)
· A v i v j , and then:

p
(
v j | v i

)
=

{πv i , v j
Z

if
(
v i , v j

)
∈ E

0 otherwise
,

here E is the set of edges, and Z is the normalization constant.

e borrow the idea of the probability that any neuron (i, j) is rea-

onable in Hang and Stemberg (2012) , and give a penalty when

he nodes with the needed structure similar pattern are mapped
ar away in the latent embedding space. Differently, the informa-

ion we introduce is the structural equivalence related information,

hile the former used is multiplication.

Finally, we suppose that one node is v i , another node is v j ,

nd the original transfer matrix is A . Let B =

[
αpq

(
v i , v j

)]
, where

, j ∈ { 1 , 2 , . . . N} . Then, there is an adjusted transfer probability

atrix (B · A) (which can be denoted as U) that is manipulated

y the control function αpq (v i , v j), where · denotes the pointwise

ultiplication. At the same time, we use p k (v j | v i) to represent the

 -order transition probability from v i to v j . Thus, we introduce the

ollowing k -order adjusted transition probability matrix as:

k = B · A

k .

According to the method in Cao et al. (2015) , we can find that

k
v i , v j is exactly equal to the adjusted transfer probability of the

 -order transition from node v i to node v j , that is,

p k
(
v j | v i

)
= U

k
v i , v j , (1)

here U

k
v i , v j is the element of the row corresponding to v i and

olumn corresponding to v j in matrix U

k .

.1.2. Loss function L k based on U

k .

In this part, let us study the loss function of network embed-

ing when the input is the adjusted transfer probability matrix un-

er the unsupervised condition. Without loss of generality, we con-

ider the case of the k -order adjusted transfer probability matrix

k . Given a network G , we consider all paths that include a k -order

ampling path from observed nodes to other nodes in the network,

he motive of the loss function is to maximize the probability of a

air of nodes from a same group, and minimize the probability be-

ween the other nodes that are not in the same groups.

Here we denote the collection that is composed of pairs be-

ween observed nodes and other nodes and has the k -order sam-

ling path between the pairs as D k , and the number of the pair

 v i , v j) that appears in D k as #

(
v i , v j

)
k

. If the network is directed,

he #

(
v i , v j

)
k

notation can be directional, that is, the number of

he pair (v i to v j) that appears in D k . Similarly, #(v i) k and #(v j) k
respectively denote the numbers of v i and v j that appear in D k .

304 L. Qiao et al. / Expert Systems With Applications 117 (2019) 300–311

v

w

u

f

I

i

M

w

i

c

o

t

l

p

a

4

G

0

w

X

t

d

c

t

o

i

r

c

d

t

p

t

r

e

h

f

o

e

s

a

s

c

4

u

l

t

w

n
Specifically, we refer to SGNS (Gutmann & Hyvärinen, 2012)

to define our loss function, which is similar to the discussion in

Levy and Goldberg (2014) and Cao et al. (2015) . First, we introduce

the loss function based on the k -order adjusted transfer probability

matrix U

k :

L k =

∑

v i ∈V
L k (v i) ,

where,

L k (v i) =

(∑

v j ∈V

(
v i , v j

)
k
log σ

(
v v i · v v j

))

+ λ · #(v i) k E v jn ∼P k (D k)
[
log σ

(
−v v i · v v jn

)]
,

(2)

σ (·) is a sigmoid function, which is σ (x) = (1 + e −x)
−1

, λ is

the number of “negative” samples, v jn is the negative sample, and

P k (D k) is the distribution of negative samples, which can be

assumed to be an empirical unigram distribution, i.e., P k
(
v jn

)
=

(v jn)
|D k | , where v jn follows the distribution P k (D k) . The expression

of the expected term is as follows:

E v jn ∼P k (D k)
[
log σ

(
−v v i · v v jn

)]
=

∑

v jn ∈D k
p k

(
v jn

)
log σ

(
−v v i · v v jn

)
= p k

(
v j

)
log σ

(
−v v i · v v j

)
+

∑

v jn ∈D k \ { v j }
p k

(
v jn

)
log σ

(
−v v i · v v jn

)
.

From the above two equations, the local loss function of the

specific (v i , v j) pairs can be defined approximately as:

L k
(
v i , v j

)
= #

(
v i , v j

)
k
log σ

(
v v i · v v j

)
+ λ · #(v i) k ·

(
v j

)
k

|D k | log σ
(
−v v i · v v j

)
.

4.1.3. Optimization of the k -order loss function.

In this part, we detail how to optimize the k -order loss function

obtained from the above definition.

Let t = v v i · v v j , the partial derivative of t for L k (v i , v j) is as fol-

lows:

∂ L k
∂t

= #

(
v i , v j

)
k
σ (−t) − λ#(v i) k

(
v j

)
k

|D k | σ (t) .

Let
∂ L k
∂t

= 0 , then:

(
v i , v j

)
k
σ (−t) − λ#(v i) k

(
v j

)
k

|D k | σ (t) = 0 .

Let H =

(v i , v j) k
(v i) k ·#(v j) k

, then:

e 2 t −
(| D k | H

λ
− 1

)
e t − | D k | H

λ
= 0 .

Let z = e t , the above equation becomes the quadratic equation

of z , and there are two solutions as follows: z = −1 (according to

the definition of z , illegal), and:

z =

| D k | H

λ
=

| D k |
λ

(
v i , v j

)
k

(v i) k · #(v j) k
.

