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Abstract—Concept map is an useful tool to help people
organize and improve knowledge. Particularly in educational
domain, it is beneficial for students and teachers to improve the
learning and teaching quality. Traditionally, manual educational
concept maps, provided by teachers, are quite time-consuming
and limited to teachers’ experience. Thus, it is meaningful to
automatically construct high-quality concept maps. However,
existing data-driven solutions only focus on either separate
data source or single pedagogic relationship, which are not
sufficient to satisfy actual demands. To this end, we propose
a novel framework, named Extracting Multiple Relationships
Concept Map (EMRCM), to construct multiple relations concept
maps from Multi-source Data. Specifically, we design various
targeted evidences to explore diverse information of multi-
source data from different perspectives. Then, we employ three
classic classifiers to bulid the predictive model for extracting key
concepts and multiple concept relationships using the proposed
evidences. We create a real dataset for empirically studying this
problem. Extensive experiments on a real-world dataset show the
effectiveness of our method.

Index Terms—Educational concept map; Multi-source data;
Multiple relationships;

I. INTRODUCTION

Concept map, composed of various concepts and their

relationships, is a widely-used graphical tools for organizing

and representing knowledge [1]. Among diverse concept maps,

educational concept maps concentrate on the pedagogic rela-

tionship between concepts. Thus, it is beneficial for students to

organize and obtain knowledge of a subject. Figure 1 shows

a real-world example of a concept map in the mathematics

subject. Traditionally, concept maps were provided by teachers

[2]. However, this approach is quite time-consuming and

limited to teachers’ experience. Fortunately, as the E-learning

systems are becoming more and more widespread, which

provide abundant question logs of examines and the content

of textbooks, data-driven solutions can be applied to this task

for automatically constructing high-quality concept maps.

There are some efforts in constructing relational concept

maps in the literature. e.g., extracting Wikipedia concepts

prerequisite relationships [3], [4]. Generally, the prior methods

mainly focused on extracting the prerequisite relationship

between concepts from single teaching materials. However,

it still exists many unsolved problems due to the following

considerations. First, to accurately extract concept maps, it
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Fig. 1. The illustrative example of a concept map in the mathematics area.

is improper to concentrate on a single data source. Second,

with thousands of key concepts describing different knowl-

edges, the implicit relationship between concepts is much

more complicated. In addition to construct learning sequence

between concepts, it is also necessary to construct the concept

closeness relationship [5]. To this end, we believe that it is

necessary to extracting multiple relationships concept maps

from multi-source data. Unfortunately, there are many techni-

cal and domain challenges along this line. First, multiple data

sources contain diverse data types with different structures.

So it is necessary to develop targeted treatments for each data

source. Second, each data source contains multi-dimensional

information, e.g., textbooks have both content information

and structural information. Hence, it is essential to extract

evidences from multiple types of views. Third, since the

implicit relationship between concepts is convoluted, we have

to design different methods for different kinds of relationships.

To address the challenges mentioned above, in this paper,

we develop a novel framework, named Extracting Multiple

Relationships Concept Map (EMRCM), to construct multiple

relations concept maps in large-scale online education systems

by exploring different kinds of information from multi-source

data. First, we aim at utilizing three different types of data to

construct concept maps from different aspects, i.e., student

question logs for private data, textbooks for authoritative

data and Wikipedia for public data. Then, we attempt to

figure out what kinds of information in multi-source data can

be helpful to construct concept maps. Next, based on the

meaningful features proposed above, we employ three different
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binary classifiers to extract key concepts and build multiple

relationships. Finally, we create a real dataset for empirically

studying this problem1. Extensive experiments on a real-world

dataset show the effectiveness of our method.

II. RELATED WORK

In this section, we first introduce the general knowledge

graph. Then, we focus on the educational concept maps

construction.

Knowledge Graph. A knowledge graph organizes knowl-

edge by linking entities with their relationships. It has been

studied for a long time in the field of knowledge engineering.

