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ABSTRACT
Adaptive learning, also known as adaptive teaching, relies on learn-

ing path recommendation, which sequentially recommends person-

alized learning items (e.g., lectures, exercises) to satisfy the unique

needs of each learner. Although it is well known that modeling the

cognitive structure including knowledge level of learners and knowl-
edge structure (e.g., the prerequisite relations) of learning items is

important for learning path recommendation, existing methods

for adaptive learning often separately focus on either knowledge

levels of learners or knowledge structure of learning items. To fully

exploit the multifaceted cognitive structure for learning path recom-

mendation, we propose a Cognitive Structure Enhanced framework

for Adaptive Learning, named CSEAL. By viewing path recommen-

dation as a Markov Decision Process and applying an actor-critic

algorithm, CSEAL can sequentially identify the right learning items

to different learners. Specifically, we first utilize a recurrent neu-

ral network to trace the evolving knowledge levels of learners at

each learning step. Then, we design a navigation algorithm on

the knowledge structure to ensure the logicality of learning paths,

which reduces the search space in the decision process. Finally,

the actor-critic algorithm is used to determine what to learn next

and whose parameters are dynamically updated along the learning

path. Extensive experiments on real-world data demonstrate the

effectiveness and robustness of CSEAL.
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1 INTRODUCTION
Learning is the ladder of the progress of mankind, by which people

can acquire knowlege and skills. Different from traditional learning

(e.g. courses in classrooms) that presents the same material to all

learners, adaptive learning aims at providing personalized learning

items and paths tailored to individual learners [3]. As shown in

Figure 1, adaptive learning recommends a learning path C→ D→
B→ · · · for the learner who wants to learn multiplication by con-

sidering his or her current level of knowledge and the prerequisite

relation of learning items (e.g., two digit addition is a prerequisite

of multiplication). Usually, examinations, e.g., two tests in Figure

1 on D, are used to retrieve the learning effects. The personalized

learning path helps the learner understand the new learning items

efficiently [19, 33]. Recently, adaptive learning has become a cru-

cial component for many applications such as on-line education

systems (e.g., KhanAcademy.org, junyiacademy.org).
Research on education has shown that the cognitive structure

has great impacts on adaptive learning [25, 26, 28]. The cognitive

structure describes the qualitative development of knowledge and

contains two parts: knowledge level of learners and knowledge

structure (e.g., the prerequisite relations) of learning items. The

knowledge level reflects the masteries on learning items which

keeps evolving and can not be observed directly (e.g. genetic episte-

mology [26]), meanwhile the knowledge structure captures the cog-

nitive relations among the learning items. However, existing meth-

ods for adaptive learning only utilize either knowledge level [33, 40]

or knowledge structure [38, 41]. Although thesemethods havemade

a great success in adaptive learning, there are some limitations of

them. To be specific, methods based on knowledge level without the

knowledge structure may fail to resolve learning items dependency,

e.g., prerequisite. The methods based on knowledge structure which

ignore learners’ knowledge level can not reflect the learning abili-

ties of different learners, so that they can not precisely determine

the customized learning tempo [6]. Therefore, the recommended

learning paths to each learner may be less suitable and inefficient.

Thus, how to systematically exploit cognitive structure including

both knowledge level and knowledge structure for adaptive learn-

ing is still a challenging problem.

We summarize three challenges along this line. First, the knowl-

edge level of learner cannot be observed directly and keeps evolving.

As shown in the radar graphs of Figure 1, the learner’s masteries

of each learning items, i.e. the knowledge level, are continuously

changing during learning but can not be observed directly. The

knowledge level of learners influences the learning effectiveness
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Figure 1: Illustration of Adaptive Learning. C→D→B→ ... is a learning pathwhich promotes the learner’s mastery onD from
20 pt to 80 pt. User Info contains the basic information of learners such as grade, historical learning records. Target includes
one or more learning items that the learner wants to master. Radar graphs in the bottom show the evolving knowledge level
during learning which can not be directly observed, and the top directed acyclic graphs represent the knowledge structure.
of learning items. For example, with the poor mastery of two digit
addition, it is difficult to learn multiplication. Thus, it is necessary
to model the implicit evolving knowledge level. Second, the knowl-

edge structure of learning items should be incorporated to deter-

mine logical learning paths [17]. As shown in the directed acyclic

graphs of Figure 1, a learner who wants to learn the senior item D

(multiplication) should firstly learn the prerequisites B (two digit
addition) and C (count number within 100). Therefore, the learning
path should be in accordance with the logicality determined by the

knowledge structure of learning items. Third, a good learning path

recommendation should maximize the overall gain along the whole

learning path instead of only focusing on the gain in one step. As

shown in Figure 1, the learning effectiveness is the promotion in

examinations rather than simply the correction of one item [6].