Substituting z with e t , and t with v v i · v v j , has:

v v i · v v j = log (
| D k |
λ

(
v i , v j

)
k

(v i) k · #(v j) k
) = log (

1

λ

p k
(
v i , v j

)
p k (v i) · p k (v j)

) . (3)

The following equation can be obtained from Bayes formula:

p k
(
v i , v j

)
= p k

(
v j | v i

)
p k (v i) . (4)
Substituting Eqs. (4) and (1) into Eq. (3) yields:

 v i · v v j = log (
1

λ

p k
(
v j | v i

)
p k (v j)

) = log (
1

λ

U

k
v i , v j

p k (v j)
) , (5)

here λ is the number of “negative” samples, which is found to be

seful for small training datasets when in the range 5–20, and ef-

ective for large datasets when in range 2–5 (Mikolov et al., 2013).

n our study, we empirically set it to 5. p k (v j) is the prior probabil-

ty of v j in D k .

We can have the adjusted optimization matrix M

k as follows:

k
v i , v j = Y v i , · · C T ·, v j = log (

1

λ

U

k
v i , v j

p k (v j)
) , (6)

here Y is the embedding matrix of the network, whose each row

s the embedding of the node (Mikolov et al., 2013), and C is the

ontext matrix of the network, whose each row is the embedding

f the context node.

From Eqs. (5) and (6) , we could conclude that we need to fac-

orize the matrix M into two matrices Y and C . Thus, the prob-

em of optimizing the loss function of the k -order adjusted transfer

robability matrix U

k becomes the problem of factorization of the

djusted optimization matrix M

k .

.2. Positive adjusted optimization matrix

To improve the sparsity and consistency of embeddings (Levy &

oldberg, 2014), all the negative values of M

k can be replaced by

, and then a positive k -order optimization matrix X

k is obtained,

hich is:

k
i, j = max (M

k
i, j , 0) . (7)

Now, we can see that the k -order input structure informa-

ion needed to map from the high-dimensional space to the low-

imensional space is the matrix X

k , and X

k can be calculated ac-

ording to Eq. (7) so as to facilitate the subsequent processing of

he optimization step.

In summary, we know that the optimization problem with k -

rder loss function is equivalent to the decomposition of the pos-

tive adjusted optimization matrix X

k . At present, there are a va-

iety of matrix factor decomposition techniques, such as the trun-

ated SVD method (Levy & Goldberg, 2014) , etc. However, they

o not have the ability to capture the complex non-linear rela-

ionships. At the same time, the popular singular value decom-

osition method and the autoencoder have some similarities in

erms of optimization (Tian et al., 2014), and the other related

esearch results (Bengio et al., 2013; Vincent et al., 2008; Wang

t al., 2016) illustrate that the autoencoder can map the data in

igh-dimensional space to the low-dimensional space in non-linear

orm, retain more non-linear structure relations in networks, and

btain better results in experiments. Moreover, the works (Cao

t al., 2016; Gutmann & Hyvärinen, 2012) illustrate and demon-

trate the advantages of the denoise autoencoder in the aspects of

nti-noise and optimization of dimension reduction.

Therefore, to better preserve the rich structure information, and

olve the problem of noise, we choose the stacked denoise autoen-

oder to optimize the loss function of our study.

.3. Stacked denoise autoencoder

The stacked denoise autoencoder (Vincent et al., 2008) is a pop-

lar model in deep learning, that can generate compressed and

ow-dimensional vectors from the primitive high-dimensional vec-

ors, because it layer-wise pre-trains the weights of the deep net-

ork to learn more robust embeddings. Indeed, the stacked de-

oise autoencoder introduces random noise at the visual layer of

L. Qiao et al. / Expert Systems With Applications 117 (2019) 300–311 305

t

p

d

S

t

o

t

t

{

i

e

h

w

c

s

a

l

r

n

4

m

p

p

I

c

a

o

H

m

d

s

i

p

d

b

(

2

c

B

t

o

o

t

R

w

b

j

s

w

s

t

o

P

w

t

o

t

t

p

o

w

i

d

a

m

l

i

4

t

t

4

i

n

v

t

e

w

t

N

o

c

c

4

j

r

t

[

a

t

s

2

p

i

d

f

u

h

t

he network (i.e., the input layer of data), with the damaged in-

ut data to reconstruct the original data (that is, no damage to the

ata), so the parameters trained in this manner are more robust.

pecifically, for each input sample vector x , the partial position of

he vector is randomly set to 0 with a certain probability, and the

ther process is similar to that in standard autoencoders.

The training process is described with a single denoise au-

oencoder as follows: Let X i correspond to the input data, X̄ i

correspond to the input data containing noise, H i correspond

o the latent embedding learned by the hidden layer, and θ =

W e , d e , W d , d d } represent the parameters that need to be learned

n the encode and decode phases. Then, to learn the non-linear

mbedding of Y that can best reconstruct the original data X , we

ave:

ˆ θ = argmin

θ

L θ
(
X, X̄

)
= argmin

θ

N ∑

i =1

L θ
(
X i , X i

)

= argmin

θ

N ∑

i =1

L θ
(
X i , g

(
s
(
X i

)))
,

(8)

here L θ
(
X i , X i

)
is the distance function that measures the re-

onstruction error. We use the Euclidean distance in our study. The

(·) and g(·) are the non-linear mapping functions in the encode

nd decode phases, respectively. After the denoise greedy layer-by-

ayer training (Bengio et al., 2007; Vincent et al., 2008), the pa-

ameters W e , d e can be obtained, and then the embeddings of all

odes can be obtained.