Prior work on the problem of identifying knowledge graphs

inferred knowledge bases from a collection of noisy facts

[6]. Recently, with the advent of Linked Open Data sources

like DBpedia [7] , and by Google’s announcement of the

Google Knowledge Graph in 20122, representations of general

world knowledge as graphs have attracted much attention

again. There are various ways of building such knowledge

graphs. They can be edited in a community-based way like

Wikidata [8], or extracted from large-scale, semi-structured

web knowledge bases such as Wikipedia [7] or YAGO [9].

In summary, relational facts are considered among existing

word entities (e.g., “Trump”) with a real-world relationship

(e.g., “president”) while our work pays more attention to vir-

tual concepts (e.g., “equation”) and the learning relationships

between these concepts.

Concept Maps Construction. In our framework, one of

the most important steps is to extract key concepts, and this

is related to keyphrase extraction. This task aims at finding

a small number of phrases to express the main topics of a

document. TextRank [10] built an undirected and unweighted

graph of the nouns or adjectives in a document and connected

those that co-occur within a window of W words. Topic-based

clustering methods such as KeyCluster [11] and TopicRank

[12] aimed at extracting keyphrases that cover all the main

topics of a document utilizing only nouns and adjectives and

forming noun phrases that follow specific patterns. Talukdar

et al. [3] and Liang et al. [4] studied prerequisite relationships

by using Wikipedia articles. Based on some textbook features,

Wang et al. [13] proposed a method to construct a concept

map from textbooks, which jointly learns key concepts and

their prerequisite relations.

However, these methods only consider either the teaching

materials or student assessment data to extract prerequisite

relationship, while our work extracts multiple relationships

from multi-source data.

III. EMRCM FRAMEWORK

In this section, we first give some preliminary definitions

and then introduce technical details of EMRCM framework.

Figure 2 demonstrates the workflow overview of our approach.

1https://github.com/xqhuang141/EMRCM-DATASET
2http://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-

things-not.html
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Fig. 2. An overview of the EMRCM framework.

A. Problem Definition

Definition 1 (Student question logs corpus). Student question

logs L contains the scores and time costs of students on test

questions, as well as the content, analysis and answers of

each question. A question-answered record is denoted by a 5-

elements tuple (u, q, suq, tuq, Conq) which means that student

u ∈ U answers question q ∈ Q with the score suq and the

answer time tuq . The score suq = 1 if the student u answers

the question q correctly, otherwise, suq = 0. Conq is the texts

of question q which includes the question content Conq† and

analysis Conq‡ .

Definition 2 (Subject textbooks corpus). Textbook corpus is

composed by n textbooks in the same subject area, denoted as

S = {B1, · · · ,Bi, · · · ,Bn}, where Bi is one textbook. Each

textbook B can be further represented as a subchapter set

B = {C1, · · · , Ci, · · · , C|B|}, where Ci denotes the i-th sub-

chapter in book B. Finally, Each subchapter C contains titles

and several sentences, denoted as C = {ct, s1, · · · , si, · · · , si},

where si is the i-th sentence of the subchapter.

Definition 3 (Wikipedia corpus). Wikipedia is the largest

encyclopedia in the world and it contains massive pages

denoted as P =< p1, · · · , pi, · · · , pm >, where p1 is the i-th
page. Each page p = (pt, pabs, pcon) , where pt, pabs, pcon is

the title, abstract and content in page p.

Problem Statement (Construct concept maps from multi-
source data):

Given. Candidate concept set C, question logs corpus L,

subject textbooks corpus S and Wikipedia corpus P;

Output. A concept map G = {(w1, w2, r1, r2)|w1, w2 ∈
W, r1, r2 ∈ R}. W is the key concepts set. R = {0, 1}
mean that r1 = 0&&r1 = 0 when w1 and w2 have no

relationship; r1 = 1&&r2 = 0 when w1 and w2 have

prerequisite relationship; and r1 = 0&&r2 = 1 when w1

and w2 have collaboration relationship; r1 = 1&&r2 = 1
is not exist since w1 and w2 could have at most one type of

relationship.

B. Extraction Evidences for Concept Maps Construction

In this section, we study how to mining multiple data to

extract and combine evidences for concept maps construction.