To address the challenges, we propose a general Cognitive Struc-

ture Enhanced framework for Adaptive Learning (CSEAL). We

model the sequential learning path recommendation as a Markov

Decision Process (MDP). We apply reinforcement learning to grad-

ually optimize the recommendation strategy based on cognitive

structure of adaptive learning. Specifically, the Knowledge Tracing

model based on Long Short-Term Memory (LSTM) network is first

applied to retrieve the evolving knowledge level. Second, to pre-

vent learning path from violating the sequential logicality being

recommended, the Cognitive Navigation algorithm is designed to

select a certain number of learning items, i.e., candidates, based

on knowledge structure, which can also reduce the large search-

ing space. Finally, the Actor-Critic Recommender will determine

what to learn next, whose parameters are updated to improve the

effectiveness of the whole recommended learning path rather than

that of only one item. Extensive experiments show that CSEAL not

only significantly outperforms several baselines, but also provides

interpretable insights in the learning path recommendations.

2 RELATEDWORK
Generally, the related work of this study can be grouped into the

following three categories.

Learning Path Recommendation. The simplest way to gen-

erate learning paths is to introduce those methods aiming to solve

sequence recommendation problem, e.g., collaborative filtering

methods (e.g., KNN [9], MPR [37]) and deep learning methods (e.g.

GRU4Rec [11]). For example, Zhou et al. [40] introduced Recurrent

Neural Network (RNN) to predict the expectation of the whole path

for learner groups. Some researches proposed to enhance the rec-

ommendation strategy by explicitly using cognitive structure. One

branch is to model the evolution of knowledge level. Chen et al. [6]

and Tang et al. [33] used the transition matrix in MDP to model

the evolution of knowledge level and used reinforcement learning

algorithm to evaluate the impact of learning items on knowledge

level. Meanwhile, works of the other branch focused on employing

the knowledge structure to make a recommendation, for example,

Zhu et al. [41] made several path generation rules on knowledge

structure by expertise and Yu et al. [38] put up a method using se-

mantic inference on ontology to generate learning paths. Previous

methods only consider either the importance of knowledge level or

knowledge structure without the combination of these two parts.

To our best, few of existing works has well established the cognitive

structure to make learning path recommendation.

Cognitive Structure. Cognitive structure contains two parts:

knowledge level of learners and knowledge structure of items. Two

kinds of techniques can be applied to describe these two compo-

nents, i.e., knowledge tracing for knowledge level and knowledge

graph for knowledge structure. Knowledge tracing models learn-

ers’ knowledge level over time so that how learners will perform

on future interactions can be accurately predicted [7, 8, 31]. Deep

Knowledge Tracing (DKT) [27] used RNN to model such states in

a high-dimensional and continuous representation. However, the

mentioned-above knowledge tracing approaches are hard to fully

reveal the relations among the learning items.

Knowledge Graph, with entities (e.g. learning items) as nodes,

relations (e.g. prerequisite) as edges, stores a large amount of in-

formation containing domain knowledge by graph structure [23].

Meanwhile, the education knowledge graph is able to represent

the multi-dimension relationships [5, 13, 18]. Though abundant of

knowledge can be thus embedded in Knowledge Graph, the person-

alized evolution of knowledge level’s characteristic, especially the

complexities and the dynamic specialty with infinite time horizons,

makes it difficult to be described in the graph structure.

Reinforcement Learning. Deep reinforcement learning, as

one of state-of-the-art techniques [1], has shown superior abili-

ties in many fields [36]. The main idea is to learn and refine model



parameters according to task-specific reward signals. For exam-

ple, Tang et al. [32] introduced reinforcement learning to train an

efficient dialogue agent on existing transcripts from clinical tri-

als, which improves mild cognitive impairment prediction; Wang

et al. [34] utilized the actor-critic algorithm for treatment recom-

mendation, helping to handle complex relations among multiple

medications, diseases and individual characteristics. However, due

to three key challenges, the traditional reinforcement learning is

difficult to be applied in learning path recommendation: (1) how to

represent state; (2) how to avoid the recommendation violating the

sequence logicality during exploring; (3) how to reduce the large

searching space of learning item paths.

3 PRELIMINARIES
This section discusses the definition of the terminologies and the

formulation of learning path recommendation.

3.1 Terminologies
3.1.1 Learning Session. Learning is a long procedure composed of

many learning sessions, and each learning session has individual

learning targets which can be set by tutors or learners. As shown

in Figure 2, each learning session includes two main components:

learning path and examinations. Learning path consisting of many

learning items is a learning track of a learner. Examinations are used

to retrieve the learning effectiveness of the learning path, i.e., the

promotion on the learning target. Some typical learning sessions

are homework, chapters and semesters, which differ in gratitude.