.4. Combining layer

The main function of the combining layer is to integrate the

ultiple latent embeddings of each node obtained in previous

arts to get the final robust embedding. At present, the main ap-

roaches of integration include: concatenation and weighted sum.

n the approach of weighted sum, the weights could be automati-

ally determined by labeled training data through attention mech-

nism. In order to maintain the generality and flexibility of our

verall framework, we adopt these two methods in experiments.

ere, we briefly introduce the approach of weighted sum. The

ain idea of the approach of weighted sum is to filter the re-

undant information and retain the effective information. At the

ame time, attention mechanism has the characteristic well sat-

sfying this demand. By utilizing it in the training of the model

roposed, to calculate the combined weights of the latent embed-

ings of each node obtained by the previous modules, the com-

ining layer can adjust the flow of fusion information in our study

 Chung, Gulcehre, Cho, & Bengio, 2014; Zhang, Chen, Liu, Liu, & Lv,

017).

Specifically, we apply the method with attention mechanism to

alculate the weights of the latent embeddings in different spaces.

ecause the approach of weighted sum is related to the specific

ask, here, we introduce the case of node classification, and the

ther cases are similar. The relevant parameters and weights are

ptimized by the learning algorithm proposed in Section 4.5 . In

his manner, we define:

k
j = σ

(
G jk · Y k + b jgk

)
,

here R k
j

is the weight of the k -order latent embedding calculated

y the method with attention mechanism in the case of category

 , and Y k is the output of the stacked denoise autoencoder corre-

ponding to the k -order input matrix. G jk and b jgk represent the

eights and biases of the k th part in the case of category j , re-

pectively. σ (.) is the sigmoid function.

Then, we combine all the k -order latent embedding matrices

ogether to represent the nodes of the network and calculate the
utput in the given case by the following equation:

 (labe l j | X i) = σ (M j · �K
k =0 (R

k
j · Y k) + b jm

) ,

here M j and b jm

represent the weights and biases of the σ func-

ion in the case of category j respectively, R k
j

is the scalar weight

f the k -order latent embedding calculated by the method with at-

ention mechanism in the case of category j, Y k is the output of

he stacked denoise autoencoder corresponding to the k -order in-

ut matrix.

By concatenating the multiple latent embeddings of each node

btained in previous parts, or by the approach of weighted sum

ith attention mechanism, we could get the robust and discrim-

nable latent embedding with more effective information to some

egree.

Thus, we have detailed the four components of SENN, i.e., the

djusted optimization matrix M

k , positive adjusted k -order opti-

ization matrix, stacked denoise autoencoder, and the combining

ayer. In the next subsection, we introduce the algorithm for train-

ng SENN.

.5. Training algorithm for SENN

We introduce the training algorithm for SENN with regard to

he following aspects: the loss function of optimization, model ini-

ialization and update, and complexity analysis.

.5.1. Loss function of optimization

The loss function of training the entire architecture of SENN

s mainly composed of two parts, the loss function of the deep

etworks and the loss function of the combining layer. For con-

enience, we unify the two parts in an equation, but we must note

hat the training of the two parts is carried out separately. The

quation of the unified expression is:

L =

K ∑

k =1

argmin

θk

N ∑

i =1

L θk
(X i , g (s (X i)))

− 1

N

T ∑

j=1

N ∑

i =1

(
label j · log (P (label j | X i))

+

(
1 − label j

)
·
(
1 − log

(
P
(
label j | X i

)))),

(9)

here the first term corresponds to the loss of deep networks and

he second term corresponds to the loss of the combining layer.

 is the total number of input samples, T is the total number of

utput categories, i represents the i th instance, j represents the j th

lass, and P (labe j | X i) denotes the probability of the corresponding

ategory j under the condition of input X i .

.5.2. Model initialization and update

The parameters to be trained are
{

M

k
j , b jmk , G

k
j , b jgk

}
, where

 represents the j th label in the node classification task and k

epresents the k -order. When we initialize the model, we set

he values of the weight vectors M

k
j and G

k
j to the interval

 −
√

6 / (n in + n out) ,
√

6 / (n in + n out)] randomly, which is the same

s Orr and Müller (2003) , and set the biases b jmk and b jgk to zero.

After the parameter initialization, we use the BP algorithm to

rain the model, that is, the loss function is minimized by the

tochastic gradient descent (SGD) algorithm (Bottou, 2010; Zhang,

004). Specifically, we use a “mini-batch” to speed up the training

rocess, set the batch size between 10–50, and set the initial learn-

ng rate between 5–25. Considering different characteristics of the

atasets, their specific batch sizes and learning rates may be dif-

erent. In addition, to avoid overfitting, the learning rate should be

pdated dynamically after a certain number of iterations. Here, we

alve the learning rate until it reaches the user-specified minimum

hreshold after a certain quantity (e.g., 100) of batch data.

306 L. Qiao et al. / Expert Systems With Applications 117 (2019) 300–311

Fig. 3. Performance results on BlogCatalog.

Fig. 4. Performance results on FLICKR.

f

s

5

t

1 http://leitang.net/code/social-dimension/data/blogcatalog.mat
2 http://leitang.net/code/social-dimension/data/flickr.mat
3 http://leitang.net/code/social-dimension/data/youtube.mat
4.5.3. Complexity analysis

We consider the time complexity of the main processes (i.e.,

computing A

k , calculating B , obtaining M

k , training the stacked

donise autoencoder, and training the combining layer) in SENN.