1) Question Logs Features: Question logs corpus in exer-

cises provides an important indication for constructing concept

maps. First, a test question is designed to measure a students’s

1109

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 16,2020 at 13:19:01 UTC from IEEE Xplore.  Restrictions apply. 



Wikipedia Coupus

IN/OUT CN WAD
NGD RefD

TM CM CCo
WEcs WEed

Question Logs of Examine

CMIE CDD
Qcad SER

Textbooks Corpus

TSF
GSF

Key Concept
Extraction

Prerequisite Relationship
Extraction

Collabortion Relationship
Extraction

Evidences Extraction

Concept Map Construction

Classifiers

Fig. 3. An overview of evidences in concept map construction.

knowledge or skill3. Thus, there exist some key concepts

in question content [14], [15]. Second, the difficulty of the

question is closely related to the key concept in the question

[16], [17]. Third, there are many concepts in the analysis of the

questions, which is more likely to be the prerequisite of the

concept in the questions content. Finally, student exercising

records is also a good source of information [18], [19].

Therefore, in order to effectively utilizing the question logs

corpus, we propose four novel features to help us construct

the concept maps.

Content mention in questions. If content w is frequently

mentioned by question content, then w is more likely to be a

key concept. Based on this assumption, we propose this feature

to extract key concepts. we define CMIE(w) ∈ [0, 1] as the

normalized count mentioned in question content, as follows.

CMIE(wi) =
nwi

max{nw1 , · · · , nwi , · · · , nw|W|}
,

where nwi
is the number of the concept wi appeared in

question content.

Concept difficulty distance. Generally, the question diffi-

culty refers to the percentage of the students answering the

question correctly4. The difficulty of the question q is denoted

as difq . The mean concept difficulty of the concept wi is the

average difficulty of all questions which contain the concept

wi, defined as follows.

CD(wi) =

∑
q∈L f(wi, Conq†) · difq

|L| .

where f(wi, Conq†) indicates the term frequency of the

concept wi in question content Conq† , which reflects how

important the concept wi is in question q. The concept

difficulty distance of the concept pair 〈wi, wj〉 is calculated

as follow.

CDD(wi, wj) = CD(wi)− CD(wj).

3https://www.merriam-webster.com/dictionary/test
4https://www.assess.com/classical-item-difficulty-p-value/

Question content analysis distance. Given a concept pair

〈wi, wj〉, we propose the question content analysis weight to

quantify the concept wj mentioned in the question analysis

record of concept wi, defined as follows.

Qcaw(wi, wj) =

∑
q∈L f(wi, Conq†) · r(Conq‡ , wj)∑

q∈L f(wi, Conq†)
,

where r(Conq2 , wj) denoted whether concept wj appears in

question analysis Conq2 . Naturally, if wi appears in question

content and wj appears in question analysis, Qcaw(wi, wj)
tends to be larger, and Qcaw(wi, wj) ∈ [0, 1]. The question

content analysis distance(Qcad(wi, wj)) is defined as follows.

Qcad(wi, wj) = Qcaw(wj , wi)−Qcaw(wi, wj).

Student exercising records. Before introducing this fea-

ture, let us define Q(u) as the question set of student u and

I(Q,wi) as the question indexes that containS concept wi in

question set Q. For example, if wi appears in the first and

third question of Q, then I(Q,wi) = {1, 3}. In the answer

sequence of student u, if the student makes a mistake in

question with concept wi, then the student is more likely

to answer the wrong question with concept wj . Based on

this observation, for a given concept pair 〈wi, wj〉, we define

S(Q) = {(i, j)|i ∈ I(Q,wi), j ∈ I(Q,wj), i < j} Suppose

the concept wi is the prerequisite of concept wj . we calculate

the feature of student exercising records as follows.