Without loss of generality, the effectiveness of a learning session

EP can be calculated by the following equation:

EP =
Ee − Es
Esup − Es

, (1)

where Es is the score of the beginning examination in a session, Ee
is the score of the end, and Esup is the full score of the examination.

For example, let Es = 80,Ee = 90,Esup = 100 and then EP = 0.5,

or let Es = 0.2,Ee = 0.6,Esup = 1.0, then EP = 0.5.

3.1.2 Prerequisite Graph. An educational knowledge graph has

some special properties such as prerequisite and similarity, which

can represent the knowledge structure. As learners often start from

basic items before accessing to those senior ones which are more

complicated and hard [5], experts hence summarize a relation of

learning items, named prerequisite. A prerequisite graph is a sub-

graph of knowledge graph, which indicates the hierarchical struc-

ture existing among learning items. As shown in directed acyclic

graphs of Figure 1, the nodes of the graph represent learning items

while the arrows from one to another mean that the former is a

prerequisite for the latter, e.g., two digit addition is a prerequisite

for multiplication.

3.2 Problem Formulation
As mentioned above, learning is composed of many learning ses-

sions. In each session, a learner will try to master a specific learning

target T = {t0, t1, ...}, which contains one or more learning items.

The learning items are the nodes on a prerequisite graph G where

the edge represents the prerequisite relation, i.e., (i, j). The tuple
(i, j) indicates that the learning item i is a prerequisite of j. For a
learner who is going to begin a new session, the historical learn-

ing records generated in previous learning sessions are denoted as

H = {h0,h1, ...,hm }. Each record hi = {k, score} contains a learn-
ing item k and the corresponding performance score . Without loss

Exam Exam𝑝1 𝑝𝑛  

𝐸𝑠 𝐸𝑒  

Learning Path

𝑝2 

Figure 2: Illustration of a Learning Session.
of generality, we assume score as a discrete number 0 or 1, where

1 indicates the corresponding item is correctly answered , while

0 stands in the opposite. Our goal is to recommend an optimized

learning path P = {p0,p1, ...pN } containing N items to the learner

sequentially, by which can the learner achieve a greater promo-

tion. Specifically, at step i , a learning item pi is recommended and

the interaction learning record Fi = {pi , scorei } can be observed.

At the end of the learning session, we can calculate the learning

effectiveness EP . After all, the problem is defined as:

Definition 1. (Learning Path Recommendation Problem) Given
historical learning recordsH , a certain learning target T of a learner
and a prerequisite graph G, our task is to recommend a N -length
learning path P step by step that can maximize the effectiveness EP
of the whole learning path. During recommendation, we can observe
a new interaction learning record Fi of each recommended learning
item pi instantly.

4 CSEAL
This section begins with a brief overview of our framework with

the definition of the MDP. The details of CSEAL is then introduced.

4.1 Overview
The target is to learn a policy to recommend tailored learning paths

based on the cognitive structure. We model such sequential path

generation as a decision making problem and treat it as a MDP [2].

The state, action and reward of the MDP are defined as follows:

State. Generating the probability of learning items at each step

is based on the learning target and previous learning records. The

state at step i is represented as the combination of the learning

target T and current knowledge level Si , which are combined and

denoted as statei . Specifically, we use one-hot encoding to signify

the learning target as T = {0, 1}M :

T j =
{

1 if j in the learning target

0 otherwise,
(2)

whereM is the number of nodes in the prerequisite graph G. How-
ever, the current knowledge level can not be observed directly, thus

we need to find a way to retrieve it from the previous learning

records Li−1 including historical learning records H and previous

interaction learning records F0, ...,i−1.
Action. Taking action ai refers to generating the recommended

learning item pi at step i . With the probability of each item as

output, the CSEAL can be viewed as a stochastic policy that gen-

erates actions by sampling from the distribution π (a |statei ;θ ) =
P(a |H ,F0, ...,i−1,T ;θ ), where θ is the set of model parameters.

Reward. After taking the action, a reward signal r is received.
We determine the reward ri at step i keeps to be 0 during learn-

ing session. Once the learning session is completed, the reward is

calculated by Equation (1). Our goal is to maximize the sum of the

discounted rewards from each step i . That is, the return:

Ri =
N∑
i
γ i ri , (3)

where γ is the discount factor, which is usually set to 0.99.
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Figure 3: The overview of our framework.
Generally, our CSEAL model contains three submodules, i.e.,

Knowledge Tracing (KT), Cognitive Navigation (CN), Actor-Critic

Recommender (ACR). As shown in Figure 3, KT retrieves the knowl-

edge level S from previous learning records at each step and CN

selects several candidates based on the prerequisite graph G. With

the learning target and knowledge level composing the state, ACR

determines what to learn next by maximizing the overall gain along

the whole learning path. At the end of the episode, i.e., learning

session, an episode reward will be passed to CSEAL and used in

reinforcement learning stage.