With adoption of the fast procedure introduced by Le Gall (2014) ,

the procedure of computing A

k has O ((k − 1) N

2 . 3728639) time com-

plexity. The complexity of obtaining B is O (nnz (A) c 2), where nnz (·)

indicates the number of non-zero elements and c is the aver-

age degree of the network. The complexity of calculating M

k is

O (nnz (A) 2). The training complexity of the stacked donise autoen-

coder is O (Ncd(l − 2) I denoise) , where c is the average degree of the

network, l is the number of layers of the stacked donise autoen-

coder, and I denoise is the number of iterations. The training com-

plexity of the attention mechanism part is O (NdI am

), where I am

is

the number of iterations. In general, N is far larger than other pa-

rameters. Therefore, the overall time complexity of our model is

O ((K − 1) N

2 . 3728639) .

5. Experiments

To evaluate the performance of SENN, we construct extensive

experiments in this section. Specifically, this section introduces the

datasets, baselines, evaluation metrics, experimental settings, and

results. We use four tasks to test in experiments. First, to verify the

discriminative performance of our model, we conduct experiments

on the multi-label node classification task. Second, to demonstrate

the selection ability of the structure pattern of our model, we con-

duct an experiment on a network of characters of a novel named

Huckleberry Finn (Knuth, 1993). Third, to demonstrate the perfor-

mance of our model more intuitively, we report a visualization-

task result. Finally, in order to evaluate the effectiveness under dif-
erent parameter values, we conduct the experiments of parameter

ensitivity.

.1. Datasets

We adopt the following public datasets combining the charac-

eristics of the tasks in our experiments:

• BlogCatalog 1 : It is a real-world social network of bloggers

listed on the BlogCatalog website, which has 10,312 nodes,

333,983 edges, and 39 different topic categories as labels pre-

sented by authors. It will be used in the multi-label classifica-

tion task and parameter sensitivity task.
• FLICKR

2 : A real-world network of contacts between users of

the photo sharing website (Tang & Liu, 2009). It has 80,513

nodes, 11,799,764 edges, and 195 different categories. It will be

used in the multi-label classification.
• YOUTUBE

3 : This is another popular social network of online

users. Each user is labeled by at least one category. It has 1, 138,

499 nodes, 5,980, 886 edges, and 47 categories. The categories

can be used as the ground-truth of each node. This dataset is

used in the multi-label classification task.
• Wikipedia (Mahoney, 2011): This is a word co-occurrence net-

work of words appearing in first million bytes of the Wikipedia

dump. Each node is labeled by at least one label. The labels

represent the Part-of-Speech (POS) tags inferred using the Stan-

ford POS-Tagger (Toutanova, Klein, Manning, & Singer, 2003).

http://leitang.net/code/social-dimension/data/blogcatalog.mat
http://leitang.net/code/social-dimension/data/flickr.mat
http://leitang.net/code/social-dimension/data/youtube.mat

L. Qiao et al. / Expert Systems With Applications 117 (2019) 300–311 307

Fig. 5. Performance results on YOUTUBE.

Fig. 6. Performance results on Wikipedia.

5

w

s

f

&

m

2

t

S

b

u

5

t

m

w

f

a

M

w

5

w
The network has 4777 nodes, 184,812 edges, and 40 different

labels. This dataset is also used in the multi-label classification

task.
• Huck

4 : A network in which nodes correspond to the roles in

the novel Huckleberry Finn (Knuth, 1993), and edges represent

the relationship between the co-appearing characters. It has 74

nodes and 301 edges. This dataset is used for the case study

experiment.
• 20-NewsGroup

5 : This dataset contains approximately 20,0 0 0

News Group (NG) documents and is split into 20 different

groups according to categories. We represent every document

as a vector of tf-idf scores of each word, and built the cosine

similarity network based on the tf-idf scores. In our experi-

ments, to carry out the visualization task, we construct one

network of 3 different news groups, whose names are labeled

as comp.graphics, rec.sport.baseball and talk.politics.gums. For

convenience and without loss of generality, we extracted 300

samples from each of them randomly.

.2. Baselines

We compare our model with other six start-of-the-art and

idely-used network embedding methods which only utilize the

tructure topology information. The selected baselines are matrix

actorization based approaches, such as Spectral clustering (Tang

 Liu, 2011), and GraRep (Cao et al., 2015), random walk based

ethods, such as DeepWalk (Perozzi et al., 2014), LINE (Tang et al.,

015), node2vec (Grover & Leskovec, 2016), and deep learning

echniques, such as DNGR (Cao et al., 2016). Moreover, we denote
4 ftp://ftp.cs.stanford.edu/pub/sgb/sgb.tar.gz
5 qwone.com/ jason/20Newsgroups/

w

a

L

a
ENN concat which uses the concatenation approach in the com-

ining layer to get the network embedding, and SENN atten which

ses the weighted sum approach based on attention mechanism.

.3. Evaluation metrics

In our experiment, we evaluate the average performances by

he measures of Micro-F1 and Macro-F1 in the same manner as

any other works (Cao et al., 2015; Tang & Liu, 2009). In detail,

e denote TP (L), FP (L) and FN (L) as the number of true positives,

alse positives and false negatives in the classifying instances that

re predicted as L , respectively. Suppose A is the overall label set.

icro-F1 and Macro-F1 are defined as follows:

P r =

∑

L ∈ A T P (L) ∑

L ∈ A (T P (L) + F P (L))
,

R =

∑

L ∈ A T P (L) ∑

L ∈ A (T P (L) + F N (L))
,

Micro − F 1 =

2 ∗ P r ∗ R

P r + R

,

Macro − F 1 =

∑

L ∈ A F 1 (L)

| A | ,

here F 1(L) is the F 1-measure for the label L .