SER(wi, wj) =

∑
u∈U

∑
(i,j)∈S(Q) sui − suj

|U | ,

where sui is the score of the student u in question i.
2) Textbook Hierarchical Structure Features: The table of

contents (TOC) and the grade of the textbook indicate inher-

ent relationships between concepts since teacher’s curriculum

planning is based on this information. In this section, we define

two textbook hierarchical structure features, including TOC

structure feature and grade levels of concepts feature, to help

us infer relationships of concepts.
TOC structure feature. In real-world scenarios, there is no

clear relationship between the chapters of the textbook. On the

contrary, the subchapter in the chapter contains rich informa-

tion for extracting concept relationships. For example, there

is no clear relationship between the first chapter “algorithm”

and the second chapter “statistics” in the second grade of high

school textbook. However, the first subchapter “Probability of

random events” and the second subchapter “classical models of

probability” in chapter “probability” have a strong prerequisite

relationship. Based on this line, we define the TOC structure

feature as follows.

TSF (wi, wj) =

∑
B∈S

(∑
C∈B f(wi, C)− f(wj , C)

)
/|B|

|S| ,

where f(wi, C) is the subchapter of chapter C which contains

the concept wi.
Grade structure feature. Grade structure feature is similar

to the TOC structure feature but focuses on the grade level.

GSF (wi, wj) =

∑
B∈S f(wi,B)− f(wj ,B)

|S| ,

where f(wi,B) is the subchapter of textbook B which contains

the concept wi.
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TABLE I
THE STATISTICS OF MATHEMATICS STUDENT LOGS DATASET.

statistics Orignial Pruned
# of records 1635976 1600416

# of exercises 1583991 1347538
# of students 19903 17381

Avg. exercises per student 82.2 92.1
Avg. concepts per question content \ 14.1
Avg. concepts per question analysis \ 23.2

3) Concept Semantic Relatedness Features: Given text-

books contents and Wikipedia corpus, we learn appropriate

representations for concepts. To get a low-dimensional, con-

tinuous and dense semantic representation, we learn concept

word embeddings [20] on textbooks contents and Wikipedia

corpus. Let us denote vwi
as the vector of the concept wi.

Based on this representation, we define the concept semantic

relatedness features as follow.

Title match. Title is a summary of the content of the

subchapter, indicating the main points in the subchapter. If

a concept appears in the title, it is likely to be a key concept.

Given a concept wi and subchapter title ct,

TM(wi, ct) =

{
0 if wi is in ct

1 Otherwise
.

Concept match. Given a concept pair 〈wi, wj〉, if the

concept wi appears in the concept wj , it is more likely

that wi has a prerequisite relationship with wj . Generally, if

wi ∩ wj �= ∅, it seems that they have a relationship.

CM(wi, wj) =
‖wi ∩ wj‖

max{‖wi‖, ‖wj‖} .

Concept co-occurrence. Count the co-occurrences of two

concepts existing in a sentence from either a book subchapter

or a Wikipedia page.

CCo(wi, wj) =

∑
B∈S

∑
C∈B

∑
s∈C r(s, wi) · r(s, wj)∑

B∈S
∑

C∈B
∑

s∈C r(s, wi)
,

where r(s, wi) ∈ {0, 1} is an indicator of whether concept wi

appears in sentence s.

Word embedding cosine similarity. Given a concept pair

〈wi, wj〉, semantic relatedness of two concepts can be reflected

by their cosine similarity in the vector space.

WEcs(wi, wj) =
vwi · vwj

‖vwi‖ ·
∥∥vwj

∥∥ .
Word embedding euclidean distance. The euclidean dis-

tance of the concept wi and the concept wj in the vector space.

WEed(wi, wj) =

√√√√ N∑
k=1

(
vwik − vwjk

)2
.

4) Wikipedia links features: Besides the information de-

scribed above, Wikipedia which contains millions of page and

page links are also very useful in detecting key concepts and

concept relatedness [4].

In/Out degree for concept. This feature count In/Out

Degree of the Wikipedia page for the concept wi and the

concept wj . define as In(wi), Out(wi), In(wj), Out(wj).
Common neighbors of concept pair. The number of the

common neighbors of concept pair 〈wi, wj〉.
CN(wi, wj) =

Out(wi) ∩Out(wj) + In(wi) ∩ In(wj)

max{Out(wi),Out(wj)}+max{In(wi), In(wj)} .