4.2 Kowledge Tracing
Knowledge level of learners does greatly influence the strategy of

recommending learning path. Also it is a key component of state in

MDP, which should be well established. However, learner’s knowl-

edge level is unobservable and evolving. To this end, Knowledge

Tracing is applied to retrieve the implicit knowledge level Si from
previous learning records Li−1 = H ⊕ F0, ...,i−1. We follow the

structure proposed by the original work of Deep Knowledge Tracing

(DKT) [27] and extend an embedding layer which reduces the large

feature space. Figure 4 is a cartoon illustration of the architecture

of this module. Without the loss of generality, we assume scoret in
each record of previous learning records Lt = {pt , scoret } is either
0 or 1. We use one-hot representation to stand for Lt as described
in DKT.

Firstly, an embedding operation is utilized to convert the one-hot

representation of the record into a low-dimensional one. Formally,

for a record Lt , the converted vector ut is expressed as:

xt = LtWu . (4)

Here,Wu ∈ R2·M×d indicates the parameters of the embedding

layer and xt ∈ Rd , where d is the output dimension.

After obtaining the feature representation of a learning record,

KT aims at tracing the knowledge level along the learning records.

An LSTM architecture as described in DKT is then used to map the

input sequence of vectors x1,x2, ...,xN to the output sequence of

hidden knowledge level vectors o1,o2, ...,oN . The hidden state ht
at the t-th input step is updated as following formulas:

it = σ (Wxixt +Whiht−1 + bi),
ft = σ (Wxf xt +Whf ht−1 + bf ),
ot = σ (Wxoxt +Whoht−1 + bo),
ct = ft ct−1 + it tanh(Wxcxt +Whcht−1 + bc ),
ht = ot tanh(ct ). (5)

Meanwhile, by using a fully connected layer to retrieve the knowl-

edge level from o1,o2, ...,oN , vector representation of knowledge

level St ∈ RM can be expressed as:

St = σ (WoFot + bF), (6)

where i•, f•, c•, o• are the input gate, forget gate, memory cell,

output gate of LSTM respectively. W• and b• are learned weight

matrices and biases.

4.3 Cognitive Navigation
The learning items have some inherent semantic structure charac-

teristics, i.e., knowledge structure, which should be maintained to

make sure the paths are logical sequences. Intuitively, dependency

resolution methods [14, 39] can be applied. However, such meth-

ods require clear conditions for the resolution, which is hard to be

satisfied in learning path recommendation due to the complexity of

combination of knowledge level and knowledge structure. Thus, we

focus on quickly selecting the potential candidates. These potential

candidates would not only prevent recommended learning items

from violating the logicality of the path, especially during exploring

(e.g., avoid exploring the effect of recommending calculus to junior

students) but also reduce the large searching space.

With the prerequisite graph under p3 in Figure 3 as an example,

when a learner finishes the learning item 3, he or she is arranged to

review the prerequisites (e.g., item 0, item 1, item 2) or continue to
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preview the the following item 4. We call the just learned item as

“central focus" (i.e., item 3) and those items which can be then possi-

bly selected to learn as “candidates" (e.g., item 0, item 1, item 2 and

item 4). Simply, these candidates can be chosen from the neighbors

of "central focus" which are potential to resolve the dependency

of learning targets, more precisely, reach the learning targets. The

algorithm runs following the steps shown in Algorithm 1.

Algorithm 1 Cognitive Navigation.

Input: central focus C, a prerequisite graph G , learning target T
Output: ∀d ∈ D has a path to T in G and is one of the k-hop neighbors

of C
1: Initialize candidates D = ∅, Q = ∅;

2: add C to D;

3: add successors within k − 1 hop of C to D;

4: add predecessors within k − 1 hop of C to Q ;

5: while Q , ∅ do
6: q ← Q .pop();

7: add q to D ;

8: add neighbors of q to D ;

9: end while
10: for d in D do
11: if d can not reach T then
12: del d from D ;

13: end if
14: end for
15: return D

By setting k as 2, the bottom part of Figure 3 illustrates how

central focus and candidates change with path generating where

the green ones are the candidates of next step. The central focus C at

the first step can be assigned as the last item ofH , which can also be

specified manually or chosen from any nodes without predecessors.