.4. Experimental settings

For DeepWalk, as suggested in Perozzi et al. (2014) , we set the

alk length η = 4 , walks per node γ = 80 , and window size

 = 10 . For LINE, we set the number of negative samples K = 5 ,

s used in Tang et al. (2015) . For node2vec, similar to Grover and

eskovec (2016) , we set p, q ∈ {0.25, 0.50, 1, 2, 4} with a grid search

s the default values. For DNGR, the neural network structures

ftp://ftp.cs.stanford.edu/pub/sgb/sgb.tar.gz

308 L. Qiao et al. / Expert Systems With Applications 117 (2019) 300–311

Fig. 7. Case study results for nodes clustering in network. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

Table 2

Neural network structures of DNGR.

Dataset #Nodes in each layer

Huck 74-32-16

NG 900-512-256-128-64

BlogCatalog 10,312-4,096-2,048-1,024-512-256

FLICKR 80,513-32,76 8-16,384-8,192-4,096-2,04 8-1,024-512-256

YOUTUBE 22,693-8,192-2,048-1,024-512-256

Wikipedia 4,777-2,048-1,024-512-256

Table 3

Stacked denoise autoencoder in SENN.

Dataset #Nodes in each layer

Huck 74-32-16

NG 900-256-64

BlogCatalog 10,312-2,048-256

FLICKR 80,513-16,384-2,048-256

YOUTUBE 22,693-2,048-256

Wikipedia 4,777-1,024-256

p

t

d

l

n

w

m

a

s

t

p

t

l

o

a

d

s

I

g

s

r

o

t

o

p

f

m

g

i

m

a

t

i

e

t

s

are shown in Table 2 according to Cao et al. (2016) . For SENN,

we set the parameters p, q ∈ {0.01, 1, 10} with a grid search in

the multi-label classification task. At the same time, we set the

parameters of the stacked denoise autoencoder used in SENN, as

shown in Table 3 . Moreover, to solve the problem of imbalance of

samples, we adopt the algorithm smote (Chawla, Bowyer, Hall, &

Kegelmeyer, 2002) for resampling, which results in that the same

algorithm with the same dataset has not the same scores compar-

ing with some other papers.

5.5. Results

In this subsection, we report the results on each experimental

task.

5.5.1. Task 1: multi-label node classification

In this part, we evaluate the effectiveness of our model on

the multi-label classification task with the datasets BlogCatalog,

FLICKR, YOUTUBE and Wikipedia. In addition, we remove the nodes

which are not labeled in YOUTUBE. Following Sarwar, Karypis, Kon-

stan, and Riedl (2002) and Tang and Liu (2009) , we use the LIBLIN-

EAR package (Fan, Chang, Hsieh, Wang, & Lin, 2008) to train one-

vs.-rest logistic regression classifiers, and use them to deal with

the other samples. We run this process 10 times and report the av-

erage Macro-F1 and Micro-F1 scores. For each time, we randomly

sample 1% to 90% of the instances for training, and use the remain-

ing instances for testing. In this experiment, we set the dimension

of the embeddings as 256. For GraRep and SENN, we set the max-

imum order of the transition matrix as 5.

Figs. 3 (a), 3 (b), 4 (a), 4 (b), 5 (a), 5 (b), and 6 (a), 6 (b) report the

results of SENN and other methods. Overall, even with less than

10% of the instances used for training, SENN is significantly better

than other methods. This indicates that different and complemen-

tary orders of rich structure information learned by SENN can be

chosen and enhanced by each other effectively, such that the em-

bedding for the classification task can be completed better.

5.5.2. Task 2: case study with the Huckleberry Finn network

In this part, aiming to empirically demonstrate that our ad-

justed model has the ability to select the wishing structure similar
attern information based on the settings of the adjusted parame-

ers, we perform a case study on the Huck dataset. Firstly, we set

 = 16, the maximum order of the transition matrix to 5, and uti-

ize our model to learn the final embedding for each node in the

etwork. For the simplicity and effectiveness of this experiment,

e use the concatenation approach in the combining layer of our

odel to get the network embedding. Then, the final embeddings

re clustered using k -means. Finally, we visualize the character

tructure in two dimensions with nodes assigned colors based on

heir clusters.

Fig. 7 (a) shows the case when we set p = 1, and q = 1. Let us

ay attention to the regions colored the same. It can be seen that

he embeddings obtained by our model have rich structure equiva-

ence and homogeneous information. For example, the yellow col-

red nodes are categorized into one group, not only because they

re close and interact with each other frequently, but also because

ifferent parts have similar equivalence structure from the major

ub-plots of the novel.

Fig. 7 (b) shows the example in which we set p = 1, and q = 10.

t can be seen that our model focuses more on the local homo-

eneous information, and the structure equivalence information is

mall. For instance, the blue nodes are mainly separated from the

ed ones, some of the yellow nodes are separated from the green

nes, and so on. This result proves that our model has the ability

o identify homogeneous information, and increase the proportion

f homogeneous information in this setup.