TABLE II
THE STATISTICS OF TEXTBOOKS DATASET.

statistics Elementary Middle High
# of textbooks 12 6 8

# of subchapters 104 95 85
# of pages 1,400 1,093 1,237

# of key concepts 325 294 473
# of labeled pairs 1,576 1,374 962

# of prerequisite relations 258 208 352
# of collaboration relations 168 428 320

Wikipedia abstract definition. Concept wi is likely to be

wj’s prerequisite if wi is used in wj’s Definition.

WAD(wi, wj) =

{
1 if wi appears in wj’s definition

0 Otherwise
.

Common normalized google distance. We compute the

normalized google distance (NGD) of two concepts based on

their Wikipedia links [21]. Define as follows.

NGD(wi, wj) =

max(log | In(wi)|, log | In(wj)|)− log | In(wi) ∩ In(wj)|
logN −min(log | In(wi)|, log(wj)|) .

Reference distance. Liang et al. [4] proposed a new metric

to measure the prerequisite relationships between concepts. If

most related concepts of wi refer to wj , then wj is more likely

to be a prerequisite of wi.

RefD(wi, wj) =

∑N
n=1 r (cn, wj) · w (cn, wi)∑N

n=1 w (cn, wi)
−

∑N
n=1 r (cn, wi) · w (cn, wj)∑N

n=1 w (cn, wj)
.

C. Concept Map Construction

There are many different kinds of classifiers that can be

used in construct concept maps. Followed by Pan et al. [22],

we employ three widely-used binary classifiers i.e.,Logistic

Regression (LR), SVM with linear kernel (SVM) and Ran-

dom Forest (RF) using different feature proposed in previous

subsection to construct concept map. Specifically, as shown

in Figure 3, we apply three novel classifier to extract concept

map.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to demon-

strate the effectiveness of our method.

A. Experimental Dataset

In order to validate the efficiency of our features, we

manually construct concept maps using three sections math-

ematics textbooks and student question logs which contains

elementary, middle and high school. To the best of our

knowledge, there is no public dataset for mining concept maps

in textbooks which contain student question logs. we create the

experimental data sets through a three-stage process.

The experimental dataset supplied by iFLYTEK Co., Ltd. is

collected from Zhixue5, a widely-used online learning system,

which provides senior high school students with a large

5http://www.zhixue.com
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Fig. 4. Key concepts extraction and Prerequisite relationship extraction performance.

exercise resources for exercising To make sure the reliability

of the experimental results, we filter the students that did less

than 20 exercises and the exercises that no students have done.

Table I shows the statistics of the dataset before and after

preprocessing.

Then, for mathematics textbooks, we downloaded mathe-

matics electronic textbooks for elementary, middle and high

schools from the Internet, and then converted them to “.txt”

format using the OCR tool. We manually labeled key concepts

for each textbook, followed by Wang et al. [13], 1) Extract

all Wikipedia concepts that appear in each book chapter. 2)

Given a concept wi, we select it as a candidate concept if

T itlematch(wi, tw) = 1 where tw is the title of subchapter,

or wi is ranked within top-20 among all concepts based on

word embedding cosine similarity (WEcs) feature. 3) Label the

candidates as “key concept” or “not key concept” and obtain

a set of key concepts in this area.

Finally, we manually annotated the relationships among the

labeled key concepts. For each concept pair 〈wi, wj〉, we

manually labeled them as “wi is wj’s prerequisite”, “wj is

wi’s prerequisite”, “wi and wj has collaboration relationship”

or “no relationship”. Table II shows characteristics of the

datasets. For each dataset, three education experts with cor-

responding background knowledge were asked to label the

data. We take a majority vote of the annotators to create

final labels. We achieve an average 85% correlation for key

concepts labeling task, an average 71% correlation for the key

concept prerequisite relationships labeling task and an average

81% correlation for the key concept collaboration relationships

labeling task.