The Cognitive Navigation is well capable to maintain the logicality

of the path during generation. We set k = 2 in following analysis.

4.4 Actor-Critic Recommender
Although we achieve the two parts’ information of the cognitive

structure, there still exists a problem: which candidate item should

be chosen based on the current knowledge level of the learner.

To solve this problem, we use a policy network as the actor to

generate actions among D given by Section 4.3 through sampling

from the distribution π (a |statei ;θ ) and a value network as the

critic to evaluate the state. The value networkV(·;θV ) is used to

estimate the expected return from each state. It is a feed-forward

network whose input is statei = Si ⊕ T , where Si is the current

knowledge level given by Section 4.2 and T is the learning target.

The estimated expected returnVi at step i is computed by:

vi = V(statei ; θV ) = V(Si ⊕ T; θV ). (7)

With a stochastic policy together with a value network, we

apply the actor-critic algorithm [2, 15] to our sequential generation

problem, with the policy network trained using policy gradient at

each step i as:

∇θ = loд π (a |statei ; θ )(Ri − vi ), (8)

and the value network trained by optimizing the distance between

the estimated value and actual return:

Lossvalue = ∥vi − Ri ∥22 . (9)

A too fast convergence of the value network may result in the

slow convergence or even no-convergence of policy network. We

therefore raise a policy enhanced loss item to address this issue,

and the loss function is thus formulated as:

Loss =∥V(statei ; θV ) − Ri ∥22 + α · −loд π (a |statei ; θ )(Ri − vi )
+ β · −loд π (a |statei ; θ )Ri ,

(10)

where α and β are the hyper-parameters.

5 EXPERIMENTS
In this section, we first introduce the dataset. Then, we train agents

of reinforcement learning models and evaluate recommended learn-

ing paths in two kinds of environments. At last, the performance

of our framework is compared with several baselines.

5.1 Dataset Description
The experiment dataset is from junyiacademy.org and collected

by Chang et al. [4]. The dataset includes a knowledge graph and

more than 39 million learners’ logs. Each record in the learners’

log contains the information of a learner for one exercise, i.e., user

id, concept name, session id, correction and time stamp. The ex-

ercise can be mapped to a node in the knowledge graph based on

the concept name. And each exercise and concept is one-to-one

correspondence
1
. Those records with the same session id repre-

sent that the practiced data contributed by the same learner in one

session. Grouped by session id and sorted by time stamp, session

learning records can be extracted (e.g., {(representing_numbers, cor-
rect), (division_4, wrong), (conditional_statements_2, wrong), (con-
ditional_statements_2, wrong)}). We further extract a prerequisite

graph from the knowledge graph. The prerequisite graph contains

several edges, e.g., (one_digit_addition, two_digit_addition) stands
for the linkage between the node one_digit_addition and the node

two_digit_addition where the former is the prerequisite of the latter.

We delete some loop in order to keep the graph to be a Directed

Acyclic Graph (DAG), which indeed is the knowledge structure.

The preprocessed dataset are detailed in Table 1 and Figure 5. Ob-

served from the data, three key notes should be emphasized: (1) The

length of more than 75% sessions are longer than 6; (2) more than

75% sessions contain one more concepts; (3) the median of prac-

tice frequency on one concept in one session is 8. It conclusively

infers that a concept in one session may be practiced repeatedly

1
In some works the exercise and concept may be one-to-many correspondence [7, 27],

while others has the same correspondence realtionship as ours [5, 6].



Table 1: The statistics of the dataset.
Statistics Value

number of learners 247,548

number of sessions 525,062

number of learner logs 39,462,202

number of exercises in learner logs correctly answered 21,460,360

median of exercises in one session 21

median of knowledge concepts in one session 3

median of practice frequency on a concept in one session 8

number of nodes in graph 835

number of links in graph 978
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Figure 5: Distributions of Sessions.
and some relevant concepts are learned simultaneously. In other

words, during a learning path of the session, multiple concepts and

the related ones contribute to the final learning result.

5.2 System Simulators
A key problem is that existing realistic data only contains static

information, i.e., several exercise sequences and whether a certain

exercise is answered correctly. This information can not be directly

employed to analyze whether an exercise not included in a certain

exercise sequence can be answered correctly. Thus the realistic data

can not be directly used as the environment to evaluate the learning

paths (e.g. calculating the promotion) or to train the agents (e.g.