To discover nodes that have similar structural roles, let us set

 = 1, and q = 0.01. Theoretically, our model in this setup is more

ocused on similar structure equivalence information. In fact, our

odel obtains a more complementary assignment of nodes to

roups that have similar structural roles in the network, as shown

n Fig. 7 (c). For example, our model sets some node colors to pink,

ainly because they have a similar role status. Other colors (such

s red, sky blue, yellow and green) are similar. This result shows

hat, our model increases the proportion of structure equivalence

nformation in the embeddings of nodes in this setup.

Through the case study experiments above, we can see that the

mbeddings obtained by our model not only have abundant struc-

ure information, but also can adjust and balance different types of

tructure similar information by hyper-parameters.

L. Qiao et al. / Expert Systems With Applications 117 (2019) 300–311 309

Fig. 8. Visualization results for 20-NewsGroup network.

Fig. 9. Performance over k -order on BlogCatalog.

5

o

w

c

f

b

t

d

g

p

i

r

n

o

c

r

s

g

F

m

t

m

t

s

b

v

i

s

5

e

o

t

c

d

h

b

e

c

F

r

K

F

p

e

C

c

d

l

i

2

s

g

o

t

t

t

i

o

n

w
.5.3. Task 3: visualization

To demonstrate the discriminative power of SENN, we focus

n visualizing the learned embeddings of the 20-NewsGroup net-

ork. For simplicity, we use the concatenation approach in the

ombining layer of our model to get the network embedding. We

eed the network embeddings learned by different network em-

edding methods into the standard t -SNE tool (Maaten & Hin-

on, 2008), where each NewsGroup document is mapped as a two-

imensional vector, and the documents labeled as the same cate-

ory have the same color. A good visualization result is that the

oints of the same color are close to each other. Results are shown

n Fig. 8 .

From Fig. 8 , we can see that, the result of DeepWalk is almost

andom. It is because DeepWalk is only suitable for unweighted

etwork, the embeddings obtained by it can not reflect the effect

f the weights of the network. For LINE(1st), we use the source

ode provided by Tang et al. (2015) , adopt the recommended pa-

ameters in Tang et al. (2015) , and select the best results. The re-

ult of LINE (1st) is slightly better than that of DeepWalk, we re-

ard this because LINE(1st) can utilize the weights in the network.

or DNGR, the result is slightly better than that of LINE(1st), but

any documents belonging to the same categories are not clus-

ered together, it is believed that the embeddings obtained by this

ethod can not preserve more discriminative structure informa-

ion. For Spectral, node2vec and GraRep, the results are better,

ince the clusters of different categories are formed, although the

oundaries of each group are not very clear. Obviously, from the

isualization result of SENN, we observe that SENN performs best

n the aspects of group separation and boundary clarity. The result

hows that our model is effective.

.5.4. Task 4: parameter sensitivity

In the examination of parameter effects in SENN, we assess the

ffect of each k -order, the maximal size K , and the dimension d in
ur model. For simplicity, we utilize the concatenation approach in

he combining layer of our model.

Fig. 9 shows the Macro-F1 and Micro-F1 scores over different

hoices of k -order on the BlogCatalog dataset with the dimension

 = 128. In both Fig. 9 (a) and (b), the scores of the 3-order are the

ighest, followed by the scores of 2, 4, 5, 1, 6, 7, 8, 9 and 10-order,

ut when k increases to more than 5, the learned k -order latent

mbeddigngs contain less effective information.

Fig. 10 shows the Macro-F1 and Micro-F1 scores over different

hoices of K on the BlogCatalog dataset with dimension d = 128.

rom both Fig. 10 (a) and (b), we can observe that the increase

ate of the scores decreases gradually with the increase of K . When

 is greater than 5, the increase can be neglected. The results of

igs. 9 and 10 imply that different k -order matrices can learn com-

lementary information.

Fig. 11 (a) and (b) show the Macro-F1 and Micro-F1 scores of

ach algorithm over different settings of dimension d on the Blog-

atalog dataset. From Fig. 11 (a) and (b), we can observe that SENN

onsistently outperforms other baselines when they learn embed-

ings with the same dimension. When we increase d from 32 to

arger values, the Macro-F1 and Micro-F1 scores of all algorithms

ncrease with different rates. Interestingly, when d is greater than

56, the growth rate of SENN, GraRep and node2vec becomes very

mall, and the other algorithms have similar small rate when d is

reater than 512. At the same time, with the increase of d , the rate

f improvement is smaller. Nevertheless, our SENN is always better

han other baselines across all different d values.

We also conduct experiments with the BlogCatalog dataset in

he case of d = 256 to analyze the effect of each part of SENN on

he performance improvement. Through the experimental compar-

son, it is found that, after adopting the adjusted matrix strategy,

ur model beats the baselines by at least 1%, with the stacked de-

oise autoencoder, the effect can be increased by at least 1.5%, and

ith adoption of attention mechanism, the effect can be increased

310 L. Qiao et al. / Expert Systems With Applications 117 (2019) 300–311

Fig. 10. Performance over order K on BlogCatalog.

Fig. 11. Performance over dimension d on BlogCatalog.

B

B

B

B

B

C

C

C

C

C

D

D

F

G
by at least 1%. These results clearly demonstrate the utility of each

component in our proposed SENN model.

6. Conclusions

In this paper, we propose a structure-enriched network em-

bedding model, i.e., SENN, for network embedding. Specifically, we

present the concept of the adjusted transfer probability matrix to

select the diverse structure similar patterns observed in networks,

adopt the stacked denoise autoencoder to capture the highly non-

linear structure information and make the learned network em-

beddings more robust. Meanwhile, we integrate the multi-order

structure information by the combining layer. In experiments, we

evaluate the generated embeddings with a few synthetic and real-

world datasets. The results demonstrate the superior performance

of our method compared with the state-of-the-art methods. In the

future, we will combine the specific application scenarios to ex-

plore how to use more of other information to learn the network

embedding.