As shown in Table II, there are much fewer positive in-

stances than negative instances, so we balance the training

set by oversampling the positive instances [23]. In our ex-

periments, we employ 3 different binary classifiers, including

Logistic Regression (LR), SVM with linear kernel (SVM) and

Random Forest (RF). We use precision (P ), recall (R), and

F1-score (F1) to evaluate the EMRCM.

B. Key Concept Extraction Evaluation

1) Baseline Approaches: To investigate the model effec-

tiveness, we compare the performance of our algorithm with

several key concept extraction models, including TextRank

[24], S-KCE [13] and W-EMRCM. Question log features are

not used in W-EMRCM.

2) Performance Comparison: Figure 4 shows the perfor-

mance of key concept extraction on three datasets. We find

that Random Forest beats other classifiers, with best F1 across

TABLE III
COLLABORATION RELATIONSHIP EXTRACTION PERFORMANCE

DataSet Method Pre Rec F1

Elementary

SVM 0.732 0.756 0.744
LR 0.786 0.725 0.754
RF 0.815 0.803 0.810

Middle

SVM 0.694 0.712 0.703
LR 0.729 0.703 0.716
RF 0.773 0.788 0.780

High

SVM 0.728 0.746 0.737
LR 0.766 0.714 0.739
RF 0.784 0.812 0.798

all three datasets. Moreover, our method with each classifier

performs better than all other baselines. The results indicate

that our feature can make full use of textbooks and question

records. Compared with our method, W-EMRCM achieves

high recall but low precision. This is because some key

concepts may not appear in question content. But as long as

it appears, it is more likely to be a key concept.

C. Prerequisite Relationship Identification Evaluation

1) Baseline Approaches: To investigate the model effec-

tiveness, we compare the performance of our algorithm with

several prerequisite relationship extraction models, including

HPM, RefD [4], SRI [13] and PRLM [22]. For HPM, we

adopt the 10 lexico-syntactic Patterns used by [13] to identify

prerequisite relationship.

2) Performance Comparison: Figure 4 shows the per-

formance of prerequisite relationship identification on three

datasets. There are several observations. First, we find that

Random Forest also beats other classifiers, with best F1 across

all three datasets. Second, our method with each classifier

outperforms the baseline method across all three datasets.

Moreover, we observe that our method achieves significantly

higher precision (P ), recall (R) and F1 score than SRI. It

demonstrates that question logs feature is very useful in the

task of prerequisite relations extracting. Another potential rea-

son is that our textbook hierarchical structure feature (THSF)

contains both TOC information and grade structure feature.

If two concepts are not in the same textbook (For example,

textbook 1 and textbook 2), grade structure feature reveals that

two concepts might have prerequisite relationships.

D. Collaboration Relationship Identification Evaluation

To the best of our knowledge, there is no previous work

about collaboration relationship extracting, we only compare

our method among different classifiers. As shown in Table III,

the evaluation results varies from different classifiers. We

find that Random Forest (RF) achieves best F1 across all
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three datasets. The reason is as follows. Instead of a simple

descriptive feature, each of our proposed feature determines

whether a concept pair has collaboration relationship from a

specific aspect; its function is similar to an independent weak

classifier. Therefore, rather than using a linear combination

of features for classification (e.g., SVM and LR), a boosting

model (e.g., Random Forest) is more suitable for this task.

E. Case Study

In this section, we present a case study on concept map

construction. From Figure 5, we can find that by considering

both prerequisite and collaboration relationship, our method

achieves better performance in concept map construction.

For example, there is no clear learning sequence between

“Quadratic function” and “Quadratic equation”, but actually

grasping one concept could better help us learn another con-

cept. The concept map constructed by EMRCM contains both

prerequisite and collaboration relationship, which are more

advantageous and reasonable than others.

V. CONCLUSION

In this paper, we provided a focused study on multiple

relationships concept map construction in the education do-

main. For modeling the multi-source of education data, we

proposed several useful features from different aspects. Then,

we extracted key concepts and multiple relationships from

multi-source data to construct more reasonable and satisfactory

concept maps. Finally, the experimental results on a large-scale

real-world dataset clearly demonstrated the effectiveness of our

model.
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