CSEAL and other baselines) in reinforcement learning models. It is

therefore important to construct a simulator as the environment

which can model qualitative development of knowledge and the

performance on a certain learning item. More precisely, at each

episode, the environment can simulate a learner whose knowledge

level can be changed by the recommended path. The knowledge

levels of the learner will be measured by the proposed environment

at the beginning and the end of the learning session. Hence, Es , Ee
and Esup are obtained by the simulators. The promotion of the level

(i.e, EP ) therefore can be calculated. We refer the ideas constructing

simulators in state-of-art methods of not only education [6, 33]

but also other areas, like transportation [16, 35], e-commerce [12].

Following these works, we raise two ways to build the simulators.

Knowledge Structure based Simulator(KSS). According to

previous works [6, 27, 33], we design a simulator where the pattern

of qualitative knowledge development fits perfectly for knowledge

structure. More specifically, in this simulator, the masteries on

prerequisites do affect the successors, e.g., poor mastery of two digit
addition impairs the learning effectiveness ofmultiplication. To scale
the relation of mastery and learner performance, we use a widely

applied method in education, Item Response Theory (IRT) [20, 21].

The 3-parameter logistic model of IRT is formulated as:

P(θ ) = c + 1 − c
1 + e−Da(θ−b)

, (11)

where D = 1.7 is a constant; c is a pseudo-guessing parameter; θ is

the mastery of the learner on a certain learning item; a is the item

discrimination; b is the item difficulty; and P(θ ) is the probability

Table 2: Characteristics of the comparison methods.
Knowledge Level Knowledge Structure

KNN × ×
GRU4REC × ×
MCS-10 ✓ ×
MCS-50 ✓ ×
DQN ✓ ×

CSEAL-NCN ✓ ×
CN-Random × ✓

Cog ✓ ✓
CSEAL ✓ ✓

of correctly answering the corresponding exercise which is used

in computing scorei for each pi and calculating the reward. The

relevant parameters and evolving rules of θ are designed by experts

in education which makes KSS a rule-based expert system.

Knowledge Evolution based Simulator(KES). We propose

a data-driven method to construct a simulator which can better

approximate learners’ knowledge level and be abbreviated as knowl-

edge evolution. We train a DKT model based on the existing data.

The input of DKT is a record data, and the output, Si , is the current
knowledge level of the learner. Then whether the next exercise

can be answered correctly is determined by this knowledge level.

More precisely, the probability of an exercise answered correctly

is treated as its mastery value. For example, the probability of an

exercise belonged to i being answered correctly is Si . The proba-
bility will be used to compute scorei for each pi and calculate the

reward. To be noticed, KES requires a learning record to initialize

the learner’s original knowledge level.

It’s should be noted that neither of these two simulators is perfect.

Each of them has its own limitation, i.e., the rule-based knowledge

evolution in KSS possibly differs with the real-world and KES has

the problem in describing the relations of knowledge structure. As

these two simulators are complementary, the proposed approach

should outperform others in these diverse environments at the

same time to be proved robust. During simulation, the learners

mastering all target items at the beginning will be skipped.

5.3 Experimental Setup
5.3.1 Data Partition and Preprocessing. The mentioned-above two

simulators are applied as the environment for evaluating and on-

line training. Due to their different characteristics, different data

partition and preprocessing for them are applied.

KSS. As a rule-based simulator, KSS does not require any extra

data to initialize it. Inspired by previousworks [6, 27, 33], we employ

KSS to generate the off-line dataset, i.e., dataOff, which is then used

to train baselinemethods or Knowledge Tracingmodel in the agents.

The dataset dataOff has 4,000 records with a max-length of 50.

Without loss of generality, we randomly divide the dataset dataOff
into training, validation, and testing sets by the proportion of

80/10/10. The prerequisite graph in KSS contains 10 nodes and 12

links. The learning targets are randomly selected from the nodes.

KES. As a data-driven simulator, KES requires a certain amount

of data for training DKT model so that we introduce the learning

records mentioned in Section 5.1 as dataSim. Furthermore, we ran-

domly divide dataSim into two parts: dataOff and dataRec by the

proportion 50/50. The details of three datasets are listed as follows:

(1) dataSim is utilized to train the DKTmodel in the environment;



Table 3: Overall results of EP .
KSS KES

KNN 0.000700 0.257919

GRU4Rec 0.007727 0.201219

MC-10 0.110577 0.002236

MC-50 0.108636 -0.005103

DQN 0.100610 0.002688

CSEAL-NCN 0.222363 0.003354

CN-Random 0.272784 0.138526

Cog 0.164128 0.166560

CSEAL 0.346883 0.405823

(2) dataOff is used to train baseline methods and Knowledge

Tracing model in the agents, which is the same as in KSS;

(3) dataRec is to retrieve the initialization records and learning

targets. For each session record in dataRec, the first 60% of the data

is applied to initialize the original learner’s knowledge level in DKT.