Acknowledgments

This research was partially supported by grants from the

National Natural Science Foundation of China (Grants No.

U1605251 and 61727809).

References

Airoldi, E. M. , Bai, X. , & Carley, K. M. (2011). Network sampling and classification: An

investigation of network model representations. Decision Support Systems, 51 (3),

506–518 .
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly

learning to align and translate. arXiv: 1409.0473v1 .
Bayer, A. O. , & Riccardi, G. (2016). Semantic language models with deep neural net-

works. Computer Speech & Language, 40 , 1–22 .
elkin, M. , & Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for
embedding and clustering. In Advances in neural information processing systems

(pp. 585–591) .

engio, Y. , Courville, A. , & Vincent, P. (2013). Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,

35 (8), 1798–1828 .
engio, Y. , Lamblin, P. , Popovici, D. , & Larochelle, H. (2007). Greedy layer-wise

training of deep networks. In Advances in neural information processing systems
(pp. 153–160) .

engio, Y. , et al. (2009). Learning deep architectures for ai. Foundations and Trends®

in Machine Learning, 2 (1), 1–127 .
hagat, S. , Cormode, G. , & Muthukrishnan, S. (2011). Node classification in social

networks. In Social network data analytics (pp. 115–148). Springer .
Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT2010 (pp. 177–186). Springer .
Bullinaria, J. A. , & Levy, J. P. (2012). Extracting semantic representations from word

co-occurrence statistics: Stop-lists, stemming, and svd. Behavior Research Meth-

ods, 44 (3), 890–907 .
ao, S. , Lu, W. , & Xu, Q. (2015). Grarep: Learning graph representations with global

structural information. In Proceedings of the 24th ACM international on conference
on information and knowledge management (pp. 891–900). ACM .

ao, S. , Lu, W. , & Xu, Q. (2016). Deep neural networks for learning graph represen-
tations. In AAAI (pp. 1145–1152) .

hawla, N. V. , Bowyer, K. W. , Hall, L. O. , & Kegelmeyer, W. P. (2002). Smote: Syn-

thetic minority over-sampling technique. Journal of Artificial Intelligence Research,
16 , 321–357 .

horowski, J., Bahdanau, D., Cho, K., & Bengio, Y. (2014). End-to-end continuous
speech recognition using attention-based recurrent nn: First results. arXiv: 1412.

1602 .
hung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv: 1412.3555v1 .

ean, J. , Corrado, G. , Monga, R. , Chen, K. , Devin, M. , Mao, M. , et al. (2012). Large
scale distributed deep networks. In Advances in neural information processing

systems (pp. 1223–1231) .
ong, Y. , Chawla, N. V. , & Swami, A. (2017). metapath2vec: Scalable representation

learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining (pp. 135–144).

ACM .
an, R.-E. , Chang, K.-W. , Hsieh, C.-J. , Wang, X.-R. , & Lin, C.-J. (2008). Liblinear: A li-

brary for large linear classification. Journal of Machine Learning Research, 9 (Aug),

1871–1874 .
rover, A. , & Leskovec, J. (2016). node2vec: Scalable feature learning for networks.

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0001
http://arxiv.org/abs/1409.0473v1
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0002
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0002
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0002
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0002
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0008
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0008
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0009
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0009
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0009
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0009
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0010
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0010
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0010
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0010
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0010
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0011
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0011
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0011
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0011
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0011
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0012
http://arxiv.org/abs/1412.1602
http://arxiv.org/abs/1412.3555v1
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0014
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0014
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0014
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0014
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0014
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0016

L. Qiao et al. / Expert Systems With Applications 117 (2019) 300–311 311

G

H

H

K

L

L

M

M

M

M

O
P

P

S

T

T

T

T

T

T

T

V

W

Z

Z

In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining (pp. 855–864). ACM .

utmann, M. U. , & Hyvärinen, A. (2012). Noise-contrastive estimation of unnormal-
ized statistical models, with applications to natural image statistics. Journal of

Machine Learning Research, 13 (Feb), 307–361 .
ang, T. T. P., & Stemberg, M. J. E. (2012). Aligning protein-protein interaction net-

works using random neural networks.
inton, G. E. , & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data

with neural networks. Science, 313 (5786), 504–507 .

nuth, D. E. (1993). The stanford graphbase: A platform for combinatorial computing :
37. Addison-Wesley Reading .

e Gall, F. (2014). Powers of tensors and fast matrix multiplication. In Proceed-
ings of the 39th international symposium on symbolic and algebraic computation

(pp. 296–303). ACM .
evy, O. , & Goldberg, Y. (2014). Neural word embedding as implicit matrix factor-

ization. In Advances in neural information processing systems (pp. 2177–2185) .

aaten, L. v. d. , & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine
Learning Research, 9 (Nov), 2579–2605 .

ahoney, M. (2011). Large text compression benchmark. URL: http://www.
mattmahoney.net/text/text.html ,.

ikolov, T. , Sutskever, I. , Chen, K. , Corrado, G. S. , & Dean, J. (2013). Distributed rep-
resentations of words and phrases and their compositionality. In Advances in

neural information processing systems (pp. 3111–3119) .