The middle 20% is masked and the lasting 20% is reserved as the

learning target of this session.

We then divide each of those above datasets (i.e., dataDKT,
dataSimDKT and dataRec) for training, validation, and testing by

the proportion of 80/10/10.

5.3.2 Framework Setting. Due to the different number of learning

items in two simulators where 10 in KSS (a small number learning

items scenario) and 835 in KES (a large number learning items

scenario), different settings are set as follows:

• KSS: The embedding dimension used in DKT is 15, hidden di-

mension of LSTM is 20 while the dimension of output layer is the

same as the number of learning items, i.e., 10. The dimensions of

two layers in value-policy network are 128 and 32 respectively.

• KES: The embedding dimension used in DKT is 600, hidden

dimension of LSTM is 900 and the dimension of output layer is the

same as the number of learning items, i.e., 835. The dimensions of

two layers in value-policy network are 1,024 and 512 respectively.

The DKT embedded in environment and agent shares the same

value of dimension parameters but diverse training data.

5.3.3 Training Details. We initialize parameters in all networks

with Xavier initialization [10], which is designed to keep the scale

of gradients roughly the same in all layers. The initialization fills

the weights with random values in the range of [−c, c] where
c=

√
3

nin+nout . nin is the number of neurons feeding into weights,

and nout is the number of neurons the result is fed to. We set mini-

batches as 16. We also use dropout [30] with the probability 0.2 for

DKT embedding and each output in value-policy network and 0.5

for LSTM output to prevent overfitting and gradient clipping [24]

to avoid the gradient explosion problem. Some of our codes are

available in https://github.com/bigdata-ustc.

5.4 Baseline Approaches
In order to demonstrate the effectiveness and robustness of our

framework, we compare it with following methods.

• KNN: KNN [9] finds a predefined number of learners nearest

to the new learner by comparing the cosine distance of their

learning paths, and decides what to learn next for the new learner.

• GRU4Rec: GRU4Rec is a classical session-based recommenda-

tion model [11]. The input of the model is the sequence of the

session while the output is the probability distribution of learning

items which appear in the next step.

GRU4Rec DQN NC-Random Cog CSEAL
0.846

1.976

3.107

4.237
Score KSS

GRU4Rec DQN NC-Random Cog CSEAL
0.846

1.976

3.107

4.237
Score KES

Figure 6: Overall results of human study.
• MCS: Monte Carlo Search (MCS) [22] combined with KT is a

searching method where KT predicts the promotion of each

search path as the index for ranking.

• DQN: Some works [6, 33] have proposed to leverage reinforce-

ment learning for this problem, but these works require abun-

dant human domain knowledge to design the transition matrix

in MDP and an exact initial state, which is not practical. Thus KT

model and Deep Q Leaning replace the states in MDP and simple

q-learning separately.

• CN-Random: The recommended item is randomly picked from

the candidate items selected by CN, and this baseline is treated

as a simple knowledge structure based approach.

• Cog: The recommended item is weighted-randomly picked from

the candidate items selected by CN, where the weight of the item

is inversely proportional to the mastery measured by KT model.

• CSEAL-NCN: It is similar with our proposed model but without

the Cognitive Navigation system.

For better illustration, we summarize the characteristics of these

models in Table 2. All deep learning involved models are imple-

mented by MXNet and trained on a Linux server with four 2.0GHz

Intel Xeon E5-2620 CPUs and a Tesla K20m GPU.

5.5 Evaluation Metrics
Learning path recommendation focuses on the learning effective-

ness rather than the selection of the learner (i.e., being practiced by

the learner) or the correction of one exercise, which is essentially

different from the general recommendation problem (e.g., merchan-

dise recommendation, movie recommendation) [41]. Because of

this issue, classical metrics like precision, recall and NDCG can not

be applied. However, the quantification of learning effect is not very

clear and still a challenge [29]. Previous works use either the logical-

ity of sequence [41] or the promotion of knowledge level [6, 29] (i.e.,

EP ) as the quantitative metric to evaluate the learning path. For

more comprehensive results, we use both logicality and promotion

as metrics for evaluation. We validate the performance of models

particularly based on the promotion EP given by simulators and

the logicality evaluated by human experts.

5.6 Experimental Results
5.6.1 Promotion Comparison. The length of recommended learn-

ing paths is set consistently to be 20 according to the median of

exercises in one session estimated in Table 1. Extensive experiments

on the length of path will be conducted in Section 5.6.4.