nih, V. , Heess, N. , Graves, A. , et al. (2014). Recurrent models of visual attention. In
Advances in neural information processing systems (pp. 2204–2212) .

rr, G. B. , & Müller, K.-R. (2003). Neural networks: Tricks of the trade . Springer .
arthasarathy, S. , Ruan, Y. , & Satuluri, V. (2011). Community discovery in social net-

works: Applications, methods and emerging trends. In Social network data ana-
lytics (pp. 79–113). Springer .

erozzi, B. , Al-Rfou, R. , & Skiena, S. (2014). Deepwalk: Online learning of social rep-

resentations. In Proceedings of the 20th ACM SIGKDD international conference on
knowledge discovery and data mining (pp. 701–710). ACM .

arwar, B. , Karypis, G. , Konstan, J. , & Riedl, J. (2002). Incremental singular value de-
composition algorithms for highly scalable recommender systems. In Fifth inter-

national conference on computer and information science (pp. 27–28). Citeseer .
ang, J. , Qu, M. , Wang, M. , Zhang, M. , Yan, J. , & Mei, Q. (2015). Line: Large-scale
information network embedding. In Proceedings of the 24th international confer-

ence on world wide web (pp. 1067–1077). International World Wide Web Con-
ferences Steering Committee .

ang, J. , Sun, J. , Wang, C. , & Yang, Z. (2009). Social influence analysis in large-s-
cale networks. In Proceedings of the 15th ACM SIGKDD international conference

on knowledge discovery and data mining (pp. 807–816). ACM .
ang, L. , & Liu, H. (2009). Relational learning via latent social dimensions. In Pro-

ceedings of the 15th ACM SIGKDD international conference on knowledge discovery

and data mining (pp. 817–826). ACM .
ang, L. , & Liu, H. (2011). Leveraging social media networks for classification. Data

Mining and Knowledge Discovery, 23 (3), 447–478 .
enenbaum, J. B. , De Silva, V. , & Langford, J. C. (20 0 0). A global geometric framework

for nonlinear dimensionality reduction. Science, 290 (5500), 2319–2323 .
ian, F. , Gao, B. , Cui, Q. , Chen, E. , & Liu, T.-Y. (2014). Learning deep representations

for graph clustering. In AAAI (pp. 1293–1299) .

outanova, K. , Klein, D. , Manning, C. D. , & Singer, Y. (2003). Feature-rich
part-of-speech tagging with a cyclic dependency network. In Proceedings of the

2003 conference of the North American chapter of the association for computational
linguistics on human language technology-volume 1 (pp. 173–180). Association for

Computational Linguistics .
incent, P. , Larochelle, H. , Bengio, Y. , & Manzagol, P.-A. (2008). Extracting and com-

posing robust features with denoising autoencoders. In Proceedings of the 25th

international conference on machine learning (pp. 1096–1103). ACM .
ang, D. , Cui, P. , & Zhu, W. (2016). Structural deep network embedding. In Proceed-

ings of the 22nd ACM SIGKDD international conference on knowledge discovery and
data mining (pp. 1225–1234). ACM .

hang, K. , Chen, E. , Liu, Q. , Liu, C. , & Lv, G. (2017). A context-enriched neural net-
work method for recognizing lexical entailment. In AAAI (pp. 3127–3134) .

hang, T. (2004). Solving large scale linear prediction problems using stochastic gra-

dient descent algorithms. In Proceedings of the twenty-first international confer-
ence on machine learning (p. 116). ACM .

http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0017
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0017
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0017
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0017
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0019
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0019
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0020
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0020
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0022
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0022
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0022
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0022
http://www.mattmahoney.net/text/text.html
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0025
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0025
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0025
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0025
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0027
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0027
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0027
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0027
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0027
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0028
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0028
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0028
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0028
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0028
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0028
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0029
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0029
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0029
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0029
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0029
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0029
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0029
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0029
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0030
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0030
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0030
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0030
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0030
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0030
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0031
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0031
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0031
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0031
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0032
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0032
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0032
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0032
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0033
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0033
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0033
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0033
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0033
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0034
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0034
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0034
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0034
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0034
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0034
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0034
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0035
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0035
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0035
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0035
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0035
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0035
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0036
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0036
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0036
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0036
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0036
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0036
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0037
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0037
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0037
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0037
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0037
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0038
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0038
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0038
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0038
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0038
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0038
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0038
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0039
http://refhub.elsevier.com/S0957-4174(18)30617-1/sbref0039

	A Structure-Enriched Neural Network for network embedding
	1 Introduction
	2 Problem definition
	3 Related work
	3.1 Network embedding
	3.2 Deep neural network
	3.3 Attention mechanism

	4 Methodology
	4.1 Adjusted optimization matrix Mk
	4.1.1 The adjusted transfer probability matrix Uk.
	4.1.2 Loss function Lk based on Uk.
	4.1.3 Optimization of the k-order loss function.

	4.2 Positive adjusted optimization matrix
	4.3 Stacked denoise autoencoder
	4.4 Combining layer
	4.5 Training algorithm for SENN
	4.5.1 Loss function of optimization
	4.5.2 Model initialization and update
	4.5.3 Complexity analysis

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Evaluation metrics
	5.4 Experimental settings
	5.5 Results
	5.5.1 Task 1: multi-label node classification
	5.5.2 Task 2: case study with the Huckleberry Finn network
	5.5.3 Task 3: visualization
	5.5.4 Task 4: parameter sensitivity

	6 Conclusions
	 Acknowledgments
	 References