Table 3 shows the average EP according to Equation (1) of

all models. According to the results, obviously CSEAL performs

best. Specifically, by modeling the knowledge levels, it beats CN-

Random, GRU4Rec and KNN. By applying Cognitive Navigation

on the knowledge structure, it achieves the better performance

than DQN, MC-10, MC-50 and CSEAL-NCN. By well combining
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Figure 7: Expected return in different learning epochs with
or without Cognitive Navigation.
the knowledge level and the knowledge structure, it beats Cog.

Then, in KSS, the methods with knowledge structure have better

performance than the ones without knowledge structure which

indicates that the knowledge structure contributes a lot to the effec-

tiveness of recommended learning paths. Last but not least, in KES,

GRU4Rec without explicitly modeling the knowledge level and the

knowledge structure outperforms other methods except CSEAL.

These observations infer that exploiting cognitive structure with the

comprehensive consideration of knowledge level and knowledge

structure for adaptive learning is necessary but challenging.

5.6.2 Experts Comparison. Inspired by previous works [41], we

invite six experts in education area who are familiar with learning

path scheduling to evaluate the results of various methods based

on their own logicality. Experts rate every learning path with a

score from 1 to 5 and a higher score represents the higher logi-

cality. Experts are asked to rate the 100 selected cases. Every case

contains the historical learning record, the learning target and the

recommended learning path. Four typical baselines, GRU4Rec, DQN,

CN-Random and Cog, differing in whether having knowledge level

or knowledge structure are selected as the comparison methods.

As can be seen in Figure 6, CSEAL outperforms all baselines.

In other words, recommendations from CSEAL are in the most

accordance with logicality of knowledge structure. Besides, it is

observed that the methods with the Cognitive Navigation achieve

a higher scores in experts evaluating, which indicates that the

Cognitive Navigation helps to maintain the logicality of learning

paths. Furthermore, two interesting phenomena draw our attention:

(1) the scores of different experts for the same case sometimes are

quite different; (2) compared with the former result of EP , we
notice some models with higher score of logicality may not achieve

better promotion. From these observations, the exact definition of

logicality is not easy to be expressed and captured but varies in

different people and it is additionally not equal to the promotion.

5.6.3 Impact of Knowledge Structure. Figure 7 presents the ex-

pected return obtained in each learning epoch of CSEAL and the

variant CSEAL-NCN which does not have Cognitive Navigation.

Notably, CSEAL is able to utilize the knowledge structure to obtain

the optimal policy in a stable manner with the help of Cognitive

Navigation. We can see CSEAL-NCN obtains a better policy in KSS

than in KES because of the smaller searching space (i.e, smaller

graph) in KSS. These issues indicate the knowledge structure can

help reduce the searching space in reinforcement learning.

5.6.4 Performance with Different Length. As shown in Section 5.1,

the median of the length of a session is 21, from which we suspect

that the most suitable learning length in KES should be near to it.

We select the same methods in Section 5.6.2 to verify our suspicion,
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Figure 8: Influence of learning path length.
and an extensive experiment is also performed on KSS. Figure 8

shows the results. We can see that, in KSS, EP growswith the length

increasing because KSS is made by rules which have no limitation

on length. While the effectiveness can hardly be promoted for all

methods after 20 in KES, which verifies our suspicion.

5.6.5 Case Study. We give an example with visualization in Fig-

ure 9. In the example, a latest learning record of a learner who

wants to learn the learning item 642, completing_the_square_1, is
{(642, 0), (642, 0), (642, 0), (642, 0), (642, 0)} which illustrates that the

learner possibly has some trouble in learning the target. To help this

learner, different methods give different learning paths. For better

understanding, we draw the subgraph containing three-hop neigh-

bors of the target in Figure 9. GRU4Rec recommends a path where

the learner continuously directly learns the target which he or she

already seems to be stuck with. Cog recommends a path, where

most learning items are far away from the target. Our method,

CSEAL, encourages the learner firstly to review the prerequisite

learning items and then go back to learn the target with reviewing

the prerequisites. This visualization hints that CSEAL provides a

more efficient and logical learning path for the learner to master

the learning target.

6 CONCLUSIONS
In this paper, we proposed a novel recommendation framework

for adaptive learning, named CSEAL. Specifically, based on the

historical learning records, learning target and prerequisite graph,

we firstly used a Knowledge Tracing model to retrieve the knowl-

edge level of each learner. Then, we applied a Cognitive Navigation

system to maintain the knowledge structure of learning items. Fi-

nally, we designed the Actor-Critic Recommender to dynamically

provide learning items during a learning cycle. The experimental

comparisons with seven baseline methods on two Simulators (i.e.,

KSS and KES) with diverse scenarios and human experts clearly

demonstrated both the effectiveness and robustness of our frame-

work. As a general framework, each step of CSEAL may be further

improved in the future.
